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Abstract MapReduce is a popular data-parallel processing
model encompassed with recent advances in computing tech-
nology and has been widely exploited for large-scale data
analysis. The high demand on MapReduce has stimulated
the investigation of MapReduce implementations with dif-
ferent architectural models and computing paradigms, such
as multi-core clusters, Clouds, Cubieboards and GPUs. Par-
ticularly, current GPU-based MapReduce approaches mainly
focus on single-GPU algorithms and cannot handle large data
sets, due to the limited GPU memory capacity. Based on the
previous multi-GPU MapReduce version MGMR, this paper
proposes an upgrade version MGMR++ to eliminate GPU
memory limitation and a pipelined version, PMGMR, to han-
dle the Big Data challenge through both CPU memory and
hard disks. MGMR++ is extended from MGMR with flexible
C++ templates and CPU memory utilization, while PMGMR
fine-tuned the performance through the latest GPU features
such as streams and Hyper-Q as well as hard disk utiliza-
tion. Compared to MGMR (Jiang et al., Cluster Computing
2013), the proposed schemes achieve about 2.5-fold perfor-
mance improvement, increase system scalability, and allow
programmers to write straightforward MapReduce code for
Big Data.
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1 Introduction

The need to process complex and large amount of data
has increased dramatically in recent years. Representative
applications include data-mining, geoanalysis, predictive
analytics, statistical and experimental data analysis and visu-
alization, commerce, and engineering among several others.
Traditional methods and techniques have become incapable
of processing large datasets within tolerable time periods.

Large-scale data processing is tougher than ever before
since data size is increasing too fast for hardware resources
to catch up with. The ability to process vast amount of data
remains a critical challenge and hard mission for traditional
data processing applications and relational database manage-
ment systems. A number of different architectural designs
and programming models have been proposed and designed
to speed up the execution of applications with massive data
sets. Such platforms range from multi-core clusters, hybrid
clusters, clouds, mobile systems, Graphics Processing Units
(GPUs) and Cubieboards [2].

GPUs have been considered an excellent alternative to
CPUs for High Performance and High Throughput Comput-
ing applications. They can exploit data parallelism, increase
computational efficiency, and save energy by orders of mag-
nitude [3].

MapReduce has been widely adopted to process Big Data
problems [4]. It was originally proposed by Google to pro-
vide a simple and flexible parallel programming paradigm.
With MapReduce, users only need to write Map and Reduce
functions for parallel computing. The underlying program-
ming details, such as how to handle communication among
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data nodes, are transparent to users. Data affinity across the
network and fault tolerance among multiple nodes can be
achieved automatically.

Our previous work, MGMR, has already migrated the
MapReduce framework into GPU environment and success-
fully utilized Multiple GPUs concurrently [1,5]. As GPU
technology advances, powerful GPUs such as Nvidia Tesla
Kepler have appeared. As to leverage the most advanced fea-
tures of Kepler GPU such as Asynchronous Dual-channel
Data Transfer and Hyper Q, pipelined workflow scheduling
module is implemented and added to MGMR for further per-
formance gains.

For large-scale data processing, increasing the system
computability alone is not enough. The storage hierarchy
including both CPU memory and hard disks is employed
to enhance the storage and huge amount of data process-
ing capability as well as efficient data transfer between
disks and processing units. For such, it is proposed in
this paper MGMR++ and PMGMR to redesign C-based
MGMR for scalability. Both new systems are written in C++
with flexible C++ templates and Nvidia Thrust library for
some built-in functions. MGMR++ utilizes CPU memory
to eliminate the limitation of GPU memory size, whereas
the pipelined version PMGMR extends MGMR++ further
by adopting a flexible scheduling strategy and hard disks for
even larger data capacity. This paper presents the following
contributions:

– Multiple GPUs are utilized to accelerate MapReduce
operations,

– CPU memory and hard disks are used to continue MapRe-
duce operations, as data size exceeds the aggregate GPU
memory,

– Pipelined workflow scheduler maximizes the usage of
GPU by overlapping communication and computation to
hide the traffic behind computation and minimize the over-
all communication overhead for larger throughput,

– A job scheduler is employed to manage memory and data-
flow so that input size is no longer bounded by both GPU
memory and CPU memory capacity,

– A configuration optimizer is adopted to collect the inter-
mediate results and to dynamically adjust the environment
settings for balanced loads,

– All above application-level schedulers and optimizer are
implemented based on advanced Nvidia GPU features
such as streams and Hyper-Q as well as Thrust library.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces GPU architecture and MapReduce frame-
work, as also some related work, while Sect. 3 will detail the
design of MGMR++ and PMGMR system and their archi-
tectural designs. We present experimental results in Sect. 4
and compare different versions. Finally, the conclusion and
future work are given in Sect. 5.

2 Background and related work

2.1 Big Data

Big Data can be defined as a collection of large and complex
data sets, which are difficult to be processed by relational
database management systems or traditional data processing
applications. Typical size of a problem in this class is found
in Terabytes scale, and constantly growing.

The explosion of new computing and architectural mod-
els boosted the need for Big Data processing. Companies are
facing difficulties in managing and processing vast amount
of data as data size grows exponentially. They are unable to
manage, manipulate, process, share and retrieve such large
data through traditional software tools without turning data
processing into a costly and time-consuming process. Com-
panies such as Amazon, Google, Twitter, and Facebook have
different goals to keep track users, analyze their information
and browsing habits to improve the customer experience, and
search keywords to identify emerging trends [6]. Therefore,
their top priority job is not just to maintain a huge storage
space but also to process the data as quickly as possible since
real time response becomes vital.

2.2 MapReduce programming model

MapReduce is a programming model for processing large
data sets, widely used in domains such as data mining [7],
machine learning [9], and medical imaging [8]. The MapRe-
duce model has been adopted by many computing plat-
forms, such as multi-core systems [10,11], desktop grids
[12,13], mobile platforms, clustered systems, clouds, and
most recently, Cubieboards [2]. The design goals of MapRe-
duce include programmability, robustness, portability and
scalability.

Parallel Programming has been proven to be very chal-
lenging over years. MapReduce provides users and develop-
ers an easier way to generate parallel and distributed pro-
grams without worrying about the architecture of comput-
ing platforms. They only write simpler Map and Reduce
functions, mainly focusing on the logic of the specific prob-
lem. The MapReduce system automatically takes care of the
underlying execution details such as parallelism, communi-
cation, fault tolerance, and load balancing.

2.3 Multi-GPU architecture

Each GPU is consisted of multiple streaming-multiprocessors
(SMs) that execute thousands of lightweight hardware
threads concurrently. CUDA is the mechanism to exploit data
parallelism on GPU cores. Up to 512 threads are grouped into
thread blocks that are assigned to SMs where every 32 paral-
lel threads are grouped into a warp for scheduling. Extremely
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fast context switch between warps can help tolerate memory
access latency. All threads within the same block can access
the common shared memory. This helps synchronize threads
within the same block, and facilitate extensive reuse of on-
chip data in order to greatly reduce off-chip traffic.

For servers with multiple Nvidia Fermi GPUs, GPUDi-
rect is a technique used to handle inter-GPU communication
via the PCIe bus directly, without CPU side data buffering
[19]. High-speed DMA (Direct Memory Access) engines
enable such inter-GPU communication, directly read/write
data from/to another GPU’s memory within same server.
Therefore, it is possible to eliminate unnecessary copies
through system memory on CPU side and achieve sig-
nificant performance improvement in data transfer. Asyn-
chronous bidirectional memory copy is another advanced
feature that not only doubles the data transfer bandwidth,
but also helps achieve the overlapping of computation and
communication.

For recently released Tesla Kepler GPU, it is possible
that GPUDirect transfers between third party devices such
as network cards. With this feature, direct communication
between multiple Kepler GPUs among different machines
turns possible.

2.4 Related work

MapReduce has been implemented on many different plat-
forms such as computer clusters, multi-core, shared memory,
Cubieboards and CPU-GPU coupled architecture systems.
Hadoop MapReduce [14] developed by Apache Software
is designed for better programmability in processing vast
amount of data in clusters. Hadoop was developed in Java,
and Hadoop Streaming permits users to customize their own
Map and Reduce functions in other programming languages
such as C and Python.

Mars [20] is the first GPU-based MapReduce system,
that makes use of an atomic-free output-handling scheme
on GPUs. Unfortunately, it contains several drawbacks. It
has a two-step output process to calculate the data allocation
and avoid race conditions among threads. Also, it utilizes
bitonic sorts on the output data generated by the Map stage
to group the intermediate data, which has been proven to be
inefficient.

StreamMR [21] is a GPU MapReduce framework for
AMD GPUs, in which data chunks are partitioned into wave-
fronts, similar to the warp concept in NVidia’s CUDA. A
wavefront-wide atomic-free algorithm was developed to sub-
stitute global atomic operations for better performance. How-
ever, such an algorithm is driven by a pointer-based linked list
that is not supported well in GPUs. Also, the per-wavefront
buffer design causes inefficient memory utilization during
data transfer, which is limited by the memory controller
inside GPUs.

GPMR [11] extends GPU MapReduce to GPU cluster
level. It splits the large input of Map and Reduce functions
into chunks and uses partial reductions and accumulation to
reduce network operations. GPMR utilized GPU clusters to
achieve the speedup over other MapReduce libraries. How-
ever, it only focused on single GPU per node and the com-
munication between multiple GPUs on the same node was
not considered.

The Coupled CPU-GPU MapReduce [15] utilized two
schemes as well as both CPU and GPU for data processing.
In Map-Dividing scheme, the data of Map and Reduce stage
is processed in both CPU and GPU, whereas in Pipelining
Scheme, each device is only responsible for performing one
stage of the MapReduce. To balance the load between GPU
and CPU well, its runtime system reduces the block size of
each worker to synchronize all workers. Unfortunately, this
technique could also decrease GPU utilization when the input
size is too small.

The motivation and contributions of MGMR++ and
PMGMR systems are relevant and originated from the weak-
nesses found in some implementations of the aforementioned
MapReduce systems.

3 Multi-GPU MapReduce design: MGMR++ and
PMGMR

3.1 Challenges of Big Data

Big data has already become a challenge for MapReduce, just
as in other data processing systems [16]. A common GPU-
based MapReduce application tends to read input from hard
disks to CPU memory and then GPU memory. Under the
current storage hierarchy, the capacity of hard drive is much
bigger than CPU memory, and this gap also exists between
CPU memory and GPU memory [17,18]. Thus, large input
can easily cause overflow with GPU or even CPU memory.

3.2 MGMR++ system design

MGMR++ extends MGMR with flexible C++ templates and
its target platform is Nvidia Fermi family of GPUs. It is
designed to be extensible and customizable while maintain-
ing high occupancy of multiple GPUs. Load balancing across
multiple GPUs is achieved at runtime based on hardware
performance and job sizes. Every stage of the MapReduce
pipeline can be re-defined by users although the default Shuf-
fler and Sorter are provided.

When data size is smaller than accumulated GPU mem-
ory size, MGMR++ adopts single-round mode. Otherwise,
multi-round mode will be applied, assuming CPU memory
is big enough to contain all data.
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The overview of single-round MGMR++ is shown in
Fig. 1. The input of Map stage is partitioned into sets of
key-value pairs assigned to workers in different GPUs simul-
taneously. Next, the intermediate data generated from Map
stage are shuffled among workers across GPUs without
going through CPU memory. The Shuffle stage incurs all-
to-all communication among workers. For workers within
one GPU, the communication is accomplished through com-
monly shared GPU global memory. On the other hand, for
workers in different GPUs, GPUDirect enables remote GPU
memory access without going through CPU memory for per-
formance gains. Finally, all outputs of Reduce stage on mul-
tiple GPUs are copied back to CPU memory.

Through iterative GPU activations, MGMR++ can handle
any large data set that exceeds the sum of multiple GPU
memory unit sizes (but smaller than CPU memory) in multi-
round mode. As shown in Fig. 2, a self-scheduling strategy
is used to assign data sets to GPUs for processing. If data
cannot be processed all together by GPUs, the data pool will
be used as a buffer in page-locked memory on the CPU side
for intermediate data. In this multi-round mode, input data is
loaded to GPUs multiple times/rounds for Map function to
generate temporary data saved back to the data pool on CPU

Fig. 1 MGMR++ in single-round mode with multiple GPUs
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Fig. 2 MGMR++ in multi-round mode for Big Data applications
(H2D: Host-to-Device Communication; D2H: Device-to-Host Commu-
nication)

side. Then, Shuffle stage starts. The sorted temporary data
is loaded to GPUs next multiple times/rounds for Reduce
function to generate the final results, which are sent back to
CPU memory and hard disks.

In Map stage, the input key-value pairs are partitioned
into various sets with different sizes in the data pool. When
the CPU program detects an idle GPU, it will activate one
Map function and assign one data set over. For multi-round
mode, once Map workers finish the work, the intermediate
results will be sent back to the data pool and another group of
data sets will be loaded for processing until the Map work is
done. Next, in Shuffle stage, two modes work differently. In
one-round mode, input/output data is placed in GPU global
memory for the shuffling among multiple GPUs and Reduce
workers can continue easily, although in multi-round mode
data pool is used to contain all intermediate data and shuffling
takes place in CPU memory. Finally, in Reduce stage, data
will be loaded from the data pool into GPU global memory
and Reduce workers will work in a self-scheduling manner.
Different from the Map stage, each reducer is indivisible.

3.2.1 Map stage

The Map stage consists of several sub-stages: Output Size
Estimation, Key-Value Processing, and Partial Folder. In
Output Size Estimation sub-stage, the MGMR++ estimates
output size in advance to avoid memory overflow in GPU.
Unlike CPU, GPU cannot dynamically allocate global mem-
ory inside kernel functions. In Key-Value Processing sub-
stage, Map workers fetch input data from the data pool in
a self-scheduling manner and execute the user-defined Map
function. Asynchronous memory copy such as cudaMem-
cpyAsync() is used to overlap communication and computa-
tion, i.e., both GPUs and PCIe bus will be busy at the same
time. In multi-round mode, the output data sets need to be
copied back to the data pool since GPU global memory is
not big enough to contain all intermediate results. Then,
MGMR++ takes full advantage of bidirectional memory
copies, given that two DMA engines work in opposite direc-
tions [22]. Therefore, data transfer bandwidth is doubled.
Communication operations are overlapped as well. Finally,
in Partial Folder sub-stage, the intermediate output data will
be folded to reduce its size. This feature gives the user a way
to reduce data transfer and computation overheads. I/O bound
applications can use this sub-stage to reduce data transfer cost
for performance gains.

3.2.2 Shuffle stage

In single-round mode, if the intermediate data (output of the
Map stage) is small enough to put in one GPU’s global mem-
ory, these key-value pairs will be sorted through radix sort
in Nvidia Thrust library [23] during this stage. If they are
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Fig. 3 The interaction between
Partition Scheduler and GPUs

distributed across multiple GPUs, Parallel Sorting by Regular
Sampling (PSRS) [24], also called Sample Sort, is applied to
incur all-to-all broadcast through the GPUDirect technique,
and all data will be redistributed among GPUs. In fact, for
scalability, hashing might be a better choice. However, cur-
rent GPU hashing algorithms only work well with integers
and real numbers, not with text streams. For generality pur-
poses, this work picks PSRS and leaves discussions on hash-
ing strategy as future work.

When data is too big for aggregate GPU memory and
multi-round mode has to be used, the input and output of
Shuffle will be placed in the data pool (on the CPU side). A
CPU partition scheduler will use PSRS to reorder key-value
pairs and build indices in the data pool. GPUDirect is not
necessary since the data exchange does not happen among
GPUs.

3.2.3 Reduce stage

Partition Scheduler is used only if the input of Reduce stage
exceeds the sum of all GPUs’ memory sizes as in multi-round
mode. Figure 3 shows details about how Partition Scheduler
works. After Shuffle stage, Partition Scheduler maintains all
value list partitions in the data pool on the CPU side. The
indices of these value lists have been built in advance. As
GPU is idle and its Reduce workers come to ask for more
Reduce work, the Partition Scheduler will assign several
value lists as a combination with the consideration of load
balancing and transfer it to the designated GPU.

An approximate algorithm of the subset sum problem [25]
is used while the sum is GPU memory and the subset is the
sizes of different inputs. As shown in Fig. 3, while each GPU
works on current reducers, multiple CPU threads concur-
rently calculate the possible combinations of inputs for dif-
ferent GPUs. So when one GPU has finished the current job,
it can get another job directly from Partition Scheduler. All
GPUs keep busy until all Reduce inputs are processed, and
load balancing is achieved. Przydatek’s algorithm [25] works
fast, and therefore, it is possible that one GPU finishes its job

before Partition Scheduler gets the most approximate sum.
If this happens, Partition Scheduler transfers a combination
of inputs based on the current result immediately to GPU
instead of blocking GPU from continuous computation.

Finally, in the Key-Value Processing sub-stage, a user-
defined Reducer function is executed in hardware threads
on GPUs. Similar to the situation in Map stage, multiple
GPUs’ computation and PCIe’s bidirectional communication
capacities are exploited thoroughly, by utilizing advanced
features in Nvidia CUDA.

3.3 PMGMR system design

PMGMR mainly consists of three functional units: a job
scheduler, a GPU operation scheduler, and a configuration
optimizer. They are designed to improve MGMR [5] and
MGMR++ in the following aspects: capability of Big Data
processing, efficient GPU utilization, and fine-tuned overall
system performance.

Figure 4 shows the overview of PMGMR workflow. The
job scheduler launches Map and Reduce jobs based on set-
tings. Particularly in GPU Fermi architecture, GPU opera-
tions inside these jobs are emitted to GPU operation sched-
uler and issued in an optimized order. After each job finishes
its execution, the recorded timeline is sent to the configura-
tion optimizer, and the job setting is adjusted at runtime based
on the analyzed results. PMGMR is designed to process mas-
sive amount of data. When the processed data is too large for
GPU and CPU memory, PMGMR employs a job scheduler to
handle the data transfer among hard drive, CPU memory, and
multiple GPUs. The job scheduler ensures that no memory
overflow will occur due to large inputs. This enables users to
import any size of data without defining extra functionalities
if hard disks are big enough for the data and its outputs.

The data scheduler of PMGMR uses a divide-and-conquer
strategy, which separates input data into smaller pieces and
merges their outputs back later. This strategy is applied to
both Map and Reduce stages, since the input of Map stage
can be partitioned into chunks of any size, whereas the input
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Fig. 4 The overview of
PMGMR workflow in Fermi
architecture
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of Reduce stage is only indivisible for values with the same
key. The implementation of Shuffle stage is inspired by the
idea of external sorting. However, instead of using CPU, the
data is transferred and sorted in multiple GPUs directly.

The dataflow overview of data scheduling is depicted in
Fig. 5. A part of data is loaded from hard disks into CPU
memory, and then this partition is further divided into smaller
chunks, whose size is small enough for GPU memory. The
scheduler keeps GPUs busy with input chunks and trans-
fers their outputs back to CPU memory. Once all chunks are
processed, the outputs of the current partition are combined
and written into hard disks. This process is repeated until all
parts of the input in the hard drive are processed.

3.3.1 Pipelined multi-GPU utilization

Full GPU utilization is hard to achieve. For an ordinary user,
designing efficient Map and Reduce functions in a GPU-
based MapReduce system is a difficult task. Even with the
well-designed official library by Nvidia, the average uti-
lization of a single kernel is still around 80 percent, which
means that roughly 20 percent of the computational power is
wasted [23].

In order to extract full computational power from GPU,
rather than relying on users and programmers to tune appli-
cations and system configuration, a runtime scheduler is
developed to improve Nvidia GPU utilization through CUDA
streams and Hyper-Q.

The overview of the pipelined data-path is shown in Fig. 5.
The data-paths are overlapped in each GPU by using mul-
tiple CUDA streams. Consequently, PMGMR takes advan-
tage of concurrent kernel execution since Fermi and Kepler
architectures allow kernel functions from different streams
in the same context to run simultaneously for idle SM uti-
lization. Furthermore, bidirectional memory copy operations
also increase the average bandwidth of data transfers since
two DMA engines work in opposite directions. However,
maintaining both benefits in multiple GPUs is not an easy
task. Both the threshold of job pipelines and the input size
need to be adjusted appropriately for better efficiency.

The control flow overview of the job scheduler is shown
in Fig. 6. Before the job starts, the job scheduler collects
information about available CPU memory and GPU devices.
Based on the gathered information and a user-defined struc-
ture, the scheduler calculates the maximum feasible input
size for CPU and different GPUs. Data then starts to be trans-
ferred back and forth between hard disks, CPU memory and
GPU memory. The goal of this runtime optimization is to con-
tinuously improve the overall utilization of multiple GPUs
by approaching to the optimal threshold and input size.

3.3.2 Pipelining scheme in Fermi architecture

Streams and concurrency were features in CUDA 4.0 for
Fermi architecture. With GPUs’ compute capability no
less than 2.0, a programmer is able to launch up to 16
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concurrent CUDA kernels, and two bidirectional data trans-
fer cudaMemcpyAsync() calls. As defined in Fermi architec-
ture white paper [26], the Fermi hardware has one compute
engine queue and two copy engine queues. Stream depen-
dencies between engine queues are maintained, and become
FIFO sequence within an engine queue. A CUDA opera-
tion is dispatched from the engine queue either if preced-
ing calls in the same stream have completed or if preced-
ing calls in the same queue are irrelevant and have been
dispatched.

By appropriately using streams to achieve operation over-
lapping and high GPU occupancy, some applications can
exhibit several times performance improvement with the
same algorithm and only minor code changes. On the other
hand, a blocked operation stops all other operations in the
queue, even in other streams. For instance, as shown in Fig. 7,
when two streams issue four kernels in different ways, the
execution time varies.

To take advantage of stream and concurrency, PMGMR
processes job pipelines in multiple CPU threads with dif-
ferent GPU streams. In each CPU thread, GPU operations
such as memory copy and kernel execution are pre-defined
by the user, and their issue order is optimized at compile time
by NVCC compiler. However, just like other multi-threaded
programs, the execution order of operations among multiple
threads cannot be predicted in advance.

3.3.2.1 Reorder-and-fire scheme The goal of our reorder-
and-fire scheme is to significantly reduce the number of oper-
ation combinations that cause blocking. Instead of issuing
GPU operations directly, the execution plan of each operation
is first sent to the GPU operation scheduler and placed into a
software stack with a limited window size. Operation priori-
ties are estimated by the scheduler based on other operations
in GPU. When the pending operations on the stack exceed
its window size, GPU operation scheduler sends one GPU
operation with the highest priority to the hardware queue
and removes the operation from the software stack. More-
over, when an operation finishes, a signal is immediately
sent to the scheduler through a callback function in the wrap
function.

Table 1 shows a part of the priority table for different com-
binations of coming operation and GPU operational state
when proportions of Device-to-Host, Kernel, and Host-to-
Device operations are the same. These priorities need to be
adjusted for different operation proportions in different appli-
cations, which represent the possibilities of their executions.

Due to the restrictions in Fermi architecture, the possi-
ble operation combinations that create concurrency are also
limited. Based on feasible and possible combinations, an effi-
cient scheme is designed to calculate the priorities of different
combinations that define the chance to increase concurrency
and avoid blocking. As shown in Table 1, the foundation
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Table 1 An example of the priority table when proportions of Device-to-Host, Kernel, and Host-to-Device operations are the same

Remained D2H K H2D D2H, H2D D2H, K H2D, K D2H, K, H2D D2H,D2H, K . . .

Coming . . .

D2H 1 2 2 3 3 4 5 4 . . .

K 2 0|2 2 4 2 2 6 4 . . .

H2D 2 2 1 3 4 3 5 6 . . .

D2H: Device-to-Host K: Kernel H2D: Host-to-Device

Fig. 8 Pseudo code for
operation priority calculation

priorities are the nine pairs, which have one coming and
one remaining operation. These nine priorities are defined
according to these four situations:

(1) cudaMemcpyAsyncs() operations in the same direction
are serialized (1 credits),

(2) Bidirectional cudaMemcpyAsyncs() operations are over-
lapped (2 credits),

(3) Sequentially issued kernels delay signals and block
cudaMemcpyAsyncs()(0 credits),

(4) Kernels in different streams can be executed concurrently
when resources are available (2 credits)

In situation 1, although memory copies are serialized, ker-
nels and memory copies in the opposite direction can still run
concurrently. Both situations 2 and 4 are the perfect cases to
increase concurrency. Lastly, situation 3 is a very special case
and actually the worst case, which shows that inappropriate
concurrent kernel executions can block other operations. The
solution is to insert memory copy between the sequential ker-
nels. These situations represent four unique circumstances,
and only situation 3 relies on the issue order. Thus, for the
GPU scene, which has more than one remaining operations,
its priorities can be calculated by adding all priorities of its
one-to-one pairs together while distinguishing two different
cases of situation 3. The generalized scheme is described as
the algorithm shown in Fig. 8.

3.3.2.2 Execution plan queue As a requirement of pre-
vious schemes, the runtime scheduler needs to have the
capability of reordering and issuing the user’s execution
plans. To achieve this, two main issues should be consid-
ered. Firstly, the definition of the user’s kernel function is
unknown, and Secondly, user-defined GPU operations from
different streams need to be reordered at runtime.

To handle abovementioned issues, PMGMR employs the
most recent version of the standard C++ programming lan-
guage, C++11, which includes several additional features to
the core language and extends the C++ standard library. Then,
user-defined functions can be stored as an object which can
be moved around and copied. In this way, the wrap functions
and their operation types are sent to the runtime scheduler.
Based on the operation types, the scheduler can now calculate
their priorities and issue them in an optimized order.

3.3.3 Pipelining scheme in Kepler architecture

Kepler GPU family has improved concurrency functional-
ity with the new Hyper-Q feature, which increases the total
number of connections (work queues) between the host and
the CUDA Work Distributor logic in GPU by allowing 32
simultaneous, hardware-managed connections (compared to
the single connection available with Fermi). Therefore, up to
32 streams can be totally independently executed in Kepler
GPUs.
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PMGMR takes great advantage of Hyper-Q to process job
pipelines in different CPU threads. Since GPU operations in
different GPU streams are actually maintained in different
hardware connections, PMGMR no longer needs to deter-
mine the cross dependency issue for task serialization, as in
Fermi GPU family.

Thence, the utilization of Kepler GPU is always higher
and more stable because concurrency and bidirectional data
transfer can be achieved easily.

3.3.3.1 Runtime tuning and load balancing For the job
scheduler, job pipelines are issued according to two options
in job setting: threshold of job pipelines and the input size
of each job. These two options can be adjusted by the con-
figuration optimizer based on the timeline records and the
detection of memory overflow.

The threshold option represents the number of running
CPU threads which form the job pipelines and process input
data for user-defined Map and Reduce functions. If the num-
ber is too small, concurrency cannot be high enough to fully
utilize multiple GPUs. However, if too many job pipelines are
generated, the performance can also decrease due to thread
context switch latency. PMGMR adjusts this option based on
the processing throughput. Initially, the number of thresh-
old is small, assuming it is N. After N job pipelines are
launched, the configuration optimizer increases this number
and keeps track the processing throughput for any necessary
adjustment.

The input size option can be carefully configured to max-
imize the usage of GPU memory and avoid freezing due to
memory overflow. Initially, the size of input/output equals
to GPUMemory/PipelineNumber, and no memory overflow
may occur in this situation. For the purpose of maximiz-
ing GPU occupancy, the configuration optimizer gradually
increases the input size with fixed threshold. Then the possi-
bility of memory overflow also increases. Therefore, before
any GPU operation is issued, the wrap function checks the
GPU memory usage to determine whether this operation can
be issued or not. If one operation may cause GPU memory
overflow, its corresponding job pipeline will be blocked until
it is safe to issue this operation.

Performance may degrade due to the blocked CPU opera-
tions and low GPU utilization. Therefore, when job scheduler
detects a memory overflow operation, the setting of input size
is rolled back to the previous state, and the maximum GPU
utilization is reached for this job.

4 Experimental results

4.1 Results on MGMR++ scheme

Experiments for this system design were conducted on a
server containing two Intel Xeon X5660 (2.80GHz, totally

24 cores) with 24 GB RAM and two Nvidia GPUs: Quadro
6000 and Tesla C2070 (both have 1.15 GHz, 5,375 MB global
memory, 64KB L1-cache/SM) for Fermi GPU testing.

The server is running the GNU/Linux operating system
with kernel version 2.6.32. Testing applications are imple-
mented with CUDA 5.0 and compiled with NVCC compiler
in CUDA Toolkit 5.0. CPU versions are implemented with
OpenMP using 24 threads to utilize all 24 CPU cores for full
capacity.

Traditional MapReduce is designed for data-intensive
applications and High Throughput Computing (HTC) since
data can be easily distributed in computer clusters. How-
ever, GPU computing is good for compute-intensive appli-
cations and High Performance Computing (HPC) due to the
data transfer slowdown on PCIe bus. Multi-GPU MapReduce
systems, MGMR++ and PMGMR, intends to integrate both
cases. Some data-intensive might not be able to achieve bet-
ter performance in terms of execution time (due to CPU-GPU
communication overhead). But HTC effect is always there.
In this work, K-Means Clustering (KMC) [27] and Unique
Phrase Pattern (UPP) are selected to represent compute-
intensive and data-intensive applications.

4.1.1 K-Means Clustering

K-Means Clustering (KMC) [27] is used in data mining,
which aims to partition n observations into k clusters where
all observations in a cluster are close to the nearest mean.
The testing data is randomly generated from a 10 k × 10 k
square area with floating-point coordinates. Map stages finds
the cluster for each point based on means and emit <index
(cluster), point>. Since KMC is NP-hard, we set the test to 3
rounds for performance measuring. Also, the cluster number
k is set to 24 for fair comparison between CPU and GPUs
since there are totally 24 CPU cores. As shown in the left part
of Fig. 9, we generated up to 520 millions points for the exper-
iments. KMC is quite computationally intensive since each
point needs to compare with 24 means to find the closest one.

The Multi-GPU version can declare clear computability
advantage. In the right part of Fig. 9, the double-GPU version
achieves 91.7 times speed-up over the CPU version and 1.7
times speed-up over the single-GPU version. As shown in
Fig. 10, the Shuffle stage takes a small percentage of execu-
tion time because of the optimization of Partial Folder sub-
stage. For the same reason, the Reduce stage is also very
light-weighted.

4.1.2 Unique-Phrase Pattern

Unique Phrase Pattern (UPP) can detect the most frequently
used phrase patterns. For simplicity (buffer management),
only two to three-word phrases are acceptable for our tests.
The input data is randomly generated from a forty-thousand-
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Fig. 9 Experimental results of
KMC: execution time and the
speedups of the double-GPU
version over the 24-thread CPU
version and the single-GPU
version

Fig. 10 Experimental results of KMC: runtime breakdown

word dictionary that is pre-hashed. In MGMR++, UPP is
developed as a three-pass MapReduce. Therefore, no extra
work is needed for allocating different sizes of buffers for
different phrases. The first two passes count 2-word and 3-
word phrases separately. Key-value pairs are emitted as <list
(hash(word1), . . .),1>. Both results are used as the input for
the third pass in order to sort all phrases in one mapper for
their occurrence. Since UPP is originally I/O-bound, the sub-
stage Partial Folder in the Shuffle stage is activated in each
pass to reduce the data transfer overhead.

In the left one of Fig. 11, performance comparison is given
for one- and two-GPU cases. The single-GPU version is only
slightly faster than double-GPU version when the input size
is very small (less than 45 MB), due to low GPU occupancy
and communication overhead in double-GPU version’s Shuf-
fle stage. Bigger applications can exploit parallelism more
efficiently. In the right one of Fig. 11, although double-GPU
version still remains a similar advantage over single-GPU
one, the advantage over CPU-version drops. Since UPP is an
I/O-bound application, CPU-version takes advantage of this.
According to the runtime breakdown as shown in Fig. 12,
although Map stage is the most time-consuming portion,
Shuffle and Reduce stages exhibit larger percentage than
those in KMC. Still, application types are the main reason
here.

4.2 Results on PMGMR scheme

Experiments for this design scheme were conducted on
two servers. The server 1 contains two Intel Xeon E5504
(2.00GHz, total 8 cores) with 24 GB memory and two Nvidia
Tesla C2050 cards (1.15 GHz, 448 CUDA Cores, 2,687 MB
global memory) for Fermi GPU testing, and server 2 contains
four Intel Xeon E5-2620 (2.00GHz, total 24 cores) with 32
GB memory and two Nvidia Tesla K20Xm (0.73 GHz, 2688
CUDA Cores, 5,760 MB global memory) for Kepler GPU
testing. Both servers are running the GNU/Linux operating
system with kernel version 2.6.32. Testing applications are
implemented with C++11 and CUDA 5.0 and compiled with
g++ and NVCC compiler in CUDA Toolkit 5.0.

4.2.1 PMGMR vs. MGMR++

The pipelining scheme of PMGMR utilizes multiple GPUs
mainly in two ways: concurrent kernel execution and bidi-
rectional memory copy. K-Means Clustering (KMC) is used
in data mining, which aims to partition n observations into
k clusters where all observations in a cluster are close to the
nearest mean. We use KMC to test the pipelining scheme
because of its computation-heavy characteristic which can
clearly demonstrate the advantage of GPU-based MapRe-
duce schemes. Concurrent kernel execution is originally
designed for inefficient kernels. If the performance of KMC
can still be improved by pipelining scheme, then this scheme
can perform even better in other benchmarks with inefficient
kernels which originally waste the computation power of
multiple GPUs.

As shown in the left part of Fig. 13, the pipeline scheme has
considerable speed-up over the sequential execution when
the number of input pairs is small. As the number grows big-
ger, the speedup becomes smaller in both Kepler and Fermi
versions because each kernel has already consumed most of
GPU resources. However, the execution time is still reduced
by asynchronous memory copy because most of the memory
copy operation is overlapped with computations.
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Fig. 11 Experimental results of
UPP: execution time and the
speedups of the double-GPU
version over the 24-thread CPU
version and the single-GPU
version

Fig. 12 Experimental results of UPP: runtime breakdown

As shown in the right part of Fig. 13, Kepler GPU family
gains more benefits from the pipelining scheme than Fermi
does. The reason is that both hardware connections and level
of concurrency are improved in Kepler. As a result, when
the input and output data sets can fit GPU memory, the
Kepler version of PMGMR achieves 1.8 times speedup over
Fermi version, whereas the Kepler version of MGMR++ only
achieves 1.6 times speedup.

4.2.2 Overall performance

A 60GB binary file, which contains the original coordinate
information of KMC, is generated to measure the overall
performance of PMGMR. Since KMC is NP-hard, we set the
maximum rounds to 3 for performance measuring. In this test,
the first of several rounds has relatively low execution time.
Though, as the size of input increases, and actually before
this size can incur CPU memory overflow, the execution time
starts to increase dramatically in the coming rounds. Then,
after few rounds, the execution time becomes stable again
with a much lower throughput. The main reason of this is
that Linux maintains buffer caches in its file system.

Originally, most of data that PMGMR reads are from the
caches that reside in CPU memory. After all the cache are
flushed out from CPU memory because of the memory oper-
ations, PMGMR starts to read data from hard drive which
has very slow read/write speed and actually becomes a main
bottleneck.

As shown in the left one of Fig. 14, when the input size
is roughly less than 3 GB, the execution time is so small and
can almost be ignored if we compare it with the following
execution time. This phenomenon comes from buffer caches
in memory. When data is small, it might be left in buffer
caches. Future data might have been pre-fetched and no I/O
operation might be incurred. However, as data size increases,
buffer caches will not be large enough and I/O operations
will be required all the time. The detail is out of the scope of
this paper and we only consider the stable larger data cases.
After that, the performance of PMGMR is mainly bounded
by hard disk speed. Since the read/write combined speed of
hard drive is 105 MB/s in Fermi machine and 163 MB/s in
Kepler machine, PMGMR shows very low operation over-
heads while continuously processing input and storing out-
put. The difference of execution time between Fermi and
Kepler machines is also caused by different hard drive speeds.
Moreover, in the right one of Fig. 14, the runtime breakdown
shows that as the input size increases, the proportion of shuf-
fle and reduce stages do not increases. The reason is that a
Partial Reduce stage is used for each portion to reduce I/O.
Thus, only the sum of the x–y coordinates of each cluster in
each portion is written into the output file of the Map stages.
Since the number of clusters is limited, total size of the output
files is always smaller compared to the input of the Map stage.
Thus Shuffle and Reduce stages become very light-weighted.

4.2.3 Runtime optimization

A GPU operation scheduler and a setting optimizer are
employed to improve the stability and throughput in PMGMR.
The upper-left one in Fig. 15 shows the execution time com-
parison between normal multi-threaded Fermi version and
scheduled multi-threaded Fermi version. The experimental
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Fig. 13 Two speedups: The left
part is PMGMR’s runtime
speedup over MGMR++; while
the right one is the speedup of
the Kepler versions of PMGMR
and MGMR++ over their
corresponding Fermi versions

Fig. 14 PMGMR with
K-means Clustering: execution
time and runtime breakdown

Fig. 15 Runtime optimization
results: performance of Fermi
scheduler, throughput records
from different rounds, and
throughput with different sizes
of input and threshold
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result shows that compared to the normal Fermi version,
the scheduled one is much stable. Although sometimes the
normal Fermi scene shows shorter execution time, the aver-
age performance of the scheduled version is still higher. The
performance fluctuation might come from Fermi hardware
and system configuration.

The setting optimizer mainly adjusts threshold of job
pipelines and data inputs to optimize the setting. Experimen-
tal results show that setting optimizer works well as it is
designed. As shown in the upper-right one of Fig. 15, thresh-
old of job pipelines and the input size of each job can be
adjusted independently for better throughput. After setting
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them with different values, the maximum throughput can be
achieved without any memory overflow. However, this 3-D
figure only shows that both factors can be adjusted and the
peak position (along Z-axis) is detected for the maximum
throughput.

PMGMR can approach to a near-perfect setting automat-
ically. As shown in the lower-left portion of Fig. 15, the
throughput roughly keeps increasing until the 22nd round.
Next, the throughput starts to drop because too many job
pipelines are generated. At 29th round, the setting optimizer
detects the dropping throughput and rolls back to the previ-
ous threshold option. The throughput returns to the previous
level and the threshold option is fixed. After that, the size of
input is gradually increased every round until 36th round. A
memory overflow is detected and the operation blocked by
the job scheduler. Therefore, the option of input is also rolled
back to the previous state. Finally, the throughput becomes
stable, and both options are finalized for the current MapRe-
duce stage.

5 Conclusions and future work

In this paper, two multi-GPU MapReduce systems were
designed and further implemented with consideration of both
GPU computing power and storage hierarchy for large-scale
data processing. Experimental results have demonstrated the
effectiveness of these two systems.

MGMR++ and PMGMR system are developed aiming
scalability in both computational power and data size aspects.
As data size is larger than the aggregate GPU memory, CPU
memory is used to continue MapReduce computations. When
CPU memory is not big enough, hard disks can be used
for large-scaled MapReduce. Several runtime schedulers are
developed to help improve overlapping of computation and
communication operations. System configuration can also be
set automatically for a near-perfect result.

Experimental results have demonstrated MGMR++’s
advantages over both CPU and single-GPU MapReduce in
both performance and scalability aspects, while PMGMR
outperforms MGMR++ in capability, performance, and sta-
bility. Both systems are compared on Fermi and Kepler GPU
families.

By carefully tuning factors in both architecture design
schemes, the overall performance of multi-GPU MapRe-
duce can be improved for well-known benchmarks, and is
thus more attractive to many other existing applications.
Our results show that it is therefore possible to build a
multi-GPU environment aiming at MapReduce computa-
tions for elastically scalable and efficient Big Data process-
ing. Although storage bandwidth might turn into a bottle-
neck in Big Data applications, scaled GPU clusters will help
achieve larger aggregated memory. Even for a single GPU

node, reduced GPU usage will benefit other running appli-
cations since almost all operating systems are multi-user and
multi-task ones. These systems can provide nicer sharing
environments.

The future work includes extending PMGMR to GPU
Clusters by using RDMA and Hyper-Q for further perfor-
mance scalability, developing generalized hash function for
Shuffle stage, integrating PMGMR with distributed file sys-
tems and storages for fault tolerance, and improving its easy-
to-use aspect with the newest C++11 standard for program-
mability. More real-world applications will be applied for
detailed performance analysis. Hadoop Streaming is one of
future branches for testing PMGMR and MGMR++ in GPU-
based cluster environments.
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