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Abstract High performance cloud computing is behind
the scene powering “the next big thing” as the mainstream
accelerator for innovation in many areas. We describe here
how to accelerate inexpensive ARM-based computing nodes
with high-end GPGPUs hosted on x86_64 machines using
the GVirtuS general-purpose virtualization service. We draw
the vision of a possible next generation computing clusters
characterized by highly heterogeneous parallelism heading
to a lower electric power demanding, less heat producing and
more environmental friendliness. Preliminary but promising
performance data suggest that this solution could be consid-
ered as part of the foundations of the next generation of high
performance cloud computing components.

Keywords HPC · Hybrid · ARM · GPU · Virtualization ·
Cloud computing · Internet of Things

1 Introduction

The availability of computing resources and the need for
high quality services are rapidly evolving the vision about
the acceleration of knowledge development, improvement,
and dissemination. During the so-called web 1.0, the Internet
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of hyperlinks, HPC, and grid computing technologies rose.
According to the common shared knowledge, we are living
the final part of the web 2.0, the Internet of Social, powered
by the elastic cloud computing technology. The Internet of
Things is growing up: the developers and then the users have
the power to integrate computation with real stuff control.

1.1 High performance cloud computing

In cloud computing, or Infrastructure as a Service (IaaS)
as it is sometimes termed, virtualized computing resources
are provided as a network-accessible, pay-as-you-go service
[4]. Users employ intuitive, low-touch interfaces to request
access to, configure, and manage a virtual and dynamically
scalable set of resources that they can views as dedicated to
their needs [18]. On-demand access means that resources are
available whenever needed. Pay-as-you-go charging means
that users only pay for the resources that they consume. Eco-
nomics of scale allow cloud providers to operate large num-
bers of computers at modest cost.

High performance computing (HPC) has become an
essential technology for a wide range of demanding applica-
tions across:

– different kind of sciences (high-energy physics, ocean,
weather, climate, computational chemistry, astrophysics,
medicine, bio-informatics and genomics);

– engineering (computational fluid dynamics, aerospace,
energy);

– economy (econometric methods, market simulations);
– creative arts (virtual sets, image restoration, massive 3d

rendering).

In each of these areas, HPC systems have permitted new
discoveries and advances.
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However, traditional HPC resources have significant lim-
itations. HPC systems are expensive and thus access is often
restricted. Batch scheduling algorithms mean that jobs must
frequently wait in a queue for execution. At the same time,
it can happen that individual machines are under-utilized,
depending on time-varying demand within a particular insti-
tution or community.

Such considerations have motivated interest in high per-
formance cloud computing (HPCC) [13].

The goal of HPCC is to combine the powerful proces-
sors and high-speed, low-latency interconnection networks
of the high performance computing with the virtualized, elas-
tic access of IaaS [15].

In so doing, we may increase flexibility relative to tradi-
tional HPC while also improving efficiency in terms of cost,
energy consumption, and environmental friendliness.

In particular, management methods that permit the cre-
ation of elastic virtual clusters may provide users with capac-
ity and environment that meet the demands of specific work-
loads without the need to purchase and operate dedicated
hardware and software [10].

The use of virtual machines (VMs) can provide users with
administrative privileges within the guest operating system
and thus allow them to customize the runtime environment
according to their specific requirements [8].

The limitations related to the performance requirements
will be mitigated in the close future thanks to the increase of
acceleration technologies as GPGPUs [17] and MICs devices
both based on a massive many-core approach and, above all,
different CPU architectures [26].

1.2 Accelerator devices

Highly parallel graphics-processing units (GPUs) are rapidly
gaining maturity as a powerful engine for computationally
demanding applications.

Researchers and developers have become interested in
harnessing this power for general-purpose computing, an
effort collectively known as General-Purpose computing on
the GPU (for GPGPU) [20].

Especially for parallel computing applications, virtual
clusters instantiated on cloud infrastructures suffer from
poor message passing performance between virtual machine
instances running on the same real machine. Furthermore,
they cannot access hardware-specific accelerators such as
GPUs.

Virtualization allows a transparent use of accelerators such
as nVidia CUDA-based GPUs using split-driver based com-
ponents as GVirtuS [6,7,25].

Intel Xeon Phi coprocessors offer all standard program-
ming models that are available for Intel Architecture, includ-
ing OpenMP [23], POSIX threads, and MPI. The Intel Xeon

Phi coprocessor plugs into a standard PCIe slot and provides
a well-known, standard shared memory architecture.

For programmers of higher level programming languages
like C/C++ or Fortran using well-established parallelization
paradigms like OpenMP, Intel Threading Building Blocks, or
MPI, the coprocessor appears like a symmetric multiproces-
sor (SMP) on a single chip [24].

Compared to accelerators this reduces the programming
effort a lot, since no additional parallelization paradigm like
CUDA or OpenCL needs to be applied (although Intel Xeon
Phi coprocessors also supports OpenCL) [27].

1.3 The rise of the Internet of Things

Recently, the Internet of Things (IoT) gained the power of
world spread programmable microcontrollers and credit card
size (and extremely low cost) full-featured computers. Rasp-
berry Pi (RPi) is the other main actor on the contemporary
stage of the today scene of making the IoT as a sort of another
lightning strike in the open-source hardware movement. RPi
is equipped with an ARM processor powered with a GPU, a
RAM of 256M or 512M, a SD card slot as primary storage
unit, an USB and an Ethernet connection.

The new generations of developers are building the IoT
using this kind of devices as construction bricks; the hungri-
ness and the foolishness of the creative are raising the need
for computing power. This need could be satisfied by the
cloud computer technology that meantime evolved in a sta-
ble and business oriented form as the accelerator device for
science investigation, engineering calculations and common
life media sharing as well.

In the past, data centers relied on purpose-built servers
with highly powerful processors, whilst today the dominant
approach is to build datacenters from commodity hardware
components.

The same processors used in general purpose computing,
e.g. workstations, are now used in servers. Following Moores
law, the performance of these general-purpose processors has
greatly improved. Although their energy-efficiency has also
improved, low energy consumption has, until recently, been
a secondary objective.

The performance of embedded processors naturally lags
the performance of general-purpose processors.

It is interesting to ask if a large number of such low-power,
low-performance processors could be used to build a data
center with similar processing power but smaller energy con-
sumption.

1.4 Advanced RISC macine CPUs for HPC

General-purpose processors have already overtaken powerful
purpose-built processors in data centers.
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ARM processors, designed for the embedded mobile mar-
ket, operate at about 1 GHz and consume just 0.25 W. There
is already a significant trend towards using ARM processors
in data servers and cloud computing environments in which
workloads are limited by I/O and memory systems, not by
CPU performance.

Recently, ARM processors have also taken significant
steps towards increased double precision (DP) floating point
(FP) performance, making them competitive with state-of-
the-art servers [1].

The ARM Cortex-A15, targeted as the computing unit in
the Barcelona Supercomputing Center Mont Blanc project,
will increase super-scalar issue to two arithmetic instructions
per cycle, and has a fully pipelined FMA unit, delivering 4
GFLOPS at 1 GHz, on potentially the same 0.25 W budget,
achieving 16 GFLOPS/W.

The new ARMv8 instruction set, which will be imple-
mented in future generations of ARM cores, features a 64-
bit address space, and adds DP to the NEON SIMD ISA1,
allowing for 8 ops/cycle on an A15 pipeline: 8 GFLOPS at
1 GHz, for 32 GFLOPS/W.

1.5 Computing power for HPCC by hybrid
GPU/x86_64/ARM

We present here preliminary results of a project that aims
to create HPC clusters dedicated (but not limited) to HPCC
service provision using low-power ARM-based computing
nodes grouped in sub-clusters leveraging one or more high-
end GPGPU devices hosted on so-called accelerator nodes.

We report on experiments conducted in a controlled testing
environment that we have constructed to imitate the core of a
more complex architecture and based on a Intel x86_64 based
accelerator node acting as I/O manager for a ARM-based sub-
cluster built using Raspberry-Pi boards and powered by two
high end nVidia Tesla C1060.

The results of these experiments are extremely promising,
showing the tiny impact of GVirtuS latency on the overall
performance balanced by an embarrassing reduction of the
wall-clock time.

We also report on experiments conducted on an expanded
experiment setup in which additional R-Pi computing nodes
are used to imitate a sub-cluster in which each node shares
the GPGPUs hosted on the x86_64 machine.

Finally, thanks to the lesson learnt by this experiment, we
carried out some discussions about the implications of this
technology on the high performance cloud computing.

The rest of this paper is organized as follows: in Sect. 2,
we expand upon our vision of the next generation of hybrid
HPC clusters constructed with ARM-based components and
high-end GPUs. Section 3 deals with design and technical
issues on GVirtuS, while the Sect. 4 is about the hybrid
GPU / x86_64 / ARM software architecture using GVirtuS

as transparent bridge between the ARM living applications
and the GPUs. Section 5 covers implementation details and
in Sect. 6 some tests and preliminary results are described
and discussed. Section 7 discusses next-generation HPCC
infrastructures and applications that that these new technolo-
gies may support. Finally, Sect. 8 covers conclusions and
future directions.

2 Vision and context

The world of supercomputing has evolved rapidly since its
first steps in the mid 1980s to the second decade of the new
millennium.

As the two top charts for computer brute power (Top 500)
and best compute/cost efficiency (Green 500) show, we have
two trends: the number of cores is increasing thanks to the
use of dedicated accelerators (GPUs, CPU array boards) and
power efficiency is of increasing importance. Indeed, in the
future the two charts may merge, with the environmental
(and economic) footprint of a HPC iron giant as a primary
requirement [23].

The development of high performance cloud computing
permits a democratization of science acceleration thanks to
its pay-per-use model: a person who wants to use HPC need
not place a Top 500 computer under their desk but instead
just requires access to a cloud provider.

For many applications as operational computations [19]
or for the cloud hosting providers the energy saving is no
more a freak item but a mandatory issue.

Nowadays, as the power of CPUs increases (clock fre-
quency, number of cores, cache size) the need for electric
power rises as well as feeds the vicious circle of the need for
system cooling.

As previously stated, the availability of Internet of Things
derived from ARM CPUs in their high performance incar-
nation (64bit, multicore) lead the HPC world to ARM based
clusters powered with on chip or on board GPUs.

The regular computing nodes of a HPC cluster (still exe-
cuting jobs at the higher parallel level) act as Input/Output
dedicated machines respect to ARM based inexpensive, less
energy hungry and cooler sub-clusters (Fig. 1).

In this way the amount of heat producers decreases, while
the high computing power demanding applications have to
be refactored in order to fit this new heterogenic approach.
The contribute to this vision, partially yet on the HPC main-
stream, is the novelty of the accelerator nodes that represent
the new big guy in this scenario.

The accelerator nodes, as the I/O nodes, are x86_64 archi-
tecture based and host one or multiple high-end, but relatively
low-cost, GPGPU devices.

Thanks to the software component shown in this paper,
these devices are seen by each of the ARM based sub-cluster
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Fig. 1 The proposed
architecture with a hybrid mix
of x86_64 and ARM computing
nodes accelerated by high-end
GPGPUs

computing nodes as directly connected to them in a transpar-
ent way.

This vision permits to gain more computing power reduc-
ing the expensive, power hungry and heat producer x86_64
based computing nodes, increases the parallelism at the sub-
cluster level and, last but not the least, unchains the high-end
GPGPU power to ARM based computing nodes.

Finally, a really high parallel heterogenic scenario just
appeared behind the curtain: shared memory in multicore
ARM based nodes, distributed memory between sub-cluster
nodes, shared memory in multicore I/O x86_64 based nodes,
distributed memory among I/O nodes, distributed memory,
via GVirtuS, among ARM (or x86_64) nodes and the GPU
devices hosted by the accelerator nodes.

3 The generic virtualization system: GVirtuS

The latest implementation of GVirtuS extends and gener-
alizes a previously developed GPU virtualization solution
proposed in our past works.

The main motivation of the first generation of GVirtuS
was to address the limitations of transparently employing
accelerators such as CUDA-based GPUs in virtualization
environments. GVirtuS could be considered as a generic
virtualization framework for facilitating the development of
split-drivers for virtualization solutions.

The brightest GVirtuS feature is the independence from
all involved technologies: the hypervisor, the communicator

and the target of the virtualization, as demonstrated later in
this work.

Using a plug-in based design, GVirtuS offers virtualiza-
tion support for generic libraries such as accelerator libraries
(OpenCL, OpenGL, CUDA) and parallel file systems and
communication libraries (MPI/OpenMP).

GVirtuS could be seen as an abstraction layer for generic
virtualization in HPC on cloud infrastructures [22].

In GVirtuS the split-drivers are abstracted away, while
offering developers abstractions of common mechanisms,
which can be shared for implementing the desired function-
ality.

In this way, developing a new virtualization driver is sim-
plified, as it is based on common utilities and communication
abstractions.

For each virtualized device the frontend and the backend
are cooperating, while both of them are completely inde-
pendent from the communicator. Developers can focus their
efforts on virtual device and resource implementation with-
out taking care of the communication technology.

3.1 The front-end

The front-end is a kernel module that uses the driver APIs
supported by the platform.

The interposer library provides the familiar driver API
abstraction to the guest application. It collects the request
parameters from the application and passes them to the back-
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end driver, converting the driver API call into a corresponding
front-end driver call.

When a callback is received from the front-end driver, it
delivers the response messages to the application. In GVir-
tuS the front-end runs on the virtual machine instance and it
is implemented as a stub library. A stub library is a virtual-
ization of the physical driver library on the guest operating
system.

The stub library implements the driver functionality in
the guest operating system in cooperation with the back-end
running on the host operating system.

3.2 The communicator component

The communication between the front-end and back-end is
done via abstract communicators.

GVirtuS provides several communicator implementations
including a TCP/IP communicator we used in this kind of
application.

In GVirtuS, the use of TCP/IP based communicator is not
feasible for HPCC application because the performance is
strongly impacted by the protocol stack overhead.

The communicator maps the request parameters from the
shared ring and converts them into driver calls to the under-
lying wrapper library.

Once the drivers call returns, the backend passes the
response on the shared ring and notes the guest domains.

The wrapper library converts the request parameters from
the backend into actual driver API calls to be invoked on the
hardware. It also relays the response messages back to the
backend.

Finally, the driver API is the vendor provided API for the
device.

3.3 The back-end

The back-end is a component serving front-end requests
through the direct access to the driver of the physical device.

This component is implemented as a server application
waiting for connections and responding to the requests sub-
mitted by frontends.

In an environment requiring shared resource, the back-end
must offer a form of resource multiplexing. Another source
of complexity is the need to manage multithreading at the
guest application level.

4 GVirtuS on ARM

An ARM port of GVirtuS is motivated raised from differ-
ent application fields such as high performance Internet of
Things (HPIoT) and cloud computing.

In HPC infrastructures, ARM processors are used as com-
puting nodes often provided by tiny GPU on chip or inte-
grated on the CPU board.

Nevertheless, for most massively parallel processing
applications, as scientific computing, are too compute inten-
sive to run well on the current generation of ARM chips with
integrated GPU.

In this context we developed the idea to share one or more
regular high-end GPU devices hosted on a small number of
x86 machines with a good amount of low power/low cost
ARM based computing sub-clusters better fitting into the
HPC world.

4.1 Architecture

From the architectural point of view this is a big challenge for
reasons of word size, endianess, and programming models.

For our prototype we used the 32-bit ARMV6K processor
supporting both big and little endian so we had to set the little
endian mode in order to make data transfer between the ARM
and the x86 full compliant. Due to the prototypal nature of
the system all has been set to work using 32 bits.

The solution is the full recompilation of the framework
with a specific reconfiguration of the ARM based system. As
we will migrate on 64 bits ARMs this point will be revise.

In order to fit the GPGPU/x86_64/ARM application into
our generic virtualization system we mapped the back-end
on the x86_64 machine directly connected to the GPU based
accelerator device and the front-end on the ARM board(s)
using the GVirtuS TCP/IP based communicator.

GVirtuS as nVidia CUDA virtualization tool achieves
good results in terms of performances and system trans-
parency.

In the work presented in this paper, we choose to design
and implement a GVirtuS plugin implementing OpenCL.
This has been strongly motivated by several issues:

1. Since CUDA version 4, the library design appears to
no longer fit with the split driver approach leveraged by
GVirtuS and other similar products;

2. OpenCL is intrinsically open and all interfaces are public
and well documented and, above all, work with nVidia
devices, but is not limited to a particular vendor or archi-
tecture as GVirtuS itself;

3. OpenCL applications can be compiled directly on the
ARM board without any installation of ad hoc libraries.

The OpenCL applications are executed on the ARM board
through the GVirtuS front-end.

Thanks to the GVirtuS architecture, the front-end is the
only component needed on the guest side.

This component acts as a transparent virtualization tool
giving to a simple and inexpensive ARM board the illusion
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Fig. 2 The GVirtuS on ARM
schema diagram

to be directly connected to a high-end OpennGL compatible
GPGPU device or devices (Fig. 2).

4.2 GVirtuS–OpenCL plugin

Open computing language (OpenCL) is an open and royalty-
free standard allowing to perform multi/single core general
purpose programming on highly heterogeneous systems.

OpenCL allows developers to write their code once and
run on CPUs and GPUs and different accelerator boards such
as the Mic-based Intel Phi.

In order to access a GPU in a virtual environment, we have
developed a wrapper for libOpencl.so.

The virtualized library has the same interface as the orig-
inal and the independence from the communicator is guar-
anteed. Compatibility between the virtualized interface and
libOpenCL.so allows the users to obtain a transparent vir-
tualization system to run OpenCL applications. Indeed it is
possible to run any OpenCL application without writing or
recompiling any code.

The GVirtuS–OpenCL Plugin comprises two main com-
ponents: the front-end, running on the guest machine, and
the back-end, running on the host machine.

For each OpenCL routine invoked by the calling program,
the front-end serializes the data and sends them to the back-
end. It requests the execution of the routine and then it tries
to get the exit code of the routine.

The back-end intercepts a call made by the fronted, it reads
up and de-serializes the parameters, it executes the routine

of the library and then it sends back to the frontend the
results.

In more detail, following the GPU virtualization operation
as workflow, we could spot on each working component.

Front-end side: for each OpenCL routine a stub method
has been implemented with the same interface of the original
one. All the stub methods have a common implementation
consisting in the next five steps:

– Create a connection between back-end and front-end and
flush all the buffers;

– Each parameters will be sent to the back-end through the
input buffer;

– Request the execution of a routine using its name as para-
meter;

– Get and Use the exit code only if the execution is success-
ful;

– Return the exit code the same one as the OpenCL routine.

There are tree main input parameter types available:

– Host Pointer: back-end and front-end have different
addressing space; a valid pointer on the front-end is invalid
on the back-end and vice-versa. Aligning the addressed
region makes the address translation.

– Device Pointer: the memory address is sent to the back-
end (or front-end). There is no need for translation because
both, back-end and front-end, refer to the device address-
ing space.
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Fig. 3 A high level view of the GVirtuS class diagram with some GVirtuS ARM OpenGL details

– Variables: it is really simple to add a scalar variable as a
parameter.

In order to make the implementation effective and high
performance, but with a good trade off in development
straightforwardness, we deeply used an OOP coding approach
(Fig. 3).

5 Implementation

The implementation, in C++ for all components, on the
back-end side is related to an x86-based multi-core hard-
ware platform with multiple accelerators attached via PCIe
devices, running Linux as both host and guest operating
system.

In the font-end we used the same core running in a sim-
ilar, but ARM based, Linux environment. According to the
underlying idea of high performance cloud computing appli-
cations, we implemented the virtual transparent accelerator
in a really architecture independent fashion and in a fully con-
figurable way working in both hypervisor and non-hypervisor
configuration.

The GPU is attached to the host system, the accelerator
node in this context, and must run its drivers at a privileged
level directly accessing the hardware device.

Memory management and communication methods for
efficient sharing of the GPU device by multiple guest users
have to be implemented at the same run level.

The activity diagram (Fig. 4) represents the big picture of
the virtualization/multiplexing process.

5.1 OpenCLFrontend

The OpenCLFrontend class establishes connections with the
back-end and executes the OpenCL routine through the com-
piled library libGvirtus-frontend.

The constructor method creates an object of the class Fron-
tend from the libGvirtus-frontend library using the method
GetFrontend using a factory/instance design pattern.

This instance of the class will be alive through all the life
cycle of the application and it will be used any time we need
a method from the OpenCLFrontend class.

The stub methods all have a common schema. Every stub
follows the same interface of the handled OpenCL routine.

The description of this method is significant for the expla-
nation of any other method.

The first step is to get the unique instance of the GVirtuS
Frontend class. This task is accomplished by the constructor
method.

The Prepare method resets the input buffer that will con-
tain the parameters to send to the back-end.

After that all the parameters are inserted into the input
buffer.

The execute method forwards the request for the routine
using the name of the routine as parameter.

If the method is successfully executed, we can get the
output parameters.

At last the method GetExitCode returns the exit code of
the routine executed by the back-end.

The CLGetDeviceIDs routine can be used to obtain the
list of available devices on a platform.

This simple explicative schema is common to all the stubs
coded.
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Fig. 4 The GVirtuS ARM
OpenCL activity diagram

5.2 OpenCLBackend

An ad-hoc file named gvirtus.properties configures GVirtuS.
GVirtuS only handles two parameters at this stage of devel-
opment, communicator and plugin.

The first parameter selects which kind of communicator
has to be used choosing from a list of available communica-
tion mechanisms, the second one selects which plugin must
be loaded.

The main task of GVirtuS back-end is to start a communi-
cation in server mode and waiting then accepting new incom-
ing connections.

It handles the loading of plugins previously installed.
GVirtuS back-end invokes the GetHandler method in order to
create a new instance of OpenclHandler class containing all
the methods needed in order to serve the requests of OpenCL
routine execution.

In this class it is possible to find all the methods to handle
the execution of OpenCL routines.

In the OpenclHandler class there is a table, mpsHandlers,
associating function pointers to the name of the routines, so
any routine can be handled in the right way.

As in the front-end there is a stub method for each OpenCL
method, in the back-end there is a function managing the
execution of each method.

6 Evaluation

We set a prototypal hardware environment in order to eval-
uate the performance on ARM acceleration using external
x86_64 GPUs, the GVirtuS overhead and the result reliabil-
ity of a software testing suite.

That evaluation process has two specific goals:

– check the software stack accountability;
– gather results on performance test.

The OpenCL SDK provides a software suite in which each
component performs computations in both CPU and GPU
modes, checking the result coherence and showing the brute
performance results.

All tests available on the standard OpenCL SDL have been
successfully run using the GVrtuS-OpenCL SDK.
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6.1 Accelerator node and single ARM computing node

We used a Raspberry Pi Mod.B rev.2 ARM 11 equipped with
Wheezy Raspbian Linux as the compute node, a Genesis GE-
i940 Tesla powered by an i7-940 2.93 GHz fsb, Quad Core
HT 8Mb cache with one nVIDIA Quadro FX5800 4Gb as the
graphic device and two nVIDIA Tesla C1060 4Gb as GPGPU
devices as accelerator nodes.

For those tests no I/O node has been provided and the
setup is related on a single node sub-cluster.

In this context the GVirtuS front-end was run on
the ARM computing nodes and the back-end on the acceler-
ator node.

We used the OpenCL version of the testing software
known as MatrixMul, DotProduct and Histogram.

– DotProduct computes k scalar products of two real vec-
tors of length m.
Notice that an OpenCl thread on the GPU executes each
product so no synchronization is required.
During the DotProduct testing process we change the
problem dimension from 220 to 222.
The ARM performance is varying with the same problem
dimension trend. The wall clock remains almost constant
when is used the GPU acceleration.
This demonstrates that the GVirtuS-OpenCL is working
fine and the performances are not affected by the commu-
nication time. In order to perform these tests, DotProduct
ran on vectors of 1M, 2M, 4M of elements.

– MatrixMul computes a matrix multiplication.
The matrices are m n and n p, respectively. It partitions the
input matrices in blocks and associates a CUDA thread
to each block. As in the previous case, there is no need
of synchronization.
In the MatrixMul test the dimension problem has been
varied in this steps 26× 29, 29 × 212 and 210 × 211.
The performance results are pretty similar to the previous
case with the GPU version having wall clock times almost
unchanged.
The size of the problem increases at every execution,
MatrixMul ran on matrices of 16, 524 k and 2 M of ele-
ments.

– Histogram returns the histogram of a set of m uniformly
distributed real random numbers in 64 bins.
The set is distributed among the CUDA threads, each
computing a local histogram.
The final result is obtained through synchronization and
reduction techniques.
The Histogram has been used varying the problem size
to 24, 25 e 26.
The meaning of the performance tests results is trivially
the same running Histograms on vectors of 4, 8 and 16
M of elements.

Table 1 summarizes the results obtained considering the
regular ARMV6K as reference. Comparing the charts we can
underline the difference in order of magnitude.

The overall runtime using the GPU acceleration through
GVirtuS and OpenCL, needs less than 1 % of the time taken
by the standalone ARM CPU, through this comparison the
effectiveness of the proposed solution is shown (Fig. 5).

The best results have been achieved with the MatrixMul
benchmark in which the GPU runs scored an average time of
2,500 better than the non GPU runs.

6.2 Accelerator node and ARM sub-cluster

We expanded our experiment setup to an ARM based sub-
cluster of four computing nodes, each with the same char-
acteristics as the single node used previously. Due to the
limitations related with the ARM boards used in these exper-
iments, we set up a simple network connection using a 100
Mbps Ethernet over copper infrastructure.

In this scenario, some other actors enter the stage, namely
MPICH (http://www.mpich.org, version 3.0.4) for ARM to
ARM and ARM to x86_64 message passing, OpenMP for
intra ARM board parallelism and, above all, one or more GPU
devices hosted on the accelerator node have to be multiplexed
by several ARM processes.

Algorithm 6.1: matrixMulOpenCLMPI(n, A, B)

if !am I aNode()

then

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nodes ← []
for i ← 0 to n

do nodes[i] ← prepareNode(i)
nr ows ← A.n_rows/n
ncols ← B.n_cols/n
for i ← 0 to n

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

send(
nodes[i],
A.rows[(n_rows ∗ (i − 1))...

(n_rows ∗ i)])
send(

nodes[i],
B.cols[(n_cols ∗ (i − 1))...

(n_cols ∗ i)])
C ← matri x Allocate(A.n_rows, B.n_cols)
for i ← 0 to n

do

⎧
⎪⎨

⎪⎩

nodeC ← receive(nodes[i])
C[(n_rows ∗ (i − 1))...
(n_rowsi )][n_cols ∗ (i − 1)...
(n_cols ∗ i)] ← nodeC

return (C)

else

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

local A← receiveFrom Master
local B ← receiveFrom Master
deviceA← copyOnG PU
deviceB ← copyOnG PU
deviceC ← matri x Mul OnG PU (

deviceA, deviceB)
localC ← copyFromG PU (deviceC)
sendT oMaster(localC)
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Table 1 Best results in accelerator node and single ARM computing
node

Test Maximum input
size (MB)

Relative (%) Increment

MatrixMul 4 0.04 × 2,500

DotProduct 4 0.27 × ∼370

Histogram 16 0.65 × ∼154

The performances are computed respect the not accelerated run with
the same problem size

We developed an ad hoc benchmark software that imple-
ments a matrix multiplication algorithm.

This software uses a classic distributed memory approach
to parallelization (Algorithm 6.1).

The first matrix is distributed by rows and the second by
columns, and each process must perform a local matrix mul-
tiplication.

We used MPICH for message-passing among processes
and the OpenCL library to perform the local matrix multipli-
cation within each process.

Figure 6 shows the results of the performance test.
We measured the time taken on 1, 2, and 4 computing

nodes to multiple square matrices of for different problem
sizes, namely 1, 4, 16 MB and 64M.

The topside of Fig. 6 presents results obtained by running
the MPI-based algorithm on the cluster.

The bottom side of Fig. 4 gives a comprehensive summary
of the tests of GVirtuS based algorithm for the case CPU only
and the case OpenCL-GPU.

These results show that the GVirtuS GPU virtualization
and the related sharing system allow an effective exploitation
of the computing power of the GPUs.

We note that without such component the ARM machine
could not see the GPUs and it would be impossible to run
this experiment (Fig. 6).

6.3 Discussion

The results of the two experiments discussed in 6.1 and 6.2
represent two sides of the same coin. The single node exper-
iment setup (6.1) demonstrates that:

– Its technically possible making sharable a GPU acceler-
ator device hosted by a x86_64 machine with an ARM
based device;

– If the ARM has poor computing power (CPU, memory),
the performance achieved is embarrassingly huge with
the top scored with the matrix multiplication benchmark
(x2500 respect to a not accelerated ARM board);

– Under these conditions, the network connection between
the ARM board and the x86_64 accelerator board is a not
so much relevant bottleneck and the GVirtuS latency is
negligible.

Changing the experiment setup increasing the ARM
device computing power could reduce de performance incre-
ment magnitude because the network connection and the rel-
ative weight of the GVirtuS latency.

Assuming a high-end ARM device sharing a high-end
GPU, the best real world applications working in this environ-
ment have to be search in the class load ones, use many times
data with a strong constraints given by the GPU(s) memory.

The lesson learnt by the experiment discussed in 6.2 gains
interest if focusing on the next generation HPCC market. The
experiment demonstrates:

Fig. 5 Accelerator node and
single ARM computing node.
Performance tests with Matrix
Multiply, Dot Product and
Histogram benchmarks. Left
ARM. Right ARM accelerated
by the Tesla C1060
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Fig. 6 Accelerator node and
ARM sub-cluster. Performance
tests with MPI Matrix Multiply.
Left ARM. Right ARM
accelerated by a Tesla C1060

– GVirtuS makes the hybrid architecture (GPU, x86_64,
ARM) resource sharing ready for the prime time: it
works, nevertheless with some important performance
issues.

– The communication bottleneck has a huge weight on the
overall performances. In this setup the network is low per-
formance and shared by MPI message passing, GVirtuS
remote invocation and the sub-cluster services as NFS.

– Comparing the performance of the same problem size
using just one sub-cluster node and the related 6.1 case,
we could carry out the effect of MPI latency.
As the number of nodes increases, the network is over and
over congested preventing a correct performance scaling.

– Finally, the data memory alignment could have a little,
but appreciable effect in the case of a GPU shaded by
different process on different computing nodes.

Nevertheless this open the path to a consistent number
of improvement approaches with the main goal to render
performance affordable what is technically possible.

Using more performing ARM based boards with more
cores, more memory and a better network subsystem, the pro-
posed solution could be interesting for a wide spread of appli-
cations with particular regards to computational fluid dynam-
ics, machine learning and image recognition and processing.

7 Evolving the next generation of high performance
cloud computing

The industry has seen a huge transition to hyper-scale as
lower-cost ARM processors increase server density and push
them further toward commodity status. Service organizations
increasingly allow such processors [14].

In the future, data centers will increasingly be built from
large numbers of ARM powered machines with a reduced
need for service and maintenance that, as it happens with the
redundant array of inexpensive disks, when they fail, you just
mark them as bad and replace them.

Data centers and processors are already being redesigned
around the cloud with the goal to bring the benefits of cloud
computing to the hyper-scale community.

Users can get the processes, familiarity and scalability that
they like from the cloud but can control costs, energy and
data locality of those services to suit them better than they
can when they are throwing their workloads into a public
environment.

In order to provide computing power in a context of high
performance cloud computing, the whole system has to be
trimmed to provide computation at an affordable cost per
performance, taking into account how to optimize the sub-
systems for memory, storage and other accelerators.

The proposed solution mixes x86_64 machines, GPGPUs
and, potentially, other accelerators as Xeon Phi with ARM
computing resources that could interact following different
scenarios and shape-shifting configurations unchaining new
high performance cloud computing programming models
and real world applications.

The scenarios described in the next subsections have a
potentially huge impact on the development of the knowledge
and to the democratization of the computational sciences
because the focus is on performing complex science and engi-
neering workflows just instancing pay-per-use resources.

7.1 VMs on ARM computing nodes with acceleration

No such hardware virtualization as the Intel VT and then
AMD-V has been supported for ARM, since the introduction

123



150 Cluster Comput (2014) 17:139–152

of the XEN/ARM development has been accelerated after the
introduction of the ARM Virtualization Extensions and Large
Physical Address Extension (VEs, LPAE).

This two technologies enable the efficient implemen-
tation of virtual machine hypervisors for ARM architec-
ture compliant processors in order to handle complex soft-
ware with potentially large amounts of data, connected con-
sumer devices, energy efficient demanding cloud computing
resources, high performance systems [2].

This effort has been mainly driven out by the mobile device
industry in order to increment the security and the cloud
computing business.

The VEs standardizes the architecture for implementation
of the hardware acceleration in ARM application proces-
sor cores, while high performance hypervisors from the
worlds leading virtualization companies provide the soft-
ware component upon which to build effective software
combinations.

Cloud computing and other data or content oriented solu-
tions increase the demands on the physical memory system
from each virtual machine.

Virtual machines instances run on the ARM computing
nodes using GPGPUs on the accelerator nodes as a shared,
multiplexed and totally transparent shared resource [11].

In this scenario the ARM clusters are a (total/partial)
replacement of old-style x86_64 machines.

7.2 ARM sub-clusters as x86_64 accelerators

In this scenario virtual machine instances run on x86_64
computing nodes sharing multiplexed GPGPUs hosted on
the accelerator nodes that, novelty, mediate the use of the
ARM sub-clusters as accelerators.

This computing resource could be enforced by different
management philosophies.

A virtual machine instance could claim the exclusive use
of one or more ARM sub-cluster(s) in order to perform com-
putations natively interacting with a sort of hieratical and/or
heterogenic local scheduler.

A second approach could be based on ARM processes
embedded in VMs and then spawned by the x86_64 VM on
the sub-cluster.

Technically, the native ARM or the ARM VMs could be
accelerated by GPGPUs on the accelerator node, but the effi-
ciency and the effectiveness of this kind of approach should
be proven as affordable for specific class of applications.

In order to make the HPCC compliant with this scenario,
the development of new programming models has to be per-
formed.

In particular, the ad hoc software has to be bundled with
binary code for the main VM and for each kind of accelerator
as happens with GPGPU kernels [5].

7.3 High performance Internet of Things

This third scenario is concerned big data, sensor networks,
and the Internet of Things (IoT), rather than conventional
HPCC.

In this scenario, ARM-based sub-clusters act as proxy
machines for complex data acquisition instruments that VMs
hosted on classical-style x86_64 machines could see as
dynamic and elastic resources.

In order to abstract different kinds of instruments based on
a wide range of PC cards or microcontrollers (such as drones,
rovers, ROVs, weather stations, surface current radars, and
weather radars) a a plug-in framework is needed because of
differences in both hardware interfaces and acquisition data
rates [16].

Targeting our final goal of instrument sharing as IoT com-
ponents, the use of commonly accepted and wide spread tech-
nologies and tools as web services is a mandatory approach.

Nevertheless, some things are characterized by behaviors
difficulty matching with the latency of SOAP services or with
the resource approach of REST APIs.

Pointing the attention of a social addressed Internet of
Things where the main target is the increasing of the quality
of human life, environmental data acquisition instruments
interact with their proxy hardware in different ways: weather
station data loggers could work in real-time or in batch mode
in respect of the data link type, the coastal and weather radars
work in a similar way using a power workstation as a proxy
machine.

The use of RPi and Arduino could be a common play-
ground for different actors of the world of IoT, thanks to the
integration of GPIO interfaces and programmable microcon-
trollers in an elastic/on demand cloud scenario.

To face this different situations, we used a layered
approach finding the boundary between the strictly hardware
related interactions and the better place where to group com-
mon characteristics.

This ideal line is where to work in terms of virtualization
on the lower side and abstraction on the upper side [3].

8 Conclusions and future works

In this work have been presented our preliminary results
about the design and the implementation of an OpenCL wrap-
per library as GVirtuS framework plugin in order to acceler-
ate sub-clusters of low power demanding ARM based boards
using high end GPGPU devices.

We chose OpenCL as parallel programming computing
model because it is independent from any kind of architec-
tural constraints.

The most challenging result achieved is the implemen-
tation of a base tool unchaining the development of really
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distributed and heterogenic hardware architectures dedicated
(but not limited to) hosting HPCC middleware and software
applications.

The experiments we performed demonstrate how the pro-
posed approach is convenient.

The incredible performance results we achieved (up to
x2500 in the MatrixMul benchmark), the wall clock using
acceleration is less than the 1 % compared with the non-
accelerated ARM board, have been affected by the computing
power of the ARM side: they need for more investigation and
developments.

The next step will be the development of sub-cluster made
by high performance ARM based boards provided by mul-
ticore ARM 64bit CPUs with virtualization extensions and
high bandwidth network interfaces.

In particular, using multicore, high memory, dual 1G eth-
ernet ARM boards computing nodes we could split the MPI
message passing communication and the GVirtuS data trans-
fer and remote invocations on two different network fabrics
increasing the scalability and better evaluating the latency of
each software component.

With this kind of environment setup, we will investi-
gate the possible performance improvements on the ARM
side joined with a better scalability because of a more per-
forming communication with both the accelerator and the
input/output node.

Further and amazing research could be performed focus-
ing on the development of a mixed x86_64/ARM general
parallel file system [9].

More developments are planned on setup complete minia-
ture HPCC provider using open source software integrating
the different flowers of GPGPU virtualization and sub-cluster
acceleration with the aim of next generation of real world
applications [12,21].
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