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Abstract The delivery of scalable, rich multimedia appli-
cations and services on the Internet requires sophisticated
technologies for transcoding, distributing, and streaming
content. Cloud computing provides an infrastructure for such
technologies, but specific challenges still remain in the areas
of task management, load balancing, and fault tolerance.
To address these issues, we propose a cloud-based distrib-
uted multimedia streaming service (CloudDMSS), which
is designed to run on all major cloud computing services.
CloudDMSS is highly adapted to the structure and policies
of Hadoop, thus it has additional capacities for transcoding,
task distribution, load balancing, and content replication and
distribution. To satisfy the design requirements of our service
architecture, we propose four important algorithms: content
replication, system recovery for Hadoop distributed multi-
media streaming, management for cloud multimedia man-
agement, and streaming resource-based connection (SRC)
for streaming job distribution. To evaluate the proposed sys-
tem, we conducted several different performance tests on a
local testbed: transcoding, streaming job distribution using
SRC, streaming service deployment and robustness to data
node and task failures. In addition, we performed three differ-
ent tests in an actual cloud computing environment, Cloudit
2.0: transcoding, streaming job distribution using SRC, and
streaming service deployment.
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1 Introduction

With the recent proliferation of rich social media across a
variety of personal devices, considerable attention has shifted
to the challenge of adaptively distributing and streaming mul-
timedia content over the Internet. Among the emergent tech-
nologies, cloud-based media streaming, transcoding, and dis-
tributed storage have been the most noteworthy and influ-
ential. Before the advent of cloud computing technology,
multimedia services employed traditional distributed and
cluster-based computing approaches for media transcoding
and streaming processing. However, supporting the quality
of service (QoS) is difficult for these multimedia services
using traditional approaches because of the explosive growth
in mobile services [1] and multimedia traffic caused by the
high resolution and capacity of recent multimedia formats.

In the areas of traditional multimedia transcoding and
streaming, much research has focused on distributed and
cluster-based video media approaches [2–6] for reducing
the transcoding processing time to facilitate the delivery
and transmission of multimedia to the end user while con-
sidering limited network traffic, as well as streaming job
distribution. However, these approaches have several prob-
lems and limitations. First, these transcoding approaches
only focus on obtaining computing resources for multime-
dia transcoding processes simply by increasing the number
of cluster machines in a parallel and distributed comput-
ing environment. Second, during the recovery phase of a
QoS-guaranteed streaming system, these approaches do not
include load balancing, fault tolerance, or a data replication
method that ensures data protection and expedites recovery
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[7]. Thus, the absence of an automated recovery policy to pre-
vent the loss of multimedia content and system faults in tra-
ditional streaming systems mean that these approaches can-
not guarantee the reliability of a system when providing rich
media services. Finally, most of the systems that use these
approaches do not include or consider a media transcoding
function for streaming services, thus vendors and develop-
ers find it difficult to simultaneously construct and develop
transcoding and streaming modules for distributed and clus-
ter environments.

To overcome these limitations and problems, many
researchers and developers have adopted cloud comput-
ing technologies [8–12] for multimedia service owing to
advantages such as a flexible dynamic IT infrastructure,
QoS-guaranteed computing environments, cloud program-
ming models [13], and configurable software services [14].
Cloud-based media streaming services that are distributed
over the Internet have been released: iCloud (Apple), Cloud
Player and Cloud Drive (Amazon), Azure Media Services
(Microsoft), and Netflix. Cloud-based transcoding services
such as Amazon Elastic transcoder, Zencoder, and Ankoder
have been released [15].

Cloud-based technologies have emerged owing to the
features of recent multimedia services: the heterogeneity
of media, QoS, networks, and devices [16]. To support
such features, media streaming, transcoding, and distribu-
tion must depend on massive—and massively scalable—
computational resources: i.e., CPUs, memory, network band-
width, and storage. Although cloud computing can provide
these resources, in doing so, it also introduces a heavy bur-
den on existing Internet infrastructure and cloud resources
as well as a host of new challenges (e.g., cluster rebalanc-
ing, namespace management, data distribution/replication
[17], auto-recovery, and fault tolerance), which are inten-
sified by the massive swings in traffic associated with rich
media streaming. Developers and service vendors have both
found that these challenges are difficult to resolve, and they
continue to hinder current media delivery systems.

To address these challenges, we propose a cloud-based
distributed multimedia streaming service (CloudDMSS) sys-
tem based on Hadoop [18,19], which is designed to run on
the current cloud computing infrastructure. The capacities of
CloudDMSS include the following:

(1) Transcoding of large volumes of media into the MPEG-4
video format for delivery to a variety of devices including
PCs, smart pads, and phones;

(2) Reduction in the transcoding time by incorporating the
Hadoop distributed file system (HDFS) for the storage of
multimedia data and MapReduce for distributed parallel
processing;

(3) Reduced content delay and traffic bottlenecks using a
streaming job distribution algorithm;

(4) Improvement in the overall performance using dual-
Hadoop clustering for each physical cluster;

(5) Efficient content distribution and improved scalability
by adhering to Hadoop policies;

(6) Conducting the workflow of sequential tasks automati-
cally during streaming service deployment.

In this study, we describe the design of the CloudDMSS
architecture with an HDFS-based [20,21] distribution and
storage function for source media files, a batch processing
function to transcode a large number of media files, an auto-
matic migration function for transcoding contents to con-
tent servers based on HDFS, and a streaming job distribu-
tion strategy. We designed and defined a set of systematic
cloud-based multimedia streaming processing workflows.
We focused on using CloudDMSS to conduct a workflow
based on a dual-Hadoop cluster for each physical cluster
using a variety of open sources and we developed a Web-
based dashboard to support user interfaces by monitoring
cloud resources. Experimental evaluations of CloudDMSS
were conducted to verify its performance.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses relevant research on cloud-based streaming
services. Section 3 describes the core architecture of Cloud-
DMSS and the workflow of the streaming service deployment
process, as well as presenting four robust algorithms that sat-
isfy the design requirements of our service architecture. Sec-
tion 4 explains the prototype of the proposed system and its
configuration. In Sect. 5, we discuss the results of several
experiments conducted using a 28-node cluster over a local
testbed. In Sect. 6, we discuss performance evaluations con-
ducted in an actual cloud environment. Section 7 presents
our concluding remarks and plans for future work.

2 Related works

In recent years, many researchers have applied cloud com-
puting technologies to rich media services in response to the
explosion in demand. We consider the three aspects that are
most relevant to our CloudDMSS system: Hadoop, media
transcoding, and multimedia cloud computing.

2.1 Hadoop

Hadoop was inspired by Google’s MapReduce and Google
File System [22], and it is a software framework that supports
data-intensive distributed applications, which are capable of
handling thousands of nodes and petabytes of data. Hadoop
facilitates the scalable and timely analytical processing of
large datasets to extract useful information. Hadoop com-
prises two important frameworks: (1) HDFS, which is a dis-
tributed, scalable, and portable file system written in Java,
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like the Google file system (GFS); and (2) MapReduce, which
was the first framework developed by Google for processing
large datasets. The MapReduce framework provides a spe-
cific programming model and a runtime system for process-
ing and creating large datasets that are suitable for various
real-world tasks [5]. This framework also handles automatic
scheduling, communication, and synchronization during the
processing of huge datasets and it has a fault tolerance capac-
ity. The MapReduce programming model is executed in two
main steps called mapping and reducing. Mapping and reduc-
ing are defined by mapper and reducer functions. Each phase
requires a list of key and value pairs as the input and output.
In the mapping step, MapReduce receives the input dataset
and feeds each data element to the mapper in the form of key
and value pairs. In the reducing step, all of the outputs from
the mapper are processed and the final result is generated by
the reducer using the merging process.

2.2 Media transcoding

The term media transcoding has been defined in many previ-
ous studies, such as [23,24]. In [14], multimedia information
must be adapted to bring multimedia contents and service
to numerous heterogeneous client devices while retaining
the capacity for mobile usage, which is referred to as media
transcoding technology.

Figure 1 shows the architecture of a legacy transcoding
system. First, the client requests a transcoding function from
a transcoding server. The transcoding sever reads the orig-
inal media data from the media server and then proceeds
to transcode the data depending on user requested resolu-
tion, bit-rate, and frame rate. The transcoding server then

Fig. 1 Architecture of a legacy transcoding system [25]

sends the transcoded media data to the client [25]. How-
ever, this media transcoding processing imposes a heavy
burden on the existing internet infrastructure and comput-
ing resources because more recent media files, such as
video and image files, have changed to high capacity/high
definition.

Therefore, many researchers have applied distributed and
parallel computing to media transcoding methods. For exam-
ple, Guo et al. [4] proposed a cluster-based multimedia web
server, where they designed and implemented a media cluster
that dynamically generates video units in order to satisfy the
bit rate requested by many clients, as well as proposing seven
load balance scheduling schemes for the MPEG transcod-
ing service. Sambe et al. [26] designed and implemented
a distributed video transcoding system with the capacity to
transcode an MPEG-2 video file into diverse video formats
with different rates. The main reason for transcoding a video
file is that the transcoder chunks the MPEG-2 video file into
small segments along the time axis, before transcoding them
in a parallel and distributed manner.

Tian et al. [27] described a cluster-based transcoder that
transcodes MPEG-2 format video files into MPEG-4 and
H.264 format video files with a faster transcoding speed. This
system comprises a master node and a number of worker
nodes. The master node has six threads, a splitter, merger,
sender, receiver, scheduler, and an audio transcoder.

2.3 Multimedia cloud computing

Multimedia traffic has increased dramatically over the Inter-
net since the release of various personal devices and changes
in the content of video and image files to high capacity and
high definition. To support a high QoS for heterogeneous
devices such as smartphones, personal computers, smart tele-
visions, and smart pads, many researchers and developers
have tried to apply cloud computing technologies to multi-
media services. In this section, we introduce the basic concept
of multimedia cloud computing and we consider some recent
studies.

Zhu et al. [16] introduced the first principal concept of the
multimedia cloud computing model, where they addressed
multimedia cloud computing from multimedia-aware cloud
(media cloud) and cloud-aware multimedia (cloud media)
perspectives. Figure 2 shows the relationship between the
media cloud and cloud media services. A multimedia-aware
cloud perspective focuses on how the cloud can provide
QoS for multimedia applications and services. A cloud-aware
multimedia perspective focuses on how multimedia can per-
form content storage, processing, adaptation, rendering, and
other functions in the cloud to best utilize cloud-computing
resources, thereby delivering a high quality of experience for
multimedia services.
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Fig. 2 Relationship between
media cloud and cloud media
services [16]

To the best of our knowledge, there have been few pre-
vious reports of multimedia cloud computing. Hui et al.
[28] proposed MediaCloud, which is a layered architecture
that defines a new paradigm for dealing with multimedia
applications and services. The architecture comprises three
layers—a Media Service Layer, a Media Overlay Layer, and
a Resource Management Layer—and it addresses key chal-
lenges such as heterogeneity, scalability, and QoS provision-
ing. However, this architecture operates mainly at the con-
ceptual level and it leaves most of the challenges of real-
world implementation for future work [28]. By contrast, Luo
et al. addressed the implementation challenge of QoS deliv-
ery over a virtualized infrastructure by presenting a practical
architecture and mechanism for a private media cloud [29].
They described their system in terms of four major compo-
nents: monitoring, load balancing, traffic management, and
security. In the context of cloud-based streaming, Lee et al.
[15] proposed a configuration scheme for connectivity-aware
P2P networks based on algorithms for connectivity-aware
mobile P2P network configuration and connectivity-aware
P2P network reconfiguration. Chang et al. [30] described
a cloud-based media streaming architecture that dynami-
cally adjusts streaming services in response to mobile device
resources, multimedia codec features, and the network envi-
ronment. They also presented a design for a stream dispatcher
component, including the real-time adaptation of codecs in
response to client device profiling and a dynamic adjustment
of multimedia streaming algorithm. Huang et al. [31] pre-
sented CloudStream, which is a cloud-based video proxy

that is capable of delivering high-quality video streams by
transcoding the original video in real time to a scalable codec,
thereby allowing the adaptation of the stream to various net-
work dynamics. They also proposed a multi-level transcoding
parallelization framework with two mapping options: Hallsh-
based mapping and lateness-first mapping.

3 Architecture and workflow of CloudDMSS

In this section, we describe the design strategy of the Cloud-
DMSS system, including the overall workflow from upload-
ing original multimedia content to supporting a streaming
service for end users, without content delay and traffic bottle-
necks. Figure 3 shows the fundamental concept of our service
model.

Personal media data such as movies, music videos, and
animations are distributed and stored on a transcoding
Hadoop cluster. Users and administrators upload media data
for transcoding to share the data with other users. After
uploading, the media data are transcoded into a standard
format (MPEG4) that is suitable for streaming to heteroge-
neous devices. To reduce the transcoding time, our model
applies a transcoding function that utilizes the MapReduce
framework. The transcoded contents are then migrated auto-
matically and stored on the content servers of a stream-
ing Hadoop cluster. The migrated contents are streamed
to the end users with guaranteed QoS by controlling the
streaming servers that run on the streaming Hadoop clus-
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Fig. 3 Fundamental concept of
the cloud-based distributed
multimedia streaming service
model (CloudDMSS)

ter. To reduce content delays and traffic bottlenecks, our ser-
vice model utilizes a streaming job distribution algorithm,
which balances and distributes the load of the streaming
servers.

3.1 Overall system architecture

Our proposed CloudDMSS is designed to run on a Hadoop
cluster for heterogeneous devices in a distributed manner.
The overall system architecture is shown in Fig. 4. Cloud-
DMSS has three main components: Hadoop-based distrib-
uted multimedia transcoding (HadoopDMT), Hadoop-based
distributed multimedia streaming (HadoopDMS), and cloud
multimedia management (CMM). The characteristics of our
system are as follows. (1) Our system transcodes large
amounts of media content into the MPEG-4 video format
for delivery to a variety of devices, including PCs, smart
pads, and phones. (2) It reduces the transcoding time by
using HDFS for multimedia data storage and MapReduce
for distributed parallel processing. (3) CloudDMSS controls
streaming servers to reduce content delay and traffic bottle-
necks using a streaming job distribution algorithm. (4) Dual-
Hadoop clustering per physical cluster is used to improve
the overall performance and distribute job tasks between
transcoding and streaming. (5) CloudDMSS provides effi-
cient content distribution and improved scalability by adher-
ing to Hadoop policies. (6) It automatically conducts the
workflow of sequential tasks for a streaming service deploy-
ment process.

3.2 CloudDMSS system architectural components

3.2.1 HadoopDMT

The main role of HadoopDMT is to transcode a various mul-
timedia data stored on a transcoding Hadoop cluster into

MPEG4, which is the standard format for media stream-
ing to a variety of devices. HadoopDMT improves the qual-
ity and speed by using the HDFS [32] to store video data
from many sources, MapReduce [32] for distributed paral-
lel processing of these data, and Xuggler [33] to transcode
the data. The capabilities of HadoopDMT are as follows. (1)
HadoopDMT comprises a codec transcoding function with a
configurable display size, codec method, and container for-
mat. (2) It focuses mainly on the batch processing of large
video files collected over a fixed period of time, rather than
processing small video files collected in real time. (3) HDFS
is used to avoid the high cost of communicating video files
during data transfer for distributed processing. HDFS is also
used because the large chunk size (64 MB) policy is suit-
able for processing video files and the user-level distributed
system. (4) HadoopDMT incorporates the load balancing,
fault tolerance, and merging and splitting policies provided
by MapReduce for distributed processing.

HadoopDMT [34] is divided into four main domains:
video data collection domain (VDCD), HDFS-based split-
ting and merging domain (HbSMD), MapReduce-based
transcoding domain (MbTD), and cloud-based infrastructure
service domain (CbISD). Figure 5 shows the detailed struc-
ture of HadoopDMT.

First, the main contribution of VDCD is to collect the dif-
ferent types of original encoded video files created by media
creators such as SNS providers, media sharing services, and
personal users, as well as the storage of these files on the
HDFS of the transcoding Hadoop cluster. It also collects the
transcoded video datasets converted to a target format file
by a transcoding processing step based on MapReduce in
MbTD, and stores them on the HDFS. The period required
to collect the original encoded video datasets can be set by
administrators and users, depending on the dataset size and
acquisition time. Second, the main role of HbSMD, which
runs on HDFS, is to split collection of original video datasets
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Fig. 4 Overall architecture of
cloud-based distributed
multimedia streaming service
system

Fig. 5 Detailed structure of HadoopDMT
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into blocks with a configured size and to automatically dis-
tribute all of the blocks over the cluster. In HbSMD, the
default block size is set to 64 MB, but it can be changed
to various other values by administrators and users, such as
16, 32, 128, 256 MB, etc. When a block is distributed, it is
replicated at three data nodes according to the Hadoop distri-
bution policy, thereby complying with the overall distributed
processing procedure and enabling recovery from a system
failure caused by data loss. The other role of HbSMD is to
merge the blocks transcoded by transcoders in MbTD into
target video files and to transmit the video files to VDCD.
The number of block replicas is set to 1, 2, 4, 5, etc. Third,
MbTD performs several tasks that transcode the distributed
blocks in each data node using a MapReduce-based distrib-
uted transcoder module with Xuggler. A single MapReduce-
based distributed transcoding task is managed as one MapRe-
duce job. It is also scheduled by JobTracker in a name node
and TaskTracker in a data node. First, JobTracker schedules
and monitors the overall job registered in HadoopDMT. If a
transcoding job is submitted to HadoopDMT, one JobTracker
task is run. JobTracker calculates the number of distributed
tasks (Map tasks) that are split into blocks. When a 10-GB
dataset, i.e., 50×200 MB files, is transcoded with the default
block size option of 64 MB, 200 Map tasks are generated.
After the number of tasks has been determined, JobTracker
assigns Map tasks to the TaskTrackers, and each TaskTracker
performs the assigned tasks. As blocks are transcoded, each
TaskTracker periodically sends heart bit method calls to the
JobTracker to maintain the robustness against task failures.
If a Map task fails, JobTracker detects the situation via the
heart bit, and recovers the task failure by rescheduling and
reassigning the remaining tasks, including failed tasks. Data
node 1 and transcoder 1 are located in the same physical
machine. First, the transcoders implement the decoding step.
Next, the resizing step is implemented if the users and admin-
istrators require a change in the resolution of a video file. If
such a change is not required, the transcoders skip this step.
The transcoders encode the decoded blocks into a target file
based on the requirements of the user. Finally, CbISD offers
infrastructure services in a cloud computing environment via
server, storage, CPU, and network virtualization techniques.
Because of the massive storage space and enormous com-
puting resource requirements of such systems, small service
vendors are unable to afford the cost of building them. When
users require logical computing resources to build and imple-
ment this system, CbISD automatically deploys a virtualized
cluster environment. CbISD allows users to select a specific
configuration of memory, CPU, storage, and the number of
clusters. In addition, it provides the easy installation and
configuration environment of HDFS and MapReduce, which
require little effort from the user. In this study, we present
the idea and concept of CbISD, but its implementation is not
considered.

The other role of HadoopDMT is to automatically migrate
the transcoded media content stored on the HDFS of the
transcoding Hadoop cluster to the HDFS of a streaming
Hadoop cluster in HadoopDMS. In addition, HadoopDMT
extracts the thumbnail images of transcoded content and
transmits the extracted thumbnail images to HadoopDMS.
After the content migration and thumbnail extraction tasks
have been completed, HadoopDMT deletes the original
media content and transcoded content stored on the HDFS
of the transcoding Hadoop cluster in order to release storage
space for the next transcoding task.

3.2.2 HadoopDMS

HadoopDMS, which runs on the streaming Hadoop cluster,
comprises HDFS-based data nodes that act as content stor-
age servers, a name node that acts as a namespace server,
and streaming severs. Our system uses a dual Hadoop clus-
ter on one physical cluster, including the transcoding Hadoop
cluster, in HadoopDMT and the streaming Hadoop clus-
ter in HadoopDMS, which balances the task loads such as
transcoding and streaming. The quality of the streaming ser-
vice is not guaranteed if both a transcoding task, which
requires intensive computing resources, and a streaming task
are conducted at the same time.

The first role of HadoopDMS is to store the transcoded
contents migrated from HadoopDMT on data nodes of the
streaming Hadoop cluster in a distributed manner and to pro-
vide the capacity for content replication and recovery if data
node failures and loss of content occur. The most impor-
tant factor when providing a streaming service is the main-
tenance of a seamless streaming service, which requires that
users cannot recognize data node failures and loss of con-
tent. A streaming service system that uses the traditional
approach does not include content replication management
and automated recovery policies, so the system reliability
and seamless streaming service cannot be guaranteed. To
overcome these problems, HadoopDMS includes intelligent
content replication and recovery policies.

Algorithm 1 is the content replication policy. First,
HadoopDMS splits the content into blocks with the config-
ured size (default = 64 MB) and it then creates two replicas
of each original block. In HadoopDMS, the default block
replication is set to 3 (one original block and two replicas of
original block). However, this can be changed by adminis-
trators and users because the block replication factor affects
the system performance, depending on the system specifica-
tions and physical system configuration. In the performance
evaluation section (Sect. 5), we describe the optimal Hadoop
options, including the block replication factors, and block
size options. In particular, we experimentally verify that the
performance is better when the block replication factor value
is set to ≥3 (3, 4, 5). The worst performance is obtained
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when the value is set to 1, because new blocks with problems
should be copied and transferred to a new data node on HDFS
if task and disk failures and data loss occur. To maintain the
robustness of the system to task failures, CloudDMSS uses
two replicas as the default option. CloudDMSS is designed
to be deployed on low-cost hardware and commodity hard-
ware, thus our system focuses on high fault-tolerance rather
than incurring the cost of building numerous hard disks for
replicas. After the replicas have been created, they are dis-
tributed on the data nodes while complying with the Hadoop
storage policy. The name node of HadoopDMS then collects
metadata, including the status information for data nodes,
location information of stored content, and the content file
names required to maintain and control the streaming Hadoop
cluster and multimedia content.

Algorithm 1 Algorithm for content replication 

Data : mf: migrated content file in the HadoopDMS

1: while system available
2: input (mf)
3: split mf into blocks of 64 MB;
4: while create block of mf
5:  if number of blocks ==3 then
6:   break;
7: else if the number of blocks > 3 then
8:   while check the number of blocks
9:     if number of blocks ==3 then

10:       break;
11:    else
12:       delete one block;
13:    end if
14:   end while
15: else
16:   while check the number of blocks
17:    if number of blocks ==3 then
18:     break;
19:    else
20:     copy and make one block;
21:    end if 
22:   end while
23: end if
24: end while
25:end input
26:end while

When data loss and data node failures occur, the name
node in HadoopDMS detects the situation based on the status
information, which is collected periodically by the node, and
it performs an automatic recovery scheme using Algorithm
2. Algorithm 2 facilitates system recovery in the event of data
loss and data node failures. First, the name node (nn) sends
a check packet (cp) to all of the data nodes to detect data
loss, before comparing the number and name of the blocks
in the block information (bi) of the name node with those
of the check packet (cp) generated by each data node. If the
name node and data node have different bi, a new content

replication task is performed by Algorithm 1 in each node.
After checking the data loss in each data node, nn sends a
heart bit (hb) to all of the data nodes to detect any failures.
If nn receives the hb generated by each data node within
5 min, there is no system failure on the node. Otherwise,
the policy for recovery from system failure is executed. The
procedure of the recovery policy based on nn is as follows.
(1) nn reconfigures the cluster with data nodes, excluding
the failed node, and conducts a new content replication task.
(2) The new bi is updated in nn. (3) nn automatically detects
the cause of the system failure and recovers the failed node
automatically via remote inspection. (4) After the completion
of recovery, nn restarts the overall system and reconfigures
the cluster to include the recovered data node. (5) nn repeats
(1) and (2).

Algorithm 2 Algorithm for system recovery

Data: nn: name node
Data: noden: data node1, data node2 ….data noden

Data: hb: heart bit for checking the active status of noden

Data: cp: check packet to check blocks of noden

Data: bi: block information including the number and 
name of blocks requested by check bit

1:while system available
2: for (each node n)
3:  nn sends cp to node n;

4:  if receive cp then
5:   if block information of nn != bi of noden then
6:    do content replication algorithm;
7:  else
9:    do checking hb;

10:   end if
11: end if
12: end for
13: for(each node n)
14:  nn sends hb to node n;
15:   if the time to receive hb from noden ≥ 5 min then
16:    exclude node n in cluster;
17:    do replication algorithm;
18:    update bi in nn;
19:    if receive hb from all nodes by checking hb again
20:     include node n in cluster;
21:     do replication algorithm;
22:     update bi in nn;
23:    end if
24 :   end if       
25: end for
26:end while

The second role of HadoopDMS is to provide users with
the thumbnail images extracted from HadoopDMT so that
they can easily search and select media content on the Web
interface. These thumbnail images are stored on a specific
data node and registered on a thumbnail DB of the DB server
in CMM to facilitate their management.
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3.2.3 CMM

As a core part of CloudDMSS, CMM controls and manages
a various tasks created during each phase of the streaming
service deployment process, while it also monitors the over-
all system usage and status information related to stream-
ing processes, such as uploading, transcoding, and content
migration for users and administrators.

Our CMM comprises a Web-based dashboard module,
management server module, and database server module.
The Web-based dashboard module provides an interface that
allows users to select the options required for transcoding
tasks, such as the resolution, bit rate, and frame rate, as
well as monitoring the usage rate of the dual Hadoop clus-
ter and streaming servers in HadoopDMS (CPU, RAM, and
streaming transmission rate). The management server con-
trols and conducts the scheduling of the overall process such
as transcoding, migration, extracting thumbnail images, reg-
istering the images and information related to the transcoded
content to the database server module of CMM, and job dis-
tribution. The management server is scheduled using Algo-
rithm 3.

Algorithm 3 Algorithm for the management server

Data: DMT: HadoopDMT component
Data: DMS: HadoopDMS component
Data: request_ID: id for requesting a transcoding task
Data: tc : transcoded content
Data: et: extracted thumbnail image
Data: ci: information with the name and location of tc

1: while system available
2: if request for transcoding then
3:   transcoding_ready_task(request_ID){
4:    setup ssh shell connection;
5:    make a new folder for transcoded contents;
6:   }
7:   while conduct transcoding tasks
8:    if error detected (request_ID) then
9:      stop_transcoding_task(request_ID);

10:      delete_transcoded contents_task(request_ID);
11:      conduct_transcoding_task(request_ID)
12:      break;
13:    end if
14:    if task completed then
15:      thumbnail_extraction_task(tc);
16:      migration_task(tc DMS)
17:      registration_task(et, ci database server)
18:    end if
19:   end while
20: end if
21:  if request for multimedia streaming then
22:   do streaming resource-based connection algorithm;
23:  end if
24: end while

The core function of the management server is to effec-
tively balance and distribute any rapidly increasing stream-
ing tasks, while maintaining the simultaneous connections
of multiple users. A streaming job distribution scheme is
carried out by round robin (RR) [35], least connection (LC)
[35], and streaming resource-based connection (SRC) algo-
rithms. We describe the SRC algorithm in detail because
RR and LC have been described in many previous stud-
ies. The RR streams media content by selecting streaming
servers in a prescribed order after video streaming requests
are received from users. In LC, the media content is streamed
by selecting the streaming server with the lowest number of
streaming tasks. However, systems that apply RR and LC do
not consider the CPU utilization rate and network transmis-
sion rate, thus they are limited because they impose a heavy
burden on the current Internet infrastructure and streaming
servers. Thus, we introduce an SRC scheduling algorithm
that considers the CPU, RAM, and streaming transmission
rate usage of servers, which resolves the limitations of the
RR and LC distribution methods. The algorithms consider the
CPU, RAM, and streaming transmission rate usage of servers
generated from each streaming server. The Linux command
mpstat is used to generate statistics about the CPU usage
servers. The free command is used to inquire about the RAM
usage and /proc/net/dev is used to inquire about the stream-
ing transmission rate. Algorithm 4 uses SRC in CloudDMSS.

Algorithm 4 Algorithm for SRC

Data: ssn_ID: Id for streaming server 1, server 2 ….severn

streaming server n
Data: ssun: the system usage rate of ssn

Data: scun: the CPU usage rate of ssn

Data: srun: the RAM usage rate of ssn

Data: strn: streaming transmission rate of ssn

Data: request_ID: id for requesting streaming service

1: while system available
2: if request for streaming service then
3:  for(each ssn_ID)
4:    calculate_system usage(ssn_ID){
5:    ssun = scun +srun;
6:    strn = current strn – strn before 1sec
7:    }
8:  end for
9:  select streaming server(requst_ID){

10:   if the number of the smallest ssu ==1 then
11:     set server(request_ID, the smallest ssu);
12:     start_streaming_service (request_ID, content);
13:   else
14:     set server(request_ID, the smallest str);
15:     start_streaming_service(request_ID, content);
16:   end if
17:   }
18:  end if
19:end while
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The database server module manages and registers the
thumbnail images in the thumbnail DB and content infor-
mation, including the file name and location, in the content
DB. Users can easily access streaming services by utilizing
the DB information on our Web interface.

3.3 Workflow of CloudDMSS

In this section, we define the workflow of the sequential
tasks in CloudDMSS during the streaming service deploy-
ment process in the overall system. Figure 6 shows the over-
all workflow of CloudDMSS. The CloudDMSS workflow is
divided into two parts: content transcoding processing and
distributed streaming processing.

3.3.1 Content transcoding processing workflow

We introduce the workflow required for content transcoding
processing to stream content to heterogeneous devices. Fig-
ure 7 shows a diagram of the workflow of content transcod-
ing processing. Users and administrators can access our user
interface via CMM to upload their own original multime-
dia content. After an upload task is complete, they select
the user-requested options (resolution, frame rate, bit rate,
codec, and container) for transcoding and then request a
content transcoding task from a MapReduce-based distrib-

uted transcoder of CMM. Immediately after the task is
requested, CMM prepares a preprocessing procedure for
the task. The preprocessing procedure comprises two steps.
First, CMM creates an SSH shell in both HadoopDMT and
CMM to allow remote command execution and secured
content migration between both components. Second, the
file names of the transcoded and original contents are the
same, so CMM creates a new folder to store the transcoded
contents to avoid any content loss due to file redundancy.
After the preprocessing procedure is complete, a manage-
ment server module in CMM performs the transcoding task
by operating the MapReduce-based distributed transcoder
in a distributed manner. Subsequently, the management
server module commands a thumbnail extraction task from a
thumbnail image extractor in HadoopDMT, and the extrac-
tor extracts thumbnail images of the transcoded content
using FFmpeg supported by Xuggler [33] libraries. In the
next step, the transcoded content and extracted thumbnail
images are migrated to HadoopDMS via a content migra-
tor in HadoopDMT. After migration, the original multime-
dia content, transcoded content, and thumbnail images are
deleted by the management server, which then registers the
thumbnail images to a thumbnail database in a CMM data-
base server, as well as content information, including the
file name and location, to a content database in the same
server.

Fig. 6 Overall workflow of CloudDMSS
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Fig. 7 Diagram showing the
workflow of content transcoding
processing

Fig. 8 Diagram showing the
workflow of distributed
streaming processing

3.3.2 Distributed streaming processing workflow

The distributed streaming processing workflow with a stream-
ing job distribution scheme is the most important part of the
overall processing flow. Figure 8 illustrates the distributed
processing workflow. Thumbnail images are updated peri-
odically in a Web interface and the metadata of the thumb-
nail images are registered each time a transcoding task is

completed. When users select and request media content
by clicking a thumbnail image, CMM obtains the location
and file name of the selected media via a content database.
CMM then requests the status of streaming servers via a sys-
tem status collector and selects the optimal streaming server
from those in HadoopDMT based on the SRC algorithm, as
described in Sect. 3.2.3. The content streaming service begins
after the optimal streaming server is selected.
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Fig. 9 Detailed cluster
configuration of CloudDMSS

4 Implementation and prototype

We designed a robust CloudDMSS based on Hadoop clus-
tering to provide a seamless streaming service with adequate
QoS over the current Internet. We focused on developing a
system that automatically conducts the entire workflow of
streaming tasks, including uploading, transcoding, migra-
tion, thumbnail extraction, content registration, and stream-
ing job distribution, by a single click of the content upload
button on the Web interface provided. We implemented a
prototype of the overall system architecture running on a
real cloud cluster to validate the feasibility of our service
architecture according to the design issues described above.

4.1 Cluster configuration and implementation

Figure 9 shows the hardware configuration of CloudDMSS.
In our prototype implementation of CloudDMSS, we con-
structed our own cluster servers in a cloud computing envi-
ronment, which comprised 28 nodes in total. Each node con-
sisted of Linux OS (Ubuntu 10.04 LTS) running on two Intel
Xeon quad-core 2.13 GHz processors with 4 GB registered
ECC DDR memory and 1 TB SATA-2 disk storage. All of the
nodes were interconnected via 100 Mbps Ethernet adapters.
To distribute the loads of transcoding and streaming tasks,
we divided the cluster into a dual Hadoop cluster: a physi-
cal cluster that included a transcoding Hadoop cluster with
13 nodes and a streaming Hadoop cluster with 10 nodes. To
implement the CMM component, one node was designated

as our management server running Tomcat 7.0 and a sec-
ond node was designated as a database server running on
MySQL, which included a content database and thumbnail
database. The management server used JSP to implement
the Web-based dashboard, swfupload 2.2.0.1 libraries [36]
for the content upload function, a Java library and bash shell
script to run the SRC algorithm, and Google chart APIs to
generate the graph showing the monitoring system status.
The HadoopDMT component comprised one name node and
12 data nodes running on HDFS in the transcoding Hadoop
cluster. The component used Hadoop 1.0.4 to store origi-
nal multimedia content, Java 1.6.0_39 (64-bit), and Xuggler
3.4.1012 (64-bit) to implement a MapReduce-based distrib-
uted transcoder. The HadoopDMT component had 13 nodes:
three streaming server nodes running on NginX [37] and 10
content storage servers. The content storage servers com-
prised one name node and nine data nodes running on HDFS
in the streaming Hadoop cluster. Our software specifica-
tions for HadoopDMT included an H.264 streaming mod-
ule 2.2.7 for implementing the streaming function, NginX
1.2.7 for the streaming servers, and fuse_dfs_ 0.1.0 to allow
HDFS to be mounted on the UNIX system as a standard file
system.

4.2 Prototype

The output from the CloudDMSS prototype is shown in Figs.
10, 11 and 12. The interface provided by the Web-based dash-
board module of CMM was designed and implemented for
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Fig. 10 Front page of the
Web-based dashboard for
streaming transcoded content in
a PC-based Web browser (left)
and a mobile-based Web
browser (right)

Fig. 11 Web-based dashboard
for transcoding tasks and
resources

use by various Web browsers such as IE, Firefox, Chrome,
and Safari, rather than requiring specific browsers. Figure 10
shows the front page of the Web-based dashboard for stream-
ing transcoded content in a PC-based Web browser (left) and
mobile-based Web browser (right), which allows users to
select thumbnail images extracted from the transcoded con-
tent and menus for uploading, transcoding, and monitoring
via the Web interface.

Figure 11 shows a screenshot of the web page used to man-
age transcoding tasks. Users and administrators can use this
page to upload original content, select transcoding options
(e.g., resolution, format, and codec), and stream the content
to other users. Users can also monitor the progress of ongoing
transcoding tasks.

Figure 12 shows a screenshot of the web page used to mon-
itor the status of cluster servers. Users and administrators can
use this page to monitor HDFS storage usage in each cluster
and the streaming server usage (CPU, RAM, and network
traffic) of HadoopDMS in real time.

5 Performance evaluation in a private cloud computing
environment

5.1 Experimental environment description

We designed a CloudDMSS architecture, which can be
deployed in a private cloud environment. We deployed 28
nodes using a local testbed, i.e., a physical cluster that
comprised one management server, one database server,
three streaming servers, 13 transcoding servers running on
the transcoding Hadoop cluster, and 10 content storage
servers running on the streaming Hadoop cluster. Section
4.1 describes the cluster configuration and software speci-
fications in more detail. We conducted three different per-
formance tests to validate the performance of the proposed
CloudDMSS. First, to verify the transcoding performance
of the transcoding Hadoop cluster, we measured the total
transcoding time required to transcode large video files into
target files. We compared our Hadoop-based transcoding
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Fig. 12 Web-based dashboard used to monitor the status of cluster servers
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approach with a traditional parallel processing approach: the
Media Encoding Cluster [38]. Second, to validate the perfor-
mance of the SRC algorithm, we compared our system with
RR- and LC-based systems in terms of the network trans-
mission rate based on the three streaming servers. Third, we
measured the total execution time required for each task in
the streaming service deployment process from uploading the
original content files to service deployment, as reflected in
our Web interface. We divided the streaming service deploy-
ment process into 10 steps. Finally, to demonstrate the reli-
ability and robustness of CloudDMSS, we performed a set
of experiments to evaluate the behavior of the transcoding
process when data node and TaskTracker (Map task) failures
occurred.

5.2 Media transcoding performance

In the first experiment, we measured the total transcoding
time required to complete the transcoding of a video dataset
into a specific target format. We present the results of sev-
eral experiments conducted using our transcoding Hadoop
cluster with 13 computational nodes (one master node and
12 data nodes) and describe the optimal Hadoop options for
our system configuration. The parameters for each original
and target transcoded video file are listed in Table 1. In the
transcoding test, we used six types of video datasets, includ-
ing several 200 MB video files, which are listed in Table
2.

The following default Hadoop options were used in the
transcoding experiment. (1) The number of block replica-
tions was set to 3. (2) The block size was set to 64 MB. To
verify the efficiency of our system, we conducted three sets
of experiments to test: (1) the effects of changes in cluster
size on the performance speedup; (2) the effects of different
Hadoop options with various block sizes, i.e., 32, 64, 128,

Table 1 Parameters for each original and transcoded video file

Parameter Original video file Transcoded video file

Codec Xvid MPEG-4

Container AVI MP4

Size 200 MB 60 MB

Duration 3 min 19 s 3 min 19 s

Resolution 1280 × 720 320 × 240

Table 2 Video datasets used in the performance evaluations

Video dataset

Size of file (GB) 1 2 4 8 10 20

Number of files 5 10 20 40 50 100

256, and 512; and (3) the effects of different Hadoop options
with various block replication factors, i.e., 1, 2, 3, 4, and 5.

The objective of the first set of experiments was to measure
the total transcoding time and speedup with various cluster
sizes, i.e., 1, 2, 4, 8, 10, and 12 data nodes, using the Hadoop
default options. The speedup (SU) is used to evaluate the
effects of parallelism and it is defined as: SU (n) = transcod-
ing time on 1 node/transcoding time on n nodes.

Table 3 shows the transcoding time and speedup results
with various cluster sizes. Figures 13 and 14 also show the
transcoding time as functions of the cluster size and clus-
ter. According to Table 3, our system obtained excellent
transcoding times with very large video files. For example,
with 12 data nodes, our system required approximately 2,624
s (ca 44 min) to complete the transcoding process for a 20 GB
video dataset with the default Hadoop options.

The SU results indicate the following: (1) our system
delivered excellent performance in terms of its parallel and
distributed characteristic; (2) the SU performance was better
with the 8, 10, and 20 GB datasets compared with the 1, 2,
and 4 GB datasets, which suggests that the performance of
our system increases with the size of the dataset.

In the second set of experiments, we measured the total
time elapsed using different Hadoop options for the block
size (default: 64 MB) and block replication factor (default:
3). Hadoop processes large portions of datasets in a parallel
and distributed manner after the datasets are split into block
sizes of 64 MB. However, users and programmers can change
the block size options to improve the data processing perfor-
mance, depending on the size and type of unstructured data.
Furthermore, when large portions of datasets are stored in
HDFS, HDFS splits the dataset into fixed size blocks to facili-
tate rapid searching and processing. With the default Hadoop
option for block replication, the replicated data is stored on
three data nodes of HDFS to rebalance, move copies around,
and continue data replication if system errors occur, such as
disk failures or network connection problems. Thus, to ver-
ify whether block replication and size factors affected the
performance, we measured the time required to complete the
media transcoding processing. Five block size options were
used in the experiments, i.e., 32, 64, 128, 256, and 512 MB.
Five block replication factor values were used, i.e., 1, 2, 3, 4
and 5. Table 4 lists the transcoding times (in s) required with
different block sizes and block replication factor values.

Table 4 and Figs. 15, 16 show clearly that the performance
of our system was best when the block size was set to 256
and 512 MB, or when the block replication factor was set to
three. Thus, it can be concluded that the block size option
should be set to a value greater than or close to the origi-
nal file size to ensure the best distributed video transcoding
performance in our system. One video dataset had a file size
of 200 MB, thus 256 or 512 MB block sizes provided bet-
ter performance during transcoding processing. The perfor-
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Table 3 Total transcoding time (s) and speedup (SU (n)) with various cluster sizes

No. servers 1 2 4 8 10 12

Dataset size (GB) Time Time SU (2) Time SU (4) Time SU (8) Time SU (10) Time SU (12)

1 1,522 913 1.67 473 3.62 326 4.67 192 7.93 184 8.27

2 2,909 1,702 1.71 781 3.72 475 6.12 355 8.19 349 8.34

4 5,921 3,456 1.71 1,533 3.86 882 6.71 644 9.19 627 9.44

8 11,899 6,785 1.72 3,053 3.89 1632 7.29 1,292 9.21 1,105 10.74

10 14,852 8,612 1.72 3,815 3.90 1989 7.47 1,575 9.43 1,341 11.07

20 29,875 17,235 1.73 7,920 3.88 3791 7.88 3,031 9.86 2,624 11.38

Fig. 13 Transcoding time versus the cluster size

Fig. 14 Speedup versus the cluster size

mance of the transcoding process increased when the block
size reached 512 MB because there was a correlation between
the file size and block size. HadoopDMT split the input file
into blocks of the configured size when the file size was
greater than the block size. If the file size was equal to or less

than the block size, a block was generated that was equal
to the file size. Seven, four, and two blocks were created
when the block size was set to 32, 64, and 128 MB, respec-
tively. One file size block was generated when the block size
was set to 256 and 512 MB. The number of tasks was deter-
mined by the number of divided blocks. The total transcoding
time increased if the number of blocks increased because the
scheduling time required to process the tasks generated was
higher. In addition, the performance was degraded because
of the increased delay time required to merge transcoded
blocks after transcoding each block. Furthermore, the results
showed that the block replication factor should be set to three,
which provided the best performance and allowed the distrib-
uted systems to process massive media files in a reliable and
robust manner, in terms of the recovery from system failure
when data loss occurred and when a node failed.

In the third set of experiments, we compared the per-
formance of our Hadoop-based transcoding system with
that of the Media Encoding Cluster [38], which is a tradi-
tional frame-based parallel transcoding approach. The Media
Encoding Cluster is written in C and C++, and it was the first
open-source project for frame-based encoding in a distrib-
uted and parallel manner that used commercial hardware to
reduce the encoding time for a file. To encode original media
files into target files, our Hadoop-based transcoding approach
splits media files into fixed blocks whereas the Media Encod-
ing Cluster splits media files into frame units.

We tested and compared both approaches using the
same video datasets in the same cluster environment. First,
we tested the Hadoop-based transcoding approach with
13 nodes. Second, we tested the Media Encoding Cluster
approach by configuring the method in our same cluster envi-
ronment (13 nodes) after shutting down the system config-
uration of the Hadoop-based transcoding approach. Table
5 lists the total transcoding time results obtained using the
two versions of video transcoding. According to Table 5,
the Hadoop-based transcoding approach delivered better per-
formance than the Media Encoding Cluster in terms of the
execution time for all datasets. The Media Encoding Clus-
ter delivered lower performance than our module because
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Table 4 Total transcoding time required for various block sizes and block replications (s)

Dataset size (GB) Block size option Block replication

32 MB 64 MB 128 MB 256 MB 512 MB 1 2 3 4 5

1 338 178 179 180 181 194 182 178 180 188

2 492 341 242 188 185 361 355 341 338 335

4 961 618 383 248 252 632 625 618 622 625

8 1,831 1,080 621 332 328 1,097 1,089 1,080 1,083 1,086

10 2,277 1,311 749 459 468 1,324 1,315 1,311 1,282 1,280

20 4,422 2,544 1,387 738 752 2,680 2,551 2,544 2,463 2,467

Fig. 15 Total transcoding times (in s) with various block size factors

it incurred high overheads due to the splitting and merg-
ing steps applied to the original media files. Our approach
split the original video files into 64 MB blocks, which were
merged after the transcoding process in MbTD, whereas the
Media Encoding Cluster split the original video files into a

significantly larger number of frame units compared with the
Hadoop-based transcoding module’s blocks and it merged
the chunked frames into target video files. For a 1 GB dataset
(200 MB, 29 frames, 3 min 19 s), our module created 20 chun-
ked blocks of 64 MB, whereas the Media Encoding Cluster
produced approximately 29,000 chunked frames.

5.3 Streaming job distribution performance experiment

We proposed a SRC algorithm to balance and distribute the
streaming tasks of streaming servers. We evaluated the per-
formance using 10 content storage servers running on the
streaming Hadoop cluster, three streaming servers running on
NginX, and one management server. Each streaming server
had a bandwidth of 100 Mbps. The management server for
the Web interface and the SRC algorithm were implemented
with JSP in a Tomcat7 environment, and the streaming perfor-
mance testing tool used to calculate the average transmission
rate per streaming server was developed in Java. A dataset
was used that included 4 MB MP4 files transcoded from our
transcoding task. In the performance evaluation, we simu-
lated 600 virtual users that accessed three streaming systems
by applying three algorithms: RR, LC, and SRC. We calcu-

Fig. 16 Total transcoding times
(in s) with various block
replication factors
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Table 5 Total transcoding times (in s) for both transcoding tasks

Data set
size (GB)

The media encoding cluster-
based transcoding time (s)

Hadoop-based transcod-
ing time (s)

1 196 178

2 374 341

4 722 618

8 1,482 1,080

10 1,844 1,311

20 3,784 2,544

Table 6 Comparison of the average transmission rate per streaming
server using each algorithm-based system

Streaming
server

RR-based
system (MB/s)

LC-based
system (MB/s)

SRC-based
system (MB/s)

Server 1 2.80 2.76 3.25

Server 2 2.84 2.66 3.37

Server 3 2.80 2.64 3.32

Average 2.81 2.69 3.31

lated the overall transmission rate of each streaming server
and the average transmission rate per second. Table 6 shows
the performance results. The SRC algorithm delivered the
best performance in terms of the average transmission rate
compared with both the RR and LC algorithms.

5.4 Streaming service deployment with workflow
experiment

We defined and described a workflow based on sequential
tasks for the streaming service deployment process. To mea-
sure the total time required for the deployment process, we
divided the workflow of a practical streaming service into

10 steps, from uploading to the deployment of the stream-
ing content on the Web interface. Three datasets were used
in this experiment: 1G, 2G, and 4G. Table 7 shows the time
required for each task in the deployment process. The total
times required for 1G, 2G, and 4G in the deployment process
were 288.58 s (approximately 5 min), 546.67 s (9 min), and
997.19 s (16 min), respectively. According to Table 7, the
transcoding task required the most time to execute, followed
by the uploading task. However, even if the size of the dataset
increased, there were no significant differences in the execu-
tion times of the streaming tasks. Thus, we can reduce the
total execution time for the deployment process by improving
the performance of the uploading and transcoding tasks.

5.5 Evaluation of the robustness of CloudDMSS

In this study, we proposed a robust Hadoop-based multime-
dia streaming service architecture that handles node failures
(Sect. 3.2.2) and task failures (Sect. 3.2.1). To demonstrate
the reliability and robustness of CloudDMSS, we performed
a set of experiments to evaluate the behavior of transcoding
process when data node and job (Map task) failures occurred.
We experimentally verified the robustness of CloudDMSS in
our local testbed (13 nodes) and we used two datasets (10
and 20 GB) with the default Hadoop options described in
Sects. 5.1 and 5.2.

First, we measured the lost computing time by artificially
injecting data node failures while the normal transcoding
process was being performed. The lost computing time was
calculated by subtracting the transcoding time with node fail-
ures from the normal transcoding time when the number of
node failures was zero. If a data node failure occurred, the
name node in CloudDMSS detected the situation and per-
formed automatic recovery, including system reconfigura-
tion and block relocation processes using Algorithms 1 and

Table 7 Time required for each task in the streaming service deployment process

Task Time (s)

1G 2G 4G

Upload original contents to HadoopDMT component 93 187 358

Connect SSH shell between CMM and HadoopDMT, and set a folder for transcoding 0.04 0.04 0.04

Transcoding Set MapReduce job scheduling 9 9 9

Conduct Map and Reduce task for transcoding 178 341 618

Clean up Hadoop job step 6 6 6

Extract thumbnail images for transcoded contents 0.66 1.26 2.85

Migrate transcoded contents and extracted thumbnail images to HadoopDMS 0.66 1.12 2.01

Delete original and transcoded contents, and thumbnail images in HadoopDMT 0.21 0.22 0.24

Register thumbnail images and content information in database server of HadoopDMS 0.01 0.03 0.05

Deploy streaming contents for the streaming service on the Web interface 1 1 1

Total 288.58 546.67 997.19
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Table 8 Lost computing time caused by data node failures in the local testbed

Number of
node failures

Dataset

10 GB 20 GB

Total blocks Lost blocks Time (s) Lost time (s) Total blocks Lost blocks Time (s) Lost time (s)

0 600 0 1,331 0 1,200 0 2,544 0

1 600 48 1,480 149 1,200 94 2,880 336

2 600 92 1,590 259 1,200 181 3,155 611

3 600 151 1,735 404 1,200 278 3,386 842

4 600 186 1,914 583 1,200 342 3,543 999

5 600 219 2,175 844 1,200 456 3,875 1,331

Table 9 Amount of lost computing time caused by job (TaskTracker) failures in the local testbed

Number of Task-
Tracker failures

Dataset

10 GB 20 GB

Map tasks Failed tasks Time (s) Lost time (s) Map tasks Failed tasks Time (s) Lost time (s)

0 200 0 1,331 0 400 0 2,544 0

1 200 2 1,428 97 400 2 2,722 178

2 200 4 1,511 180 400 4 2,841 297

3 200 6 1,600 269 400 6 2,905 361

4 200 8 1,622 291 400 8 2,983 439

5 200 10 1,747 416 400 10 3,064 520

2. Table 8 shows the lost computing time caused by data
node failures. The normal times required to transcode 10 and
20 GB datasets were 1,311 and 2,544 s. When a data node
failure was generated among 13 nodes, the losses were 48 of
600 blocks with the 10 GB dataset and 94 of 1,200 blocks
with the 20 GB dataset, including replicas. Thus, the lost
computing times with the 10 and 20 GB datasets were cal-
culated as 149 and 336 s, respectively, with one data node
failure. With four data node failures, i.e., one-third of the 13
nodes, the recovery times for the 10 and 20 GB datasets
using CloudDMSS were calculated as approximately 10 and
17 min. Based on this evaluation of the data node failures,
we experimentally verified that our system delivered excel-
lent performance and it was robust to node failures.

Second, we measured the lost computing time after artifi-
cially injecting TaskTracker failures. Our system performed
a MapReduce-based distributed transcoding process, which
was scheduled by JobTracker and TaskTracker, as described
in Sect. 3.2.1. When a 10 GB dataset that included 50 × 200
MB files was transcoded using the default block size option
(64 MB), 200 Map tasks were generated. After determining
the number of tasks, JobTracker assigned the Map tasks to
TaskTrackers and each TaskTracker performed its assigned
tasks. If TaskTracker failed, CloudDMSS compensated for
the task failures by rescheduling and reassigning the remain-

ing tasks, including the failed tasks. Table 9 shows the lost
computing time caused by TaskTracker failures in the local
testbed. According to Table 9, when four TaskTrackers were
generated, the lost computing times with the 10 and 20 GB
datasets were 291 and 439 s, respectively. Thus, the recovery
times for task failures with the 10 and 20 GB datasets using
our system were approximately 5 min and 7 min, respectively,
in our local testbed. According to the performance evaluation
based on TaskTracker failures, our system was robust to task
failures.

6 Performance evaluation in a public cloud
computing environment

6.1 Experimental environment description

We conducted a performance evaluation using our local test-
bed environment in a LAN environment. Our cloud com-
puting environment did not consider the unpredictable and
unstable network traffic generated by commercial and pub-
lic cloud computing environments, such as Amazon EC2 and
Rackspace. Thus, to demonstrate the validity of CloudDMSS
in commercial and public cloud computing environments
over WAN, we performed several performance evaluations
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Table 10 Comparison of the overall system configurations in Cloudit
2.0 and the local testbed

Type Cloudit 2.0 (50 nodes) Local testbed (28 nodes)

Management server 1 EA 1 EA

Database server 1 EA 1 EA

Transcoding server 28 EA 13 EA

Streaming server 10 EA 3 EA

Content server 10 EA 10 EA

in an actual cloud environment, Cloudit 2.0 [39], which is
operated by Innogrid. Table 10 compares the overall system
configurations of CloudDMSS in Cloudit 2.0 and that of our
local testbed.

We deployed 50 virtual machines (50 VMs) provided by
Cloudit 2.0, i.e., one management server, one database server,
10 streaming servers, 28 transcoding servers, and 10 con-
tent storage servers. Each VM comprised Linux OS (Ubuntu
12.04 LTS) running on four virtual cores with the equivalent
of Intel Xeon quad-core 2.13 GHz processors, 8 GB of mem-
ory, and 100 GB of disk space on a shared hard drive. Cloudit
2.0 utilized Xen [40] virtualization software. The other envi-
ronment, including the software specification (refer to Sect.
4) and the algorithms, was the same as the local testbed envi-
ronment. We also used seven types of datasets, i.e., the six
datasets listed in Table 2 and an additional 50 GB dataset.

6.2 Performance evaluations

The first set of experiments was similar to the performance
evaluation conducted in the first part of Sect. 5.2. We mea-
sured the total transcoding time and SU with various cluster
sizes, i.e., 1, 4, 8, 12, 16, 20, 24, and 28 data nodes, using the
default Hadoop options. Table 11 and Fig. 17 show the total
transcoding times with various cluster sizes. The SU results
indicated the following. First, although the SU results were
slightly different depending on the size of the dataset, our
system delivered good performance in terms of its parallel
and distributed characteristics up to 12 nodes. However, the
performance improved only slightly 16 nodes to 28 nodes.
For example, the results with 4, 8, and 12 nodes and the
20 GB dataset showed that the performance improved by
approximately 4, 8, and 9 times compared with one node. By
contrast, the results with 16, 20, 24, and 28 nodes improved
only slightly to about 9.8, 10.6, 11.8, and 12.4 times, respec-
tively. Second, our system had a higher capacity for effective
distributed processing as the size of the dataset increased.
There were performance improvements of about 57 % for
4 GB, 78 % for 10 GB, and 98 % for 50 GB compared with
the transcoding of 1 GB using 28 nodes. Finally, although
commercial cloud computing services run on unpredictable
and unstable networks with VM I/O traffic, our CloudDMSS

Table 11 Total transcoding time (s) and speedup with various cluster
size

Cluster size Dataset size

1 GB 2 GB 4 GB 8 GB 10 GB 20 GB 50 GB

Total transcoding time (s)

1 1,491 3,032 5,897 11,781 14,126 29,199 81,610

4 467 762 1,516 2,965 3,710 7,860 16,440

8 306 465 826 1,569 1,890 3,651 8,730

12 252 427 642 1,330 1,643 3,212 7,818

16 245 351 621 1,285 1,580 2,985 7,190

20 232 342 609 1,215 1,463 2,762 6,883

24 227 332 589 1,057 1,236 2,472 6,315

28 225 325 565 1,022 1,194 2,358 6,204

Speedup

1 1 1 1 1 1 1 1

4 3.19 3.98 3.89 3.97 3.81 3.71 4.96

8 4.87 6.52 7.14 7.51 7.47 7.99 9.35

12 5.92 7.1 9.19 8.86 8.6 9.09 10.44

16 6.09 8.64 9.5 9.17 8.94 9.78 11.35

20 6.43 8.87 9.68 9.7 9.66 10.57 11.86

24 6.57 9.13 10.01 11.15 11.43 11.81 12.92

28 6.63 9.33 10.44 11.53 11.83 12.38 13.15

provided a stable and effective distributed transcoding ser-
vice in an actual cloud computing environment based on all
the performance evaluations.

In the second experiment, we experimentally verified the
performance of streaming job distribution using the same
software specifications and simulation conditions described
in Sect. 5.3. The only difference from the previous evaluation
was the system configuration. To demonstrate the scalability
of our system, we tested the performance using a streaming
Hadoop cluster that comprised 10 streaming servers and 10
content storage servers. Each streaming server had a band-
width of 100 Mbps. We calculated the overall transmission
rate for each streaming server and the average transmission
rate per second with a bandwidth of 100 Mbps. Table 12
shows that the performance levels were similar to the results
in Table 6. Our SRC algorithm delivered better performance
in terms of the average transmission rate compared with the
RR and LC algorithms. The total transmission rate per sec-
ond with the three streaming servers on the local testbed was
about 10 MB while the rate per second in the 10 servers of
Cloudit 2.0 was about 20 MB. Thus, our CloudDMSS effec-
tively distributed the streaming jobs requested by numerous
users in an actual cloud computing environment with a sim-
ilar performance to that on the local testbed.

In the final experiment, we measured the total time
required for the workflow of the sequential tasks, as defined
and described in Sect. 3.3. We also performed an experiment
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Fig. 17 Speedup versus cluster
size

Table 12 Comparison of the average transmission rates of each stream-
ing server using each algorithm-based system

Streaming
server

RR-based
system (MB/s)

LC-based
system (MB/s)

SRC-based
system (MB/s)

Server 1 1.18 1.68 1.95

Server 2 1.31 1.89 1.92

Server 3 1.23 1.68 1.93

Server 4 1.24 1.62 2.14

Server 5 1.22 1.54 2.24

Server 6 1.27 1.77 1.99

Server 7 1.31 1.54 2.10

Server 8 1.37 1.55 1.95

Server 9 1.22 1.67 2.12

Server 10 1.18 1.60 1.98

Average 1.25 1.65 2.03

using three datasets, i.e., 1G, 2G, and 4G. The overall system
configuration was the same as that of the local testbed, except
for the transcoding servers. To facilitate a comparison with
the results obtained in the same environment, as described in
Sect. 5.4, we deployed 13 VMs as transcoding servers among
28 VMs running on the transcoding Hadoop cluster in Cloud-
DMSS. According to Table 13, the total times required by 1G,
2G, and 4G for the overall deployment process were 357.93 s
(approximately 6 min), 590.23 s (10 min), and 1,022.14 s (17
min), respectively. These results were very similar to those
reported in Sect. 5.4, which shows that our CloudDMSS per-
forms well in public cloud and actual cloud environments.
The times required to perform the deployment process for the
three datasets differed by approximately 1 min, respectively,
compared with the results obtained using the local test bed.
These differences in the execution time were attributable to
the delay times caused by the upload and transcoding tasks

Table 13 Time required for each task during the streaming service deployment process

Task Time (s)

1G 2G 4G

Upload original contents to HadoopDMT component 98 220 372

Connect SSH shell between CMM and HadoopDMT and set a folder for transcoding 0.08 0.08 0.08

Transcoding Set MapReduce job scheduling 9 9 9

Conduct Map and Reduce task for transcoding 243 352 631

Clean up Hadoop job step 6 6 6

Extract thumbnail images for transcoded contents 0.09 0.5 0.18

Migrate transcoded contents and extracted thumbnail images to HadoopDMS 0.53 1.42 2.64

Delete original and transcoded contents, and thumbnail images in HadoopDMT 0.22 0.22 0.23

Register thumbnail images and content information in database server of HadoopDMS 0.01 0.01 0.01

Deploy streaming contents for streaming service in the Web interface 1 1 1

Total 357.93 590.23 1022.14
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in the overall process. The upload task required more time
than that on the local testbed because there was an unex-
pected network bottleneck in the real public cloud environ-
ment. Furthermore, the transcoding task required more time
in the real cloud environment than the local testbed because
of an I/O virtualization bottleneck due to the sharing of phys-
ical resources by many users.

The three different experiments conducted using Clou-
dit 2.0 demonstrate that our CloudDMSS performed well in
terms of the transcoding process, the average transmission
rate, and the deployment process for the streaming service
in the local testbed environment and in the commercial and
public cloud computing environment over WAN with unpre-
dictable and unstable network traffic.

7 Conclusion and future work

In this study, we focused on designing a robust cloud-based
distributed multimedia streaming service with transcoding,
which we call CloudDMSS. CloudDMSS is based on Hadoop
clustering and it provides a seamless streaming service with
suitable QoS over the current Internet. Our system was
developed to perform the workflow of the streaming ser-
vice deployment process automatically, including uploading,
transcoding, migration, thumbnail extraction, content regis-
tration, and streaming job distribution, after a single click
of a content upload button on the provided Web interface.
In this study, we describe the design of CloudDMSS and
its workflow, as well as four important algorithms for con-
tent replication, system recovery on HadoopDMS, manage-
ment for CMM, and SRC for streaming job distribution. We
determined a suitable hardware configuration for the current
cluster environment based on a dual Hadoop cluster and we
report on the implementation of our system.

To validate the performance of the proposed CloudDMSS
with the job distribution scheme using the SRC algorithm, we
conducted four different tests on a local testbed to evaluate
the transcoding task, streaming job distribution conducted
by SRC, streaming service deployment, and the robustness
to data node and task failures. We demonstrated the excel-
lent performance of our system and identified the optimal
Hadoop options for media transcoding. When the block size
option was set to a value greater than or close to the original
file size and the block replication factor value was set to 3,
our system delivered good performance for media transcod-
ing processes. We also confirmed that the SRC algorithm had
a better average transmission rate than the RR and LC algo-
rithms for the streaming job distribution task. Finally, the
streaming service deployment experiment showed that the
total execution time required for the deployment process can
be decreased by reducing the uploading and transcoding exe-
cution times. To demonstrate the validity and scalability of

our system in a commercial cloud computing environment,
we also conducted several experiments in Cloudit 2.0, which
were similar to the experiments conducted on the local test-
bed. These experiments verified that CloudDMSS performed
well in transcoding, streaming job distribution using SRC,
and streaming service deployment.

In future research, we plan to improve the transcoding
performance by developing improved content splitting and
merging algorithms on the Hadoop cluster. In addition, we
plan to implement our system on commercial cloud services
such as Amazon EC2, Rackspace, and KT ucloud.
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