
Cluster Comput (2014) 17:255–270
DOI 10.1007/s10586-013-0332-1

CPU/GPU computing for a multi-block structured grid based
high-order flow solver on a large heterogeneous system

Wei Cao · Chuan-fu Xu · Zheng-hua Wang · Lu Yao ·
Hua-yong Liu

Received: 14 February 2013 / Revised: 31 August 2013 / Accepted: 3 November 2013 / Published online: 27 November 2013
© Springer Science+Business Media New York 2013

Abstract The high-order schemes have attracted more and
more attention in computational fluid dynamics (CFD) sim-
ulations. As a kind of high-order schemes, weighted com-
pact nonlinear schemes (WCNSs) have been widely ap-
plied in large eddy simulations, direct numerical simulations
etc. However, due to the computational complexity, WC-
NSs require high-performance platforms. In recent years,
the highly parallel graphics processing unit (GPU) is rapidly
gaining maturity as a powerful engine for high performance
computer. In this paper, we present a high-order double-
precision solver of the three-dimensional, compressible vis-
cous flow using multi-block structured grids on GPU clus-
ters. The solver utilizes the high-order WCNS scheme for
space discretization and Jacobi iteration method for time
discretization. In order to utilize the computational capabil-
ity of CPU and GPU for the solver, we present a workload
balancing model for distributing workload among CPUs and
GPUs. And we design two strategies to overlap computa-
tions with communications. The performance analyses show
that the single-GPU solver achieves about 8× speed-ups
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relative to a serial computation on a CPU core. The per-
formance results validate the workload distribution scheme.
The strong and weak scaling analyses show that GPU clus-
ters offer a significant advantage in performance.
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1 Introduction

Computational fluid dynamics (CFD) has undergone great
development as a discipline for 50 years. Although low-
order accurate schemes are widely used for engineering
applications, they are insufficient for physically-complex
flows. Compared with low-order accurate schemes, the high-
order accurate schemes yield lower numerical dissipation
and dispersion, and are capable of producing much more
accurate results. As such, the high-order schemes have at-
tracted more and more attention in CFD simulations.

The high-order schemes were first designed in 1970s
and 1980s. Harten introduced the concept of Total Varia-
tion Diminishing (TVD) difference schemes in 1983 [1].
Van Leer proposed MUSCL scheme [2], which was satisfied
the TVD condition by applying the limiter. Although TVD
schemes succeed in CFD simulations, the TVD schemes are
second-order accurate and only first-order accurate at lo-
cal extrema. In order to improve the accuracy, Harten intro-
duced the Essentially Non-Oscillatory (ENO) schemes [3].
By using a stencil-weighting approach, Liu proposed the
Weighted Essentially Non-Oscillatory (WENO) schemes [4]
in order to simplify the ENO procedures. In recent years,
high-order compact schemes (CS) [5], which compute the
derivatives simultaneously along an entire line in a cou-
pled fashion, were developed. As a kind of combination
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schemes of WENO and CS, a series of WCNSs [6] were
proposed by Deng et al. based on weighted technique. The
WCNSs include both implicit and explicit schemes. As one
of the explicit WCNS, WCNS-E-5 is of fifth-order accu-
racy in smooth region and third-order accuracy in the vicin-
ity of discontinuities. The experimental results showed that
WCNS-E-5 captures the discontinuities robustly and pre-
cisely, and can be applied for solving complex flow prob-
lems [7]. Nowadays, WCNS have been widely applied in
large eddy simulations (LES) [8], direct numerical simula-
tions (DNS) [9], etc.

Although the significant computational requirement be-
comes a barrier for three dimensional high-order CFD ap-
plications, these applications in conjunction with high per-
formance computers make it possible. Recently, in order
to improve the performance of computers, system archi-
tects are moving away from traditional clusters of homo-
geneous nodes to clusters of heterogeneous nodes which are
augmented with latest GPUs. As an example, the number
one system on the November 2010 top-500 list was Tianhe-
1A [10] which was composed of 14336 CPUs and 7168
GPUs. And novel uses of GPU with the NVIDIA’s Compute
Unified Device Architecture (CUDA) have revealed the po-
tential of general-purpose GPU (GPGPU) computing. Fol-
lowing this trend, researchers accelerated scientific appli-
cations, including high-order accurate CFD applications in
the heterogeneous environment. Depending on the numeri-
cal methods used and the ease of parallelization, the high-
order accurate CFD applications ported to the GPU have ac-
quired different speedups.

Hai P. Le et al. [11] reported an implementation of a nu-
merical solver which incorporated high-order finite volume
methods for solving the fluid dynamical equations coupled
with stiff source terms on the GPU. The solver used high-
order shock capturing schemes MP5 and ADERWENO.
Considering only the fluid dynamics, the speedup factors
obtained were respectively 30 and 55. For the chemical ki-
netics, the speedup ranged from 30 to 40.

In [12], a sixth-order compact finite difference scheme
for solving the 2D advection equations and the 3D Navier-
Stokes equations solution was implemented on GPU.
Speedups between 9 and 16.5 were achieved on GPU com-
pared to CPU computations.

Vahid Esfahanian et al. [13] studied the application of
high-order shock-capturing WENO schemes to some hyper-
bolic equations using GPU. The comparison of the speedups
showed the obtained speedups for the WENO schemes were
more than that of the first-order upwind method (FTBS)
scheme. The results also showed the speedups were even
considerable for GT8500 GPU and could reach to several
hundred for GTX480 GPU.

M. Geveler et al. [14] described FE-gMG, a geomet-
ric multigrid combined with high-order finite element ap-
proach for problems relying on unstructured grids. For a

Poisson problem and computational grids in 2D and 3D,
they achieved a speedup of an average of 5 on a single GPU
over a multithreaded CPU code in their benchmark.

Furthermore, the CFD applications were extended to
scale to large GPU clusters. In 2011, D. Jacobsen et al. [15]
showed the implementation of the Navier-Stokes equations
to simulate buoyancy-driven incompressible fluid flows us-
ing Jacobi iterative solver on multi-GPU Clusters. By using
dual-level and tri-level parallelism, the weak scale efficiency
of the implementations on 128 GPUs only achieved 17 %
and 19 %, respectively. In [16], the work was extended to
scale to 256 GPUs, and the parallel efficiency of the imple-
mentation achieved 94 % in one dimensional scaling case
and 17 % in three dimensional scaling case. This was the
largest scale GPU parallel computing platform as we know
that was used to accelerate CFD applications. However, they
only focused on low order accurate schemes.

L.H. Han et al. [17] presented a wavelet-based multi-
resolution solver designed for solving two-dimensional
compressible Euler equations on heterogeneous parallel ar-
chitecture. With 6th-order WENO scheme, the simulation
using 2 GPUs obtained an about 32 times speedup compared
to using single CPU.

Antoniou et al. [18] presented a single-node, 4-GPU
implementation based on WENO scheme for solving the
Favre-averaged Navier-Stokes equations. The numerical
code included options for 5th, 7th and 9th order accurate
discretizations of the inviscid fluxes and used third order ac-
curate TVD Runge-Kutta method for time marching. The
application ran in single precision, and the parallel run
achieved a 53× speedup on the average for several mesh
sizes with 4 GPUs in comparison with the sequential run.

J. Appleyard et al. [19] carried out High-Order Upstream
Central (HOUC) scheme to solve the level set equation on
two different computational systems: a traditional CPU clus-
ter and a system of 4 GPU controlled by a single quad-core
CPU. 3rd, 5th, 7th and 9th-order HOUC schemes were em-
ployed together with a 3rd-order TVD Runge-Kutta time
integration. The increase in performance of two orders of
magnitude was seen when comparing a single CPU core to
a single GPU and was found to be much greater at higher
orders of accuracy.

Peng Wang et al. [20] mapped high resolution shock cap-
turing schemes (HRSC) for hyperbolic conservation laws
to GPU using CUDA. The framework as applied to the
equations of inviscid compressible hydrodynamics on sin-
gle GPU, could achieve approximately 10 times faster exe-
cution on one graphics card as compared to a single core on
the host computer. And it achieved very good, close to ideal
speedup for up to four GPUs.

Michael Griebel et al. [21] showed the first application
of multi-node/multi-GPU computations in a high-order en-
gineering targeted solver for the full non-stationary incom-
pressible Navier-Stokes equations with fifth order WENO
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scheme. Overall speedup of 8-GPUs accelerated fluid solver
compared to one CPU core for a grid resolution of 3003 was
69.6.

However, on one hand, the above studies only considered
computational capacity of GPU, while the computational ca-
pacity of CPU was ignored. Lu et al. [22] performed a long-
wave radiation simulation by exploiting the computational
capacities of both CPUs and GPUs in the Tianhe-1A super-
computer. They used the application speedup on GPU over
CPU to distribute the workload. But their methods did not
take the communicational cost between GPU and CPU into
consideration. On the other hand, most high-order accurate
simulations on GPU clusters concentrated on single-block
mesh or incompressible flow or inviscid flow. While multi-
node/multi-GPU computations for high-order, compressible
viscous flow solver on multi-block structured mesh are re-
ally rare.

In this paper, we develop a tri-level parallelization of
a three-dimensional, high-order, compressible viscous flow
solver for multi-block structured grids on GPU clusters
by using message passing interface (MPI), OpenMP and
CUDA. This implementation incorporates an efficient man-
agement of CPU and GPU resources for computation and
mechanisms to overlap computation with communication.

The paper is organized as follows. In Sect. 2, the nu-
merical approach for solving dynamic fluids, including the
formulation of the WCNS, is described briefly. Section 3
presents details of the GPU implementation. Section 4 ex-
tends our solver to CPU/GPU heterogeneous environment
with a mixed OpenMP-CUDA implementation. Section 5
extends our solver to CPU/GPU clusters with a tri-level par-
allelization. In Sect. 6, the implementation is tested with
several aerodynamic configurations to demonstrate the ef-
ficiency of the approach. Conclusions and possible future
work are summarized in Sect. 7.

2 Governing equations and numerical approach

2.1 Governing equations

We consider the dimensionless Navier-Stokes equations for
viscid, compressible flow in generalized coordinate,

∂Q̂
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In Eq. (1), Q is the vector of conserved variables, density
ρ, momentum u, v, w, and total energy per unit volume
e, such that Q̂ = Q

J
= 1

J
(ρ,ρu,ρv,ρw,ρe)T , and F̂c , Ĝc ,

Ĥc are inviscid flux terms, and F̂ν , Ĝν , Ĥν are viscous flux

terms. Reref is the reference Reynolds number. The variable
J represents the Jacobian of the transformation between the
Cartesian variables (x, y, z) and the generalized coordinated
(ξ, η, ζ ).

2.2 Numerical approach

In order to solve the governing equations of the fluid motion,
a common solution is to discretize and linearize the equa-
tions. For spatial discretization, the numerical algorithm
uses a semi-discrete cell-centered finite difference scheme in
this paper. Viscous flux terms are discretized by using high-
order central difference scheme. Inviscid flux terms are dis-
cretized by using high-order WCNSs which are much more
complicated than central difference scheme, and will be dis-
cussed in more detail.

The WCNSs procedure consists of three components:
nonlinear interpolation, flux evaluation and linear differenc-
ing. Let us only consider the (2r − 1)th order discretiza-
tion of the inviscid flux derivative along the η direction.
In the first component of procedure, Q̃L

j+1/2 and Q̃R
j+1/2,

which are the left-hand and right-hand cell-interface flow
variables, respectively, are obtained by a high-order non-
linear weighted interpolation. The interpolations are usually
approximated in the characteristic fields. First, conservative
variable Qk is transformed to characteristic variables Qk :

Qk,m = lj,mQk (k = j − r + 1, . . . , j + r − 1) (2)

where Qk,m denotes the mth characteristic variable and lj,m
denotes the mth left eigenvector of the matrix A = ∂G/∂Q

on the j th mesh point. Hereafter the construction of Q̃L
j+1/2

is only noted, while Q̃R
j+1/2 can be computed symmetrically.

Second, the general r th-order interpolation of Q̃L
j+1/2 in j +

1/2 can be written as:
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where Q(n)
j,k,m is the nth derivative for the mth characteristic

variable using the kth (k = 1,2, . . . , r) stencil. Then, com-
bining these values together with the weights, we get:
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Finally, the variables at cell interfaces can be obtained as:
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In the second component of the WCNS procedure, a WCNS
numerical flux is evaluated based on:
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There are lots of flux evaluation methods that can be ap-
plied in WCNS, e.g. Steger-Warming or Van Leer flux vector
split (FVS) scheme, Roe’s flux difference splitting method
(FDS), and AUSMPW+ scheme. The numerical flux ob-
tained here is an approximation of the exact flux at the cell
interface, as follows:

G̃
j+ 1

2
= G

j+ 1
2
+ O

(
h2r−1) (7)

The third component computes the derivative of flux with a
high-order linear scheme which can be implicit and explicit.
The fifth-order explicit WCNS-E-5 can be expressed as:

∂G̃j

∂η
= 75

64h
(G̃

j+ 1
2
− G̃

j− 1
2
) − 25

384h
(G̃

j+ 3
2
− G̃

j− 3
2
)

+ 3

640h
(G̃

j+ 5
2
− G̃

j− 5
2
) (8)

And the implicit WCNS-5 can be expressed as:
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After spatial discretization, Eq. (1) can be written as:

∂Q̂

∂t
= R(J,Q) (10)

where R(J,Q) is called right-hand side (RHS). The solution
is advanced in time with implicit methods, such as Runge-
Kutta method, or explicit methods, such as Jacobi method
and LU-SGS method.

2.3 Specification of the CFD

According to the computational procedure, a CFD numer-
ical simulation can be divided into 3 steps: preprocessing
step, solving step, and post-processing step. In the pre-
processing step, the simulator inputs the mesh and defines
the setup of the simulation case. In this paper, we em-
ploy the one-to-one blocking mesh, which means that the
faces shared by two mesh blocks are exactly the same. For
boundary cells, additional buffer zones (often referred as
the “ghost zones”) for finite-difference stencils are added
around each block to store the values of cells in the neigh-
boring blocks. As a simple illustration of one-to-one block-
ing mesh and ghost zones, consider Fig. 1. The black dots
represent ghost cells, the white dots represent the corre-
sponding boundary cells, and the grey dots represent the in-
terface cells. The application of very high-order schemes in
this context lead to an increased depth of the ghost zones re-
quired. For example, 5th-order WCNS require 5 ghost cells
on each side of computational domain. The data at ghost

Fig. 1 The one-to-one blocking mesh. The black cells mean ghost
cells, and the white cells mean boundary cells, the grey cells mean the
interface meshes

cells need to be exchanged between blocks. For a N3 cells
per block, the total number of boundary cells which should
be sent/received by each block utilizing a 5th-order scheme
is ∼30N2.

In the solving step, approximate numerical solution for
the flow is obtained by solving the governing equations. The
solving step is the performance-critical section of simulator.
The procedure of the solving step is illustrated as Fig. 2. In
each step, the program loops over each mesh block to calcu-
late values, and then take the next step. In order to maintain
the accuracy of high-order scheme, the values of primitive
variables, gradients of primitive variables, RHS, and incre-
ment of conserved variables at block boundaries must be ex-
changed with its neighbors, and be averaged with its original
values.

After the solving step, the post-processing analyzes the
results and calculates derived quantities e.g. force, heat, and
outputs the results to files.

3 Parallel algorithm on GPU

According to Amdahl’s law, the parallel algorithm for the
solver, which is the performance critical section of the sim-
ulator, is studied in this paper. We investigate the memory
access patterns and data dependencies, and design different
GPU parallel algorithms for different patterns. The imple-
mentation and optimization of these algorithms to harness
the compute-power of GPUs will see in Sect. 6.

Traditionally, the multi-block CFD parallel computing on
CPUs is based on domain decomposition, in which each
CPU handles one or more mesh blocks separately. GPUs can
run hundreds of thousands of threads concurrently and hide
the memory access latency by quickly switching from one
thread to another. So it is not suitable for GPU paralleliza-
tion to adopt the method for CPU parallelization. Consider-
ing CUDA programming features and data dependencies of
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Fig. 2 Flow chart of the solver. In exchange procedure, the adjacent
blocks exchange the values at boundaries, and in other procedures, the
solver loops over all blocks to compute the values

the CFD computing, we design the fine grain data parallel
algorithm based on cells. Take the computation of spectral
radius and the computation of inviscid flux terms as exam-
ples, we discuss GPU parallel algorithms in detail.

The computation of spectral radius computes the spectral
radius of Jacobian matrix. Take spectral radius of Jacobian
matrix corresponding to inviscid flux F̂c as an example, it is
calculated by:

λ = θ + a

√
ξ2
x + ξ2

y + ξ2
z (11)

where

θ = ξxu + ξyv + ξzw (12)

where (u,v,w) is velocity vector, ξx , ξy , ξz are coordinate
metrics, and a denotes the speed of sound. The spectral ra-
dius in a cell is only data-dependent on the values of vari-
ables in this cell, and is not data-dependent on the values
of variables in other cells. So the spectral radius computa-
tion can be parallelized on a per-cell basis, with one thread
per cell. In order to associate to the 3D structured mesh, the
threads are organized into 3D blocks, and then the blocks
are organized into a 3D grid, as illustrated in Fig. 3.

The computation of inviscid flux terms computes five
values: the coordinate derivatives at the cell interfaces, the
primitive variables at cell interfaces, fluxes in the interior
cells, fluxes at the cell interfaces, and the inviscid flux
derivatives, in each cell along 3 dimensions. Except the co-
ordinate derivative, each variable in a cell is dependent on
the values of previous variable in its neighbor cells. Take
the 5th order WCNS scheme as an example, the inviscid
flux derivative in the cell i along the ξ dimensional is de-
pendent on the fluxes at the cell i ± 1/2, i ± 3/2, i ± 5/2
interfaces. If we assign to a thread all the computation of
inviscid flux terms associated to a cell, then these threads
may belong to different thread blocks (Fig. 4(a)), so there is
a need of global synchronization across all threads to force
the data coherence. Since the CUDA model is lack of ef-
ficient global synchronization mechanism, we consider two
different ways to support the fine-grain parallelization. One
is the redundant computation method and the other one is
kernel decomposition method.

The redundant computation method means to compute
values in the cells that are associated to the thread block
boundaries twice, by the two neighbored thread blocks
(Fig. 4(b)). It’s easy to ensure that writing thread has write
the data before the other one read it by synchronization
among threads in the same thread block. Although the re-
dundant computation method decreases the cost of kernel
launch, it brings more extra calculations, especially when
the size of thread block becomes smaller and the computing
accuracy gets higher. And the redundant computation brings
more branches for dealing with computation at the thread
block boundaries, which can decrease the performance of
the kernel. Also, the redundant computation method in-
creases the source code size, while the resource that a kernel
requires is proportional to source code size. If there is in-
sufficient register space to hold the variable, automatic vari-
ables are likely to be placed in local memory. However, the
cost of local memory access is as expensive as the cost of
global memory access, which is much cheaper than the cost
of register access. And as the resource that a kernel requires
increases, the maximum number of active threads that we
can schedule for the kernel is not sufficient to hide the mem-
ory access latency.

Considering the above features, kernel decomposition
method which splits computation into several kernels is the
better way (Fig. 4(c)). For the computation of inviscid flux
terms, we decompose the computation into three parts based
on the calculation along three dimensions. Then according
to data dependency, each part is split into several kernels
to ensure that there is no data dependence in each kernel.
Between two kernels, an explicit synchronization is needed.
With the kernel decomposition method, the values can be
computed as the computation of spectral radius.
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Fig. 3 The GPU threads organization on a per-cell basis

Fig. 4 The nonlinear
interpolation of WCNS on GPU.
(a) The organization on a
per-cell basis; (b) The redundant
computation method; (c) The
kernel decomposition method

4 Parallel algorithm on GPU/CPU

Computing resources in GPU clusters include multi-core
CPUs and many-core GPUs. Usually, CPUs and GPUs co-
operate as the way that CPUs prepare and transfer data and
GPUs perform arithmetic operations. However, the compu-
tational capability of CPUs is ignored in this way. While in
most high performance systems, the number of GPUs is less
than the number of cores of CPUs. Hence, we can use one
CPU core to prepare and transfer data for one GPU, and use
the rest CPU cores to perform arithmetic operations.

For multi-block mesh, CFD computation within each
block can be computed independently, providing coarse-
grain parallelism. Fine-grain loop-level parallelism can be
exploited within each block. Considering these, we pro-
pose a two-level parallelization approach. The outer paral-
lelization exploits the coarse-grain parallelism across mesh
blocks. And the inner parallelization exploits the fine-grain
parallelism inside mesh block.

Assume there are Ng GPUs and Nc CPUs in a node. Each
CPU is consisted of n cores, and Ng is less than Nc ×n. The

process spawns Ng + 1 threads by employing OpenMP to
exploit coarse-grain parallelism. Among them, Ng threads
which run on Ng CPU cores are used to cooperate with
GPUs, and 1 thread is used to cooperate with the rest CPU
cores. In the inner parallelization, the GPU exploits the fine-
grain parallelism by using CUDA, and the CPU spawns
(Nc × n − Ng) threads to exploit the fine-grain parallelism
by using nested OpenMP. The CPU/GPU cooperative model
is illustrated in Fig. 5.

In order to utilize the two-level parallelization efficiently,
it is important to distribute the proper workload to proces-
sors according to the computational capability of each com-
puting unit. Assuming there are W mesh blocks to distribute,
and all mesh blocks have the same size. Let nx , ny and nz

be the number of computational cells in the ξ , η and ζ di-
rections for a mesh block, respectively. Let Pcpu denote the
computing power of each CPU core, and Pgpu denote the
computing power of GPU. Wcpu is the number of blocks that
are distributed to CPU and Wgpu is the number of blocks
that are distributed to a GPU. The wall time for CPU/GPU
computing is:
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Fig. 5 The CPU/GPU
cooperative model

Tcpu = Wcpu · (nx · ny · nz)/Pcpu

· [1 − f + f/(Nc · n − Ng)
]

(13)

Tgpu = Wgpu · (nx · ny · nz)/Pgpu + Tcomm · Wgpu (14)

W = Wcpu + Wgpu · Ng (15)

where Tcomm denotes the communicational time between
GPU and CPU. In order to maintain the accuracy of the high-
order scheme, the values of primitive variables, gradients of
primitive variables, RHS, and increment of conserved vari-
ables at the mesh block boundaries must be exchanged with
its adjacent blocks. But usually, the data at ξ–ζ and η–ζ

planes are stored in non-continuous mode. As illustrated in
Fig. 6, to transfer these data, we allocate a device memory
buffer and a host memory buffer for each boundary. The
sender packs the data at boundary cells into the buffer, and
transfers it to the receiver. The receiver unpacks the data and
stores them in boundary cells.

So we have:

Tcomm = Thtod + Tdtoh (16)

Thtod = S/Bw + Lhtod (17)

Tdtoh = S/Bw + Ldtoh (18)

where Thtod is the communicational time for data transfer
from host to device. Tdtoh is the communicational time for
data transfer from device to host. S is the size of the ex-
changed data. Bw is the bandwidth between host and device.
For PCIE2.0-x16, the bi-directional bandwidth is bounded at
20 GB/s. Lhtod denotes packing/unpacking time for the data
from host to device, and Ldtoh denotes packing/unpacking
time for the data from device to host.

And we have:

S = 2 · (nx · ny + ny · nz + nx · nz) × ngh · nvar · m (19)

Lhtod = [
2 · (ny · nz + nx · nz)/Pcpu_pack

+ 2 · (ny · nz + nx · nz)/Pgpu_unpack

] × ngh · nvar

(20)

Ldtoh = [
2 · (ny · nz + nx · nz)/Pgpu_pack

+ 2 · (ny · nz + nx · nz)/Pcpu_unpack

] × ngh · nvar

(21)

where ngh denotes the layer of ghost cells, and nvar de-
notes the number of variables for exchanging in each cell.
m denotes the memory requirement for each flow variable,
and for double precision computing, m is 8. Pcpu_pack ,
Pgpu_pack mean the speed of data packing on CPU and
GPU, respectively. Pcpu_unpack , Pgpu_unpack mean the speed
of data unpacking on CPU and GPU, respectively.

When Tcpu equals Tgpu, we get the most efficient work-
load distribution. Hence, we get the workload distribution:

Sblock = nx · ny · nz (22)

SPpar = 1 − f + f/(Nc · n − Ng) (23)

T ′
comm = Tcomm · Pcpu · Pgpu/Sblock (24)

Wgpu = W · Pgpu · SPpar

/
(
Pcpu + Ng · Pgpu · SPpar + T ′

comm

)
(25)

Wcpu = W · (Pcpu + T ′
comm

)
/
(
Pcpu + Ng · Pgpu · SPpar + T ′

comm

)
(26)

Since the device memory in most graphic cards is fixed
and much smaller than host memory, so if we assume that
the memory requirement is proportional to workload and
the communication cost is ignored, when the workload is
balanced between CPU and GPU, we have:

Wcpu = 1

α
Mcpu (27)

Wgpu = 1

α
Mgpu (28)
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Fig. 6 The data exchange
between GPU and CPU. The
data at ξ–η plane can exchange
directly, while the data at ξ–ζ

and η–ζ planes need buffers

Mcpu = Mgpu

Pcpu

Pgpu · SPpar

(29)

Wcpu = 1

α
Mgpu

Pcpu

Pgpu · SPpar

(30)

Where Mgpu, Mcpu denote the memory requirement on
GPU and on CPU, respectively. α is the proportionality fac-
tor. According to Eqs. (27) and (29), the workload on CPU
and the workload on GPU are limited by the device memory.
In order to run bigger simulations, we propose out-of-core
method to increase the simulation size on single node, and
use MPI to increase the simulation size on multi-nodes.

The general idea of out-of-core method is to divide the
workload distributed to GPU into several groups, and com-
pute the solutions group by group. Only the device mem-
ory that is required by a group of mesh blocks is allocated.
Before each kernel launches, the data which are needed by
the kernel are copy to GPU as the input of the kernel. After
the kernel finished, the data which are produced by the ker-
nel are copy out from device memory to host memory, even
the data that are produced by a kernel will be consumed by
the next kernel. In this way, the workloads that can be dis-
tributed to GPU and CPU respectively are:

Wgpu = αMgpu · Ngroup (31)

Wcpu = αMgpu · Ngroup

Pcpu

Pgpu · SPpar

(32)

However, the out-of-core method introduces more data
transfer overhead. In order to reduce the overhead, on de-
vices that are capable of “concurrent copy and execute”,
we use the asynchronous transfers and streams on GPU to
overlap the computation and communication between host
and device. The asynchronous transfers require pinned host
memory, and the data transfers and kernels must use differ-
ent no-default streams. By using asynchronous transfers and
streams, the workload which is consisted of several mesh
blocks is transferred in multiple stages, launching multiple
kernels to operate on each block as it arrives. Figure 7 illus-
trates the time lines of data transfers and kernel executions

for workload which is consisted of 3 groups, and each group
is consisted of 4 mesh blocks. With the out-of-core method,
the total communicational time between CPU and GPU is
proportional to the number of groups. And we have the wall
time for CPU/GPU computation:

Tcpu = Wcpu · Sblock/Pcpu · SPpar (33)

Tgpu = Wgpu · Sblock/Pgpu + 2 · Tcomm · Ngroup (34)

S = (nx + 2 · ngh)(ny + 2 · ngh)(nz + 2 · ngh) · nvar · m
(35)

Lhtod = 0 (36)

Ldtoh = 0 (37)

when Tcpu equals Tgpu, we get the workload distribution
with out-of-core method:

T ′′
comm = 2 · Tcomm · Ngroup · Pcpu/(Sblock · SPpar ) (38)

Wgpu = W − T ′′
comm

Pcpu/(Pgpu · SPpar ) + Ng

(39)

Wgpu = W · Pcpu/(Pgpu · SPpar ) + Ng · T ′′
comm

Pcpu/(Pgpu · SPpar ) + Ng

(40)

The more groups that the workload is divided into, the
bigger simulation can run on GPU. However, the more
groups, the more time that is spent for filling and draining
pipeline, and the throughput of GPU decreases. Our goal is
to maximize the performance for a fixed problem. So we
first distribute the workload according Eqs. (24) and (25),
and we calculate the device memory required by this work-
load distribution, and set the number of groups to 1. If the
device memory requirement is larger than the device mem-
ory size, then the number of groups increases and workload
is distributed according Eqs. (38) and (39). The pseudo code
is illustrated as Algorithm 1.
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Fig. 7 Timeline view execution
on GPU with out-of-core
method

Algorithm 1 The workload distribution, and the out-of-core execution on GPU
1: procedure FUNC_OUT_OF_CORE
2: Wgpu ←Get_workload() �Workload distribution according Eqs. (25) and (26)
3: num_groups ← 1
4: num_streams ← Wgpu
5: Mgpu ← Get_req_ memory(Wgpu) �Calculate the required device memory of Wgpu workload
6: while num_groups≤ Wgpu and Mgpu>MEMgpu do
7: num_groups num_gpoups+1
8: Wgpu←Get_workload_MS() �Workload distribution according Eqs. (39) and (40)
9: num_streams← �Wgpu/num_groups �
10: Mgpu←Get_req_memory(�Wgpu/num_groups�)
11: end while
12: if num_grpus >Wgpu then �The mesh size is too large to handle by single compute node
13: Print(“The block size is too big to simulate”)
14: Exit
15: end if
16: Func_alloc_Mem(Mgpu)
17: for i ← 1, num_ groups do
18: for j ← 1, num_ streams do
19: cudaMemcpyAsync(device(i∗num_groups+ j ), host(i∗num_groups+ j ), mem_size, stream(j ))

�Asynchronous data transfer from CPU to GPU
20: Kernel<<<block, grid, 0, stream(j )>>>() �Kernel execution
21: cudaMemcpyAsync(host(i∗num_groups+ j ), device(i∗num_groups+ j ), mem_size, stream(j ))

�Asynchronous data transfer from GPU to CPU
22: end for
23: cudaSynchronize() �Waiting for the finish of calculation of the group of workload
24: end for
25: end procedure

5 Parallel algorithm on GPU clusters

Although the usage of single node systems that consisted
of CPUs and GPUs makes it possible to satisfy the perfor-
mance requirements, the simulation size is limited to the
memory of single node. We use MPI to increase the sim-
ulation size on multi-nodes. However, the Fermi GPUs does
not support direct peer-to-peer communication across multi-
ple devices in different nodes. The data transfer needs CPU-
side data buffering, and then exchange by using MPI.

For simulations that do not use out-of-device memory
method, we only buffer the mesh block boundaries data
(BBD). Usually, the data at ξ–ζ and η–ζ planes are stored
in non-continuous mode. In order to exchange these data ef-
ficiently, we pack them into device buffer. Take sending data
as an example, the data at boundary cells are packed into the
buffer on GPU, and then transferred to host buffer. The data
are transferred to other nodes at last, as illustrated in Fig. 8.

For simulations that use out-of-core method, we have
buffered all data (BAD) of a mesh block after the kernel
finishes. Also considering the data at ξ–ζ and η–ζ planes

Fig. 8 Data exchanging with the buffering the boundaries data method

which are stored in non-continuous mode, we use CPU to
pack/unpack the data at boundary cells, and exchange them
with other nodes, as illustrated in Fig. 9.

There are potential bottlenecks which are the commu-
nication bandwidth on the PCI bus between the CPU and
GPU, and the communication bandwidth on network among
compute nodes. Although the bi-directional bandwidth on
the PCI bus and the bi-directional bandwidth on the network
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Fig. 9 Data exchanging with the buffering all data method

Fig. 10 Transfer and computation in unit of boundaries strategy

Fig. 11 Transfer and computation in unit of block strategy

can be as high as 20 GB/s, these are much lower than the
bandwidth between CPU and main memory and the band-
width between GPU and its own main memory. We design
two different transfer strategies for the two transfer methods
by using streams, the asynchronous data transfer between
CPU and GPU, and the non-blocking MPI communication
to overlap the computation and communication. Hereafter
the data sending is only noted, while we can receive data
symmetrically.

For the BBD transfer method, we develop the data trans-
fer and computation in unit of boundaries (TCBO) strategy,
as illustrated in Fig. 10. The TCBO strategy is a software
pipeline which is consisted of 4 stages: the data at bound-
aries cells transfer from CPU to GPU, the kernel execution
and the data packing on GPU, the data at boundaries cells
transfer from GPU to CPU, and the data sending to other
nodes via network.

For the BAD transfer method, we develop the transfer
and computation in unit of mesh blocks (TCBL) strategy,
as illustrated in Fig. 11. The TCBL strategy is a software
pipeline which consists of 5 stages: the whole data of a
block mesh transfer from CPU to GPU, the kernel execu-
tion on GPU, the data of a mesh block transfer from GPU
to CPU, the data packing on CPU, and the data sending to
other nodes via network.

6 Implementation and experimental results

In this section, we first implement the solver on Tianhe-1A
supercomputer. And then we perform a numerical experi-
ment to demonstrate the correctness of the GPU algorithm.
Next the performance is evaluated with the aforementioned
techniques.

6.1 Implementation

The solver which is 5th order accurate and advances in time
with Jacobi method, is carried on Tianhe-1A supercomputer.
The Tianhe-1A includes 7168 compute nodes connected via
optic-electronic hybrid fat-tree structure network with the
bi-directional bandwidth of 20 GB/s. Each compute node
has two Intel E5670 (2.93 GHz, six-core) processors with
48 GB of host memory, and one NVIDIA Fermi M2050
GPU with 3GB device memory. The compiler system sup-
ports C, C + +, FORTRAN and CUDA languages, as well
as MPI and OpenMP parallel program model. The hardware
and software are illustrated as Table 1. The GPU and CPU
codes are compiled with the optimization flag -O3. Double
precision is used in all computations.

We use FORTRAN language interoperate with the CUDA
C language to implement the simulation on GPU. The host
code adopts the FORTRAN language, and the kernels are
wrapped in functions coded by C language. A FORTRAN
procedure references to a C function by calling C-code
wrapper functions which call CUDA C code running on
GPU.

In order to increase the performance of application on
GPU, it is necessary to best utilize the GPU’s memory hier-
archy. We utilize arrays to store the variables of all mesh
blocks. Unlike the CPU implementations of the CFD ap-
plications which usually adopt an array of structures (AoS)
data layouts to increase cache utilization, CUDA implemen-
tations benefit from structure of arrays (SoA) data layouts, in
which the individual components are stored contiguously for
one dimension. So we use SoA data layout to store data for
coalescing global memory accesses. For CFD simulations,
it is difficult to use shared memory because of the data de-
pendency and global synchronization. So we configure the
on-chip memory as 16 KB of shared memory and 48 KB of
L1 cache to increase cache hit ratio.

The overlap of computation and communication is de-
vised by using nested OpenMP parallelization and massage
passing interface. Thread 0 spawns 2 threads and thread 1
cooperate with the GPU. Computation on CPU is distributed
to 11 threads spawned by thread 2. The asynchronous com-
munication among nodes is implemented by nonblocking
send routine (MPI_Isend) and nonblocking receive routine
(MPI_Isend).
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Table 1 Experimental
environment GPU CPU

Units per node 1 2

Cores per node 448 12

Type NVIDIA M2050 Intel Xeon X5670

Memory about 3 GB 48 GB

Interconnect PCIE 2.0-x16 Fat tree network

Price 1350.00 $ (1128.75 × 2) $

Software stack CUDA 4.0

MPICH2-GLEX [23]

Intel C++/Fortran Compiler 11.1 Release

Kylin Operating System

Fig. 12 DLR-F6 surface mesh

6.2 Numerical experiments

A test case is the solution for the steady flow around DLR-
F6 aircraft at a Mach number of 0.75, a Reynolds number of
3e6, and angle of attack of −3−1.5◦. Three meshes resolu-
tion in this case are 4.36 million, 44.63 million and 108.99
million, respectively. As an example, the surface of the mesh
with 44.63 million cells is shown in Fig. 12. The comparison
physical experiment was carried out in wind tunnel.

The solver use WCNS-E-5 together with SST two-
equation turbulence model. The aerodynamic coefficient
compared with physical experiment is illustrated in Fig. 13.
The lift coefficient and drag coefficient is closed to exper-
iment, and lift curve slope is consistent with experiment.
At the same lift coefficient, the computation result is 10–
15 drag unit less than physical experiment result. The pres-
sure coefficient at Mach number 0.75 and angle of attack
of 0.49◦ is illustrated in Fig. 14, and is closed to physical
experiment result. Especial the computation with the mesh
of 44.63 million cells provides a more accurate position of
shock wave.

6.3 Single GPU

The three-dimensional flow over elliptic cylinder with an
axis ratio of 1/6 at a Reynolds number of 1.7e6 and with
the angle of attack of α = 5.5◦ is chosen for performance
measurements. The sub-iteration of Jacobi iteration is set to
be 3. The benchmark simulations use 3 kinds of mesh. The
size of the first one is 128 × 64 × 64, and the meshes are
divided to 1 block and 2 blocks, respectively. The size of
the second one is 128 × 128 × 64 and the meshes are di-
vided to 1 block, 2 and 4 blocks, respectively. The size of
the third one is 128 × 128 × 96 and the meshes are divided
to 1 block, 2, 4, 8 blocks, respectively. Figure 15 shows the
running time (s) per iteration in double-precision for vari-
ety of meshes. The result shows that the computational per-
formance on M2050 is about 8× faster than on single Intel
Xeon E5670 core, and is better than the performance on two
Intel Xeon CPUs. Compared with the price/performance ra-
tio of CPU, the price/performance ratio of GPU is average
about 1.85× better.

6.4 Single node

Also, the three-dimensional flow over elliptic cylinder with
an axis ratio of 1/6 at a Reynolds number of 1.7e6 is cho-
sen for performance measurements in this case, the angle of
attack is set to α = 5.5◦. The benchmark simulations use 2
kinds of mesh. The size of the first one is 128 × 128 × 64,
and the mesh is divided to 4 blocks. The size of the second
one is 128 × 128 × 128 and the meshes are divided to 4 and
8 blocks, respectively. Table 2 presents the parameters for
workload distribution scheme. According to the workload
distribution scheme, the best workload that are distributed
to GPU for the 3 meshes are 2.17 blocks, 2.18 blocks and
4.36 blocks, respectively. Figure 16 shows the runtime per
iteration for the 3 meshes while the workload on GPU vary-
ing. The performance result shows when the workload on
GPU is balanced with the workload on CPU, the minimal
runtime is achieved. And experimental results show that the
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Fig. 13 The aerodynamic
coefficient of DLR-F6
(Ma = 0.75, α = −3−1.5◦)

Table 2 The parameter for workload distribution Scheme

Parameter Value

Nc 6

n 2

Ng 1

Pcpu 5.69e–4 cells/s

Pgpu 4.73e–5 cells/s

Bw 5.5 GB/s

ngh 5

nvar 20

(1/Pcpu_pack + 1/Pgpu_unpack) 1.0e–9 cells/s

(1/Pgpu_pack + 1/Pcpu_unpack) 1.0e–9 cells/s

f 0.94

best workloads distributed on GPU are approximately equal
to theoretical results, which validate our workload distribu-
tion scheme. The computational performance on a single
node are 1.48×, 1.61×, 1.55× speedup relative to 12 Intel
Xeon CPU cores, respectively.

Through the earlier test, we can get the memory require-
ment per cell is about 1500 Byte. So the GPU with 3GB
memory can only handle about maximum 2 million cells,
and the CPU and GPU cooperation can handle about maxi-
mum 4 million cells. We test the performance on the mesh
with 256 × 128 × 128 cells with out-of-core method on a
single node. The mesh is consisted of 16 blocks. Table 3
shows the runtime per iteration for the workload on GPU
varying from 6 to 10 for different groups. The performance
results show that the more groups that the workload are di-
vided into, the lower performance we get. When 9 blocks
of mesh are distributed to GPU, the performance of over-
all system is the best. Table 4 illustrates the performance for
several mesh resolutions. The results also validate our work-
load distribution scheme with out-of-core method.

6.5 Multi nodes

In order to test the parallel performance, measurements are
performed for both strong scaling where the problem size
remains fixed as the number of nodes increases, and weak
scaling where the problem size grows in direct proportion to
the number of nodes.

Figure 17 shows the speedup of the MPI-OpenMP-
CUDA implementation of our flow solver relative to sin-
gle compute node. The mesh resolutions considered in this
test are fixed as 512 × 512 × 256 and 512 × 512 × 512.
When the workload on a node is larger than 4 million cells,
we adopt out-of-core method to execute the solver and the
TCBL strategy to transfer data. When the nodes increase, the
amount of work to do on each node drops and we use nor-
mal CPU/GPU cooperation to solve the flow problem and
the TCBO strategy to transfer data. The computational per-
formance on 128 nodes perform 12.53× and 12.43× faster
than 8 nodes, respectively.

Figure 18 indicates the parallel efficiency of the im-
plementation for weak scaling. For the mesh resolution of
128 × 64 × 64 on each node, we use only the GPU to do
the calculation and the efficiency drops from 100 % with 1
node to 51.2 % with 128 nodes. For the mesh resolution of
128 × 128 × 128 on each node, we use the CPU and GPU to
do the calculation and the efficiency drops from 100 % with
1 node to 62.4 % with 128 nodes. For the mesh resolution
of 256 × 128 × 128 on each node, we use the CPU and GPU
with out-of-core method to do calculation and the efficiency
drops from 100 % with 1 node to 72.5 % with 128 nodes.

7 Conclusions and future work

In this paper, a dual-level and tri-level parallel implementa-
tions of a three-dimensional, high-order, compressible vis-
cous flow solver for multi-block structured grids on GPU
clusters by using MPI, OpenMP and CUDA, is developed.
A load balancing model is presented to effectively distribute
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Fig. 14 The pressure
coefficient compared with
physical experiment
(Ma = 0.75, α = −3−1.5◦)

Fig. 15 Performance
comparisons among different
platforms



268 Cluster Comput (2014) 17:255–270

Table 3 Performance comparisons with varying groups for out-of-core method

Workload on GPU Runtime(s) per iteration on CPU and GPU

2 groups 3 groups 4 groups

6 8.428 8.443 8.485

(+0.010/−0.013) (+0.012/−0.014) (+0.008/−0.009)

7 8.047 8.068 8.155

(+0.010/−0.011) (+0.006/−0.013) (+0.012/−0.015)

8 7.925 7.969 8.016

(+0.008/−0.007) (+0.009/−0.006) (+0.010/−0.005)

9 7.759 7.770 7.931

(+0.007/−0.013) (+0.008/−0.009) (+0.010/−0.014)

10 7.850 7.876 7.959

(+0.005/−0.009) (+0.010/−0.009) (+0.009/−0.007)

Table 4 Performance for different mesh size with out-of-core method

Mesh size Total
workload

Runtime on 1
CPU core

Runtime on 12
CPU cores

Runtime on
CPU and GPU

Workload
on GPU

The groups
of streams

Speedup

256 × 192 × 128 6 blocks 115.668 ± 0.018 (s) 16.657 ± 0.010 (s) 10.482 ± 0.008 (s) 3 3 11.035

256 × 192 × 128 12 blocks 116.688 ± 0.019 (s) 16.821 ± 0.011 (s) 10.702 ± 0.009 (s) 6 3 10.904

256 × 192 × 128 24 blocks 118.365 ± 0.023 (s) 16.993 ± 0.013 (s) 11.942 ± 0.007 (s) 13 4 9.912

256 × 256 × 128 16 blocks 154.238 ± 0.024 (s) 22.729 ± 0.012 (s) 14.197 ± 0.010 (s) 8 4 10.864

256 × 256 × 128 32 blocks 157.498 ± 0.022 (s) 24.587 ± 0.012 (s) 15.953 ± 0.009 (s) 17 6 9.873

Fig. 16 Performance comparison with varying workload on GPU

workload between GPU and CPU, and utilize the CPU and
GPU computational capability. We design an out-of-core
method to increase the scale of simulation on a single node.
And we propose two strategies to overlap the computation
with communication of CPU-GPU and CPU-CPU.

Besides, we have evaluated the performance of our par-
allel implementation of the solver. The results demon-
strate that high-order, structured Navier-Stokes solvers can
achieve significant performance improvements from the use
of GPUs. We observe about 8× speed up of one GPU im-

Fig. 17 Strong scalability presentation. The size of the computational
meshes are 512 × 512 × 256 and 512 × 512 × 512. The speedup is
relative to 8 nodes

plementation over the one CPU core counterpart. With the
work distribution, we observe 1.48×−1.61× speed up of
CUDA+OpenMP implementation over OpenMP counter-
part. By using out-of-core method, we can process the mesh
size as big as 256 × 256 × 128 on a single node. The strate-
gies to overlap the computation and communication allow
the multi nodes implementation to scale well. The paral-
lel efficiency gets 51.2–72.5 % during weak scaling analy-
sis and the observed speedups on 128 nodes are of 12.53×
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Fig. 18 Weak scalability presentation

compared to 8 nodes implementation during strong scaling
analysis.

In the future, we plan to exploit the usage of shared mem-
ory of GPU in solving high-order accurate schemes, and op-
timize it to improve the performance of the implementation
on GPU. We are also planning to design a dynamic load bal-
ancing strategy to achieve a better application performance
on heterogeneous parallel architecture.
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