
Cluster Comput (2014) 17:487–502
DOI 10.1007/s10586-013-0290-7

Cloud-hosted databases: technologies, challenges
and opportunities

Sherif Sakr

Received: 10 December 2012 / Accepted: 18 June 2013 / Published online: 13 July 2013
© Springer Science+Business Media New York 2013

Abstract One of the main advantages of the cloud comput-
ing paradigm is that it simplifies the time-consuming pro-
cesses of hardware provisioning, hardware purchasing and
software deployment. Currently, we are witnessing a pro-
liferation in the number of cloud-hosted applications with
a tremendous increase in the scale of the data generated
as well as being consumed by such applications. Cloud-
hosted database systems powering these applications form
a critical component in the software stack of these applica-
tions. To better understand the challenges in developing ef-
fective cloud-hosted database systems, this article discusses
the existing technologies for hosting the database tier of
software applications in cloud environments, illustrates their
strengths and weaknesses, and presents some opportunities
for future work.

Keywords Cloud · Databases · Consistency ·
Transactions · Replication

1 Introduction

Cloud computing technology represents a new paradigm for
hosting software applications. This paradigm simplifies the
time-consuming processes of hardware provisioning, hard-
ware purchasing and software deployment. Thus, it revolu-
tionized the way computational resources and services are
commercialized and delivered to customers. In particular, it
shifts the location of this infrastructure to the network to

S. Sakr (B)
National ICT Australia (NICTA) and School of Computer Science
and Engineering, University of New South Wales, Sydney,
Australia
e-mail: ssakr@cse.unsw.edu.au

reduce the costs associated with the management of hard-
ware and software resources. Therefore, it represents the
long-held dream of envisioning computing as a utility [4]
where the economy of scale principles help to effectively
drive down the cost of computing infrastructure. Hence,
cloud computing promises a number of advantages for the
deployment of software applications such as pay-per-use
cost model, low time to market, and the perception of (virtu-
ally) unlimited resources and infinite scalability. In practice,
the advantages of the cloud computing paradigm opens up
new avenues for deploying novel applications which were
not economically feasible in a traditional enterprise infras-
tructure setting. Therefore, the cloud has become an increas-
ingly popular platform for hosting software applications in a
variety of domains such as e-retail, finance, news and social
networking. Thus, we are witnessing a proliferation in the
number of applications with a tremendous increase in the
scale of the data generated as well as being consumed by
such applications. Cloud-hosted database systems powering
these applications form a critical component in the software
stack of these applications.

In general, data-intensive applications are classified into
two main classes: (1) On Line Transaction Processing
(OLTP) systems that deal with operational databases of sizes
of up to a few Terabytes with write-intensive workloads that
require ACID transactional support and response time guar-
antees. (2) On Line Analytical Processing (OLAP) systems
that deals with historical databases of very large sizes of
up to Petabytes with read-intensive workloads that are more
tolerant to relaxed ACID properties. In this article, we focus
on cloud-hosted database solutions for OLTP systems.

In principle, a successful cloud-hosted database tier of an
OLTP system should sustain a number of goals [21]:

mailto:ssakr@cse.unsw.edu.au


488 Cluster Comput (2014) 17:487–502

• Availability: They must be always accessible even on the
occasions of a network failure or when a whole datacenter
has gone offline.

• Scalability: They must be able to support very large
databases with very high request rates at very low latency.
In particular, the system must be able to automatically
replicate and redistribute data to take advantage of the
new hardware. They must be also able to automatically
move load between servers (replicas).

• Elasticity: They must cope with changing application
needs in both directions (scaling up/out or scaling down/
in). Moreover, the system must be able to gracefully re-
spond to these changing requirements and quickly recover
to its steady state.

• Performance: On public cloud computing platforms, pric-
ing is structured in a way such that one pays only for what
one uses, so the vendor price increases linearly with the
requisite storage, network bandwidth and compute power.
Hence, the system performance has a direct effect on its
costs. Thus, efficient system performance is a crucial re-
quirement to save money.

Arguably, one of the main goals of cloud-hosted database
system is to facilitate the job of implementing every ap-
plication as a distributed, scalable and widely-accessible
service on the Web. The Amazon online retailer, eBay,
Facebook, Twitter, Flickr, YouTube, and Linkedin are just
examples of online services which are currently able to suc-
cessfully achieve this goal. Such services have two main
characteristics of which they are: data-intensive and very
interactive. For example, the Facebook social network con-
tains 950 million users.1 Each user has an average of 130
friendship relations. Moreover, there are about 900 million
objects with which registered users interact such as: pages,
groups, events and community pages. Other smaller scale
social networks such as Linkedin which is mainly used for
professionals has more than 175 million registered users.
Therefore, it becomes an ultimate goal to make it easy for
every application to achieve such high scalability, availabil-
ity and performance goals with minimum effort.

The quest for conquering the challenges posed by host-
ing databases on cloud computing environments has led to
a plethora of systems and approaches. In practice, there
are three main technologies which are commonly used
for deploying the database tier of software applications in
cloud platforms, namely, the services of NoSQL storage sys-
tems, Database-as-a-service (DaaS) platforms and virtual-
ized database servers. This article aims to discuss the basic
characteristics and the recent advancements of each of these
technologies, illustrate the strengths and weaknesses of each
technology and presents some opportunities for future work

1http://www.facebook.com/press/info.php?statistics.

which are required to tackle existing research challenges and
bring forward the vision of deploying data-intensive appli-
cations on cloud platforms.

2 NoSQL database systems

For decades, relational database management systems (e.g.
MySQL, PostgreSQL, SQL Server, Oracle) have been con-
sidered as the one-size-fits-all solution for providing data
persistence and its retrieval for decades. In principle, these
systems have matured after extensive research and devel-
opment efforts and very successfully created a large mar-
ket of solutions in different business domains. However,
the ever increasing need for scalability and new applica-
tion requirements have created new challenges for tradi-
tional RDBMS. Therefore, recently, there has been some
dissatisfaction with this one-size-fits-all approach in deploy-
ing the data storage tier for large scale online web ser-
vices [48] which resulted in the emergence of a new genera-
tion of low-cost, high-performance database software that
challenges the dominance of relational database manage-
ment systems. A big reason for this movement, named as
NoSQL (Not Only SQL), is that different implementations
of Web, enterprise, and cloud computing applications that
have different set of desideratum in the requirements from
their data management tiers (e.g. not every application re-
quires rigid data consistency) have opened up various pos-
sibilities in the design space. For example, for high-volume
Web sites (e.g. eBay, Amazon, Twitter, Facebook), scala-
bility and high availability are essential requirements that
can not be compromised. For these applications, even the
slightest outage can have significant financial consequences
and impacts customer trust. The CAP theorem [12] have
shown that a distributed database system can only choose at
most two out of three properties: Consistency, Availability
and tolerance to Partitions. Therefore, most of these sys-
tems decide to compromise the strict consistency require-
ment. In particular, they apply a relaxed consistency policy
called eventual consistency [52] which guarantees that if no
new updates are made to a replicated object, eventually all
accesses will return the last updated value [52]. If no fail-
ures occur, the maximum size of the inconsistency window
can be determined based on factors such as communication
delays, the load on the system, and the number of replicas
involved in the replication scheme.

BigTable [18] (presented by Google) and Dynamo [27]
(presented by Amazon) have provided a proof of concept
that inspired and triggered the development of a new wave
of the NoSQL systems. In particular, BigTable has demon-
strated that persistent record storage could be scaled to thou-
sands of nodes while Dynamo has pioneered the idea of
eventual consistency as a way to achieve higher availability

http://www.facebook.com/press/info.php?statistics


Cluster Comput (2014) 17:487–502 489

Table 1 Design decisions of
sample NoSQL systems System Data model Consistency guarantee CAP options License

BigTable Column Families Eventually Consistent CP Internal at Google

PNUTS Key-Value Store Timeline Consistent AP Internal at Yahoo!

Dynamo Key-Value Store Eventually Consistent AP Internal at Amazon

S3 Document Store Eventually Consistent AP Commercialized by Amazon

SimpleDB Key-Value Store Eventually Consistent AP Commercialized by Amazon

HBase Column Families Strictly Consistent CP Open source–Apache

Cassandra Column Families Eventually Consistent AP Open source–Apache

MongoDB Document Store Eventually Consistent AP Open source–GPL

and scalability. In principle, the implementations of NoSQL
systems have a number of common design features such as:

• Supporting flexible data models with the ability to dynam-
ically define new attributes or data schema.

• A simple call level interface or protocol (in contrast to a
SQL binding) which does not support join operations.

• Supporting weaker consistency models than the ACID
transactions in most traditional RDBMS. These mod-
els are usually referred to as BASE models (Basically
Available, Soft state, Eventually consistent) [41].

• The ability to horizontally scale out throughput over many
servers.

• Efficient use of distributed indexes and RAM for data
storage.

Commercial cloud offerings of this approach include Ama-
zon S3,2 Amazon SimpleDB3 and Microsoft Azure Table
Storage.4 In addition, there is a large number of open source
projects that have been introduced which follow the same
principles of NoSQL systems [14] such as HBase,5 Cas-
sandra,6 Voldemort,7 Dynomite,8 Riak9 and MongoDB.10 In
general, these NoSQL systems can be classified with respect
to different characteristics. For example, based on their sup-
ported data model, they can be classified into the following
categories:

• Key-value stores: These systems use the simplest data
model which is a collection of objects where each object
has a unique key and a set of attribute/value pairs.

2http://aws.amazon.com/s3/.
3http://aws.amazon.com/simpledb/.
4http://msdn.microsoft.com/en-us/library/windowsazure/dd179423.
aspx.
5http://hbase.apache.org/.
6http://cassandra.apache.org/.
7http://project-voldemort.com/.
8http://wiki.github.com/cliffmoon/dynomite/dynomite-framework.
9http://wiki.basho.com/display/RIAK/Riak.
10http://www.mongodb.org/.

• Extensible record stores: They provide variable-width ta-
bles (Column Families) that can be partitioned vertically
and horizontally across multiple servers.

• Document stores: The data model of these systems con-
sists of objects with a variable number of attributes with
a possibility of having nested objects.

In addition, the systems can be classified based on their sup-
port of the properties of the CAP theorem into three cate-
gories:

• CA systems: Consistent and highly available, but not
partition-tolerant.

• CP systems: Consistent and partition-tolerant, but not
highly available.

• AP systems: Highly available and partition-tolerant, but
not consistent.

In practice, choosing the adequate NoSQL system (from the
very wide available spectrum of choices) with design deci-
sions that best fit with the requirements of a software appli-
cation is not a trivial task and requires a careful considera-
tion. Table 1 provides an overview of different design deci-
sion for sample NoSQL systems. For comprehensive survey
of the NoSQL system and their design decisions, we refer
the reader to [14, 44].

In general, the capabilities of the NoSQL systems have
attracted a lot of attractions. However, there are many obsta-
cles still need to overcome before theses systems can appeal
to mainstream enterprises such as:

• Programming Model: NoSQL databases offer few facili-
ties for ad-hoc query and analysis. Even a simple query
requires significant programming expertise. The inabil-
ity of such systems to declaratively express the important
join operation has been always considered one of the main
limitations of these systems.

• Transaction Support: Transaction management is one of
the powerful features of RDBMS. The current limited
support (if any) of the transaction notion from NoSQL
database systems is considered as a big obstacle towards
their acceptance in implementing mission critical sys-
tems. In principle, developing applications on top of an

http://aws.amazon.com/s3/
http://aws.amazon.com/simpledb/
http://msdn.microsoft.com/en-us/library/windowsazure/dd179423.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/dd179423.aspx
http://hbase.apache.org/
http://cassandra.apache.org/
http://project-voldemort.com/
http://wiki.github.com/cliffmoon/dynomite/dynomite-framework
http://wiki.basho.com/display/RIAK/Riak
http://www.mongodb.org/


490 Cluster Comput (2014) 17:487–502

eventually consistent NoSQL datastore requires a higher
effort compared to traditional databases because they hin-
der the ability to support key features such as data inde-
pendence, reliable transactions, and other crucial charac-
teristics often required by applications that are fundamen-
tal to the database industry [53].

• Migration: Migrating existing software application that
uses relational database to NoSQL offerings would re-
quire substantial changes in the software code due to the
differences in the data model, query interface and trans-
action management support. In practice, it might require
a complete re-write of the source code which requires any
interaction with the data management tier of the software
application.

• Maturity: RDBMS systems are well-know of their high
stability and rich functionalities. In comparison, most
NoSQL alternatives are still pre-production versions with
many key features being either not stable enough or yet to
be implemented. Therefore, enterprises are still approach-
ing this new wave of data management with extreme cau-
tion.

Therefore, there is still a big debate between the pro-
ponents of the NoSQL and RDBMS camps which is cen-
tered around the right choice for implementing online trans-
action processing systems. RDBMS proponents think that
the NoSQL camp has not spent sufficient time to under-
stand the theoretical foundation of the transaction process-
ing model. For example, the eventual consistency model is
still not well-defined and different implementations may dif-
fer significantly with each other. This means figuring out all
these inconsistent behavior lands on the application devel-
oper’s responsibilities and make their life very much harder.
In addition, they believe that NoSQL systems could be more
suitable for OLAP applications rather than for OLTP appli-
cations [1]. On the other hand, the NoSQL camp argues that
the domain-specific optimization opportunities of NoSQL
systems give back more flexibility to the application devel-
opers who now no longer constrained by a one-size-fits-all
model. However, they admit that making such optimization
decision requires a lot of experience and can be very error-
prone and dangerous if not done by experts.

3 Database-as-a-Service (DaaS)

Data centers are often under-utilized due to over-provision-
ing as well as time-varying resource demands of typical en-
terprise applications. Multi-tenancy, a technique which is
pioneered by salesforce.com,11 is an optimization mecha-
nism for hosted services in which multiple customers are

11http://www.salesforce.com/.

consolidated onto the same operational system and thus the
economy of scale principles help to effectively drive down
the cost of computing infrastructure. In particular, multi-
tenancy allows pooling of resources which improves uti-
lization by eliminating the need to provision each tenant for
their maximum load. Therefore, multi-tenancy is an attrac-
tive mechanism for both of the cloud providers who are able
to serve more customers with a smaller set of machines, and
also to customers of cloud services who do not need to pay
the price of renting the full capacity of a server.

In practice, there are three main approaches for the im-
plementation of multi-tenant database systems [32]:

1. Shared Server: where each tenant is offered a separate
database in the same database server.

2. Shared Process: where each tenant is offered its own ta-
bles while multiple tenants can share the same database.

3. Shared Table: where the data of all tenants is stored in
the same tables and each tuple has an additional column
with the tenant identifier.

Database-as-a-Service is a technology where a third party
service provider hosts a relational database as a service [2].
Such services alleviate the need for their users to purchase
expensive hardware and software, deal with software up-
grades and hire professionals for administrative and mainte-
nance tasks. Cloud offerings of this approach include Ama-
zon RDS,12 Microsoft SQL Azure,13 Google Cloud SQL14

and Heroku Postgres.15 Research efforts include the Rela-
tional Cloud project.16 While the shared table multi-tenancy
model can be used by SaaS providers (e.g. Salesforce.com)
because all tenants share the same database structure for
their application, the shared server multi-tenancy model
is the most commonly used by most commercial DaaS
providers as it is considered to be the most effective ap-
proach to secure the isolation of each tenant’s data and allo-
cated computing resources.

Amazon RDS is an example of a relational database ser-
vice which gives its users the access to the full capabilities
of a familiar MySQL database or Oracle. Hence, the code,
applications, and tools which are already designed on exist-
ing MySQL or Oracle databases can work seamlessly with
Amazon RDS. Once the database instance is running, Ama-
zon RDS can automate common administrative tasks such
as performing backups or patching the database software.
Amazon RDS can also manages automatic failover man-
agement. Google Cloud SQL is another service that pro-
vide the capabilities and functionality of MySQL database

12http://aws.amazon.com/rds/.
13http://www.microsoft.com/windowsazure/sqlazure/.
14https://developers.google.com/cloud-sql/.
15https://postgres.heroku.com/.
16http://relationalcloud.com/.

http://www.salesforce.com/
http://aws.amazon.com/rds/
http://www.microsoft.com/windowsazure/sqlazure/
https://developers.google.com/cloud-sql/
https://postgres.heroku.com/
http://relationalcloud.com/


Cluster Comput (2014) 17:487–502 491

servers which are hosted in Google’s cloud. Although there
is tight integration of the services with Google App Engine
(Google’s Platform-as-a-Service software development en-
vironment), in contrast to the original built-in data store of
Google App Engine, Google Cloud SQL allows the soft-
ware applications to easily move their data in and out of
Google’s cloud without any obstacles. Microsoft has re-
leased the Microsoft SQL Azure Database system as a cloud-
based relational database service which has been built on
Microsoft SQL Server technologies. It provides a highly
available, multi-tenant database service hosted by Microsoft
in the cloud. Therefore, applications can create, access and
manipulate tables, views, indexes, roles, stored procedures,
triggers, and functions. It can execute complex queries and
joins across multiple tables. It also supports Transact-SQL
(T-SQL), native ODBC and ADO.NET data access. In par-
ticular, SQL Azure service can be seen as running an in-
stance of SQL server in a cloud hosted server which is au-
tomatically managed by Microsoft instead of running on-
premise managed server. Similarly, Heroku Postgres pro-
vides a web service which provides the functionalities of the
SQL-compliant database, PostgreSQL.

Relational Cloud [24] represents a research effort for de-
veloping a system that hosts multiple databases on a pool of
commodity servers inside one data center. In order to allow
workloads to scale across multiple servers, the system re-
lies on a graph-based data partitioning algorithm that groups
data items according to their frequency of co-access within
transactions/queries. The main goal of this partitioning pro-
cess is to minimize the probability that a given transaction
has to access multiple nodes to complete its execution. In ad-
dition, in order to effectively manage and allocate the avail-
able computing resources to the different tenants, the system
monitors the access patterns induced by the tenants’ work-
loads and the load of each database server, and uses this in-
formation to periodically determine the best way to place
the database partitions on the back-end machines. The goal
of this monitoring process is to minimize the number of used
machines and balance the load on the different servers.

In practice, the migration of the database tier of any soft-
ware application to a relational database service is expected
to require minimal effort if the underlying RDBMS of the
existing software application is compatible with the of-
fered service. This helps the software applications to achieve
faster time-to-market because they can quickly host the
database tier of their application in cloud platforms, and
utilize their features and advantages. However, many rela-
tional database systems are, as yet, not supported by the
DaaS paradigm (e.g. IBM DB2, Informix, Sybase). In ad-
dition, some limitations or restrictions might be introduced
by the service provider for different reasons17 (e.g. the max-

17http://msdn.microsoft.com/en-us/library/windowsazure/ee336245.
aspx.

imum size of the hosted database, the maximum number of
possible concurrent connections). Moreover, software ap-
plications do not have sufficient flexibility in being able
to control the allocated resources of their applications (e.g.
dynamically allocating more resources for dealing with in-
creasing workload or dynamically reducing the allocated re-
sources in order to reduce the operational cost). The whole
resource management and allocation process is controlled at
the provider side which require an accurate planning for the
allocated computing resources for the database tier and lim-
its the ability of the consumer applications to maximize their
benefits by leveraging the elasticity and scalability features
of the cloud environment.

4 Virtualized database servers

Virtualization is a key technology of the cloud computing
paradigm that abstracts away the details of physical hard-
ware and provides virtualized resources for high-level ap-
plications. A virtualized server is commonly called a vir-
tual machine (VM). VMs allow both the isolation of appli-
cations from the underlying hardware and other VMs. Ide-
ally, each VM is both unaware and unaffected by other VMs
which could be operating on the same physical machine. In
principle, resource virtualization technologies add a flexible
and programmable layer of software between applications
and the resources used by these applications. The approach
of virtualized database server makes use of these advan-
tages where an existing database tier of a software appli-
cation that has been designed to be used in a conventional
data center can be directly ported to virtual machines in
the public cloud. Such migration process usually requires
minimal changes in the architecture or the code of the de-
ployed application. In this approach, database servers, like
any other software components, are migrated to run in vir-
tual machines. While the provisioning of a virtual machine
for each database replica imposes a performance overhead,
this overhead is estimated to be of less than 10 % [39].
In principle, this approach represents a different model of
multi-tenancy, shared physical machine, where a VM of a
virtualized database server can be running on the same phys-
ical machine with other VMs which are not necessarily to be
running database operations.

Dynamic provisioning is a well-known process of in-
creasing or decreasing the allocated computing resources
(e.g. number of virtualized database servers) to an applica-
tion in response to workload changes. In practice, one of
the major advantages of the virtualized database server ap-
proach is that the application can have full control in dy-
namically allocating and configuring the physical resources
of the database tier (database servers) as needed [16, 42, 46].
Hence, software applications can fully utilize the elasticity

http://msdn.microsoft.com/en-us/library/windowsazure/ee336245.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/ee336245.aspx


492 Cluster Comput (2014) 17:487–502

feature of the cloud environment to achieve their defined
and customized scalability or cost reduction goals. However,
achieving these goals requires the existence of an admission
control component which is responsible for monitoring the
system state and taking the corresponding actions (e.g. allo-
cating more/less computing resources) according to the de-
fined application requirements and strategies. Therefore, one
of the main responsibilities of this admission control com-
ponent is on deciding when to trigger an increase or decrease
in the number of the virtualized database servers which are
allocated to the software application.

In general, the decision of when to an increase or de-
crease in the allocated computed resources is made in a
lazy fashion for the web and the application tiers of the
software application, in response to an actual or anticipated
significant workload change. Such lazy triggers are appro-
priate for these tiers since that new capacity can be added
relatively in a quick manner and whenever required as the
only incurred latency is for virtual machine startup. How-
ever, provisioning of a new database replica involves copy-
ing and restoring a new replica which can take minutes or
hours depending on the database size. Therefore, the Dolly
system [16] has presented an approach that takes the la-
tency of provisioning a new database replicas into account
when triggering eager provisioning decisions. In particular,
Dolly incorporates a model to estimate the latency to cre-
ate a replica, based on the virtual machine snapshot size and
the database re-synchronization latency, and uses this model
to trigger the replica spawning process well in advance of
the anticipated workload increase. The CloudDB AutoAdmin
framework [42] has presented another approach for SLA-
based dynamic provisioning of the database tier of the soft-
ware applications based on application-defined policies for
satisfying their own SLA requirements. In this framework,
the SLA of the consumer applications are declaratively de-
fined in terms of rules that define goals which are subjected
to a number of constraints that are specific to the appli-
cation requirements. The framework continuously monitors
the application-defined SLA and automatically triggers the
execution of necessary provisioning actions when the con-
ditions of the rules are met. Hence, the software applica-
tions has more flexibility in defining their own lazy or ea-
ger provisioning rules. Soror et al. [46] presented a virtu-
alization design advisor which uses information about the
anticipated workloads to automatically determine an appro-
priate configuration for the virtual machine in which it runs
so that it can avoid allocating resources to DBMS instances
of which little benefit will be obtained. The advisor relies on
cost models that can predict the workload performance un-
der different resource allocations. For example, the advisor
can distinguish CPU intensive workloads from I/O intensive
workloads and allocate more CPU to the former case.

5 Challenges and opportunities

Cloud-hosted database systems represent critical compo-
nents of the cloud computing services and infrastructure.
They play an important role in ensuring the smooth deploy-
ment or migration of software applications from the tradi-
tional enterprise infrastructures and on-premise data centers
to the new cloud platforms and infrastructures. In this sec-
tion, we shed the lights on a set of novel research challenges,
that have been introduced by the cloud computing paradigm
that need to be addressed in order to ensure that the vision
of designing and implementing successful management so-
lutions in the cloud environment can be achieved.

5.1 True elasticity

Cloud computing is by its nature a fast changing environ-
ment which is designed to provide services to unpredictably
diverse sets of clients and heterogenous workloads. For ex-
ample, a common characteristic of internet scale applica-
tions and services is that they can be used by large num-
bers of end-users and highly variable load spikes in the de-
mand for services can occur depending on the day and the
time of year, and the popularity of the application. In ad-
dition, the workload characteristic could vary significantly
from one application type to another where possible fluc-
tuations on the workload characteristics which could be of
several orders of magnitude on the same business day may
also occur [11].

In principle, elasticity is one of the most important fea-
tures which is provided by cloud computing platforms. In
general, cloud platforms support on-demand allocation of
servers and employ a pay-as-you-go service model. These
features are attractive from the perspective of the cus-
tomers of cloud services, since servers can be requested
only when a workload spike arrives or is anticipated, and
charging is based only on the duration of the workload
surge [49]. Therefore, to unleash the power of the cloud
computing paradigm, cloud database systems should be able
to transparently manage and utilize the elastic computing
resources to deals with fluctuating workloads. In particu-
lar, they should allow users to add and remove computing
resources as necessary. For example, to deal with increas-
ing workloads, software applications can simply add more
resources (e.g. database replicas or database servers) and
when the workload is decreasing, software applications can
release some resources back to the cloud provider in order
to lower the monetary cost [43].

In practice, both of the commercial NoSQL cloud offer-
ings (e.g. Amazon SimpleDB) and commercial DaaS of-
ferings (e.g. Amazon RDS, Microsoft SQL Azure) do not
provide their users any flexibility to dynamically increase
or decrease the allocated computing resources of their ap-
plications. While NoSQL offerings claim to provide elastic



Cluster Comput (2014) 17:487–502 493

services of their tenants, they do not provide any guarantee
that their provider-side elasticity management will provide
scalable performance with increasing workloads [7]. More-
over, commercial DaaS pricing models require their users
to pre-determine the computing capacity that will be allo-
cated to their database instance as they provide standard
packages of computing resources (e.g. Micro, Small, Large
and Extra Large DB Instances). In practice, predicting the
workload behavior (e.g. arrival pattern, I/O behavior, ser-
vice time distribution) and consequently accurate planning
of the computing resource requirements with consideration
of their monetary costs are very challenging tasks. There-
fore, the user might still tend to over-provision the allocated
computing resources for the database tier of their application
in order to ensure satisfactory performance for their work-
loads. As a result of this, the software application is unable
to fully utilize the elastic feature of the cloud environment.
The approach of virtualized database server provides soft-
ware applications with more flexibility and control on be-
ing able to dynamically allocate and configure the physical
resources of the database tier (database servers). However,
this requires implementing an admission control component
which is responsible for executing the application logic of
its elasticity mechanism (see Sect. 4).

Xiong et al. [54] have presented an provider-centric ap-
proach for intelligently managing the computing resources
in a shared multi-tenant database system at the virtual ma-
chine level. The proposed approach consists of two main
components: (1) The system modeling module that uses ma-
chine learning techniques to learn a model that describes the
potential profit margins for each tenant under different re-
source allocations. The learned model considers many fac-
tors of the environment such as SLA cost, client workload,
infrastructure cost and action cost. (2) The resource alloca-
tion decision module dynamically adjusts the resource allo-
cations, based on the information of the learned model, of
the different tenants in order to achieve the optimum prof-
its. Tatemura et al. [51] proposed a declarative approach for
achieving elastic OLTP workloads. The approach is based
on defining of two main components: (1) The transaction
classes required for the application. (2) The actual workload
with references to the transaction classes. Using this infor-
mation, a formal model can be defined to analyze elasticity
of the workload with transaction classes specified. The ap-
proach of [42] is more consumer-centric as it enables the
software applications to declaratively define their scaling in
and out rules according to specific application requirements
and policies.

In general, we believe that there is a lack of flexible and
powerful consumer-centric elasticity mechanisms that en-
able software application to have more control on allocating
the computing resources for the database tier of their appli-
cations over the application running time and make the best

use of the elasticity feature of the cloud computing environ-
ments. More attention should be given to these issues in the
future work from the research community.

5.2 Data replication and consistency management

Data replication is a well-known strategy to achieve the
availability, scalability and performance improvement goals
in the data management world. In general, stateless ser-
vices are easy to scale in the cloud since any new replicas
of these services can operate completely independently of
other instances. In contrast, scaling stateful services, such
as a database system, needs to guarantee a consistent view
of the system for users of the service. However, the cost
of maintaining several database replicas that are always
strongly consistent is very high. As we have previously de-
scribed, according to the CAP theorem, most of the cloud
data management solutions overcome the difficulties of dis-
tributed replication by relaxing the consistency guarantees
of the system and supporting various forms of weaker con-
sistency models (e.g. eventual consistency [52]). In practice,
a common feature of the NoSQL and DaaS cloud offerings is
the creation and management of multiple replicas (usually 3)
of the stored data while a replication architecture is running
behind-the-scenes to enable automatic failover management
and ensure high availability of the service. In general, repli-
cating for performance differs significantly from replicating
for availability or fault tolerance. The distinction between
the two situations is mainly reflected by the higher degree
of replication, and as a consequence the need for supporting
weak consistency when scalability is the motivating factor
for replication [15].

Zhao et al. [55] have conducted an experimental evalua-
tion of the performance characteristics of database replica-
tion of virtualized database servers on cloud environments
where different database replicas can be hosted on differ-
ent data centers with different geographic locations. The re-
sults of the study show that the performance variation of the
dynamically allocated virtual machines is an inevitable is-
sue that needs to be considered when deploying database in
the cloud. Different configurations of geographic locations
can noticeably affect the end-to-end throughput as well. As
the application workload increases, the replication delay in-
creases. However, as the number of database replicas in-
creases, the replication delay decreases. The replication de-
lay showed to be more affected by the workload increase
than the configurations of the geographic location of the
database replicas.

Kraska et al. [34] have described a dynamic consistency
strategy, called Consistency Rationing, to reduce the consis-
tency requirements when possible and raise them when it
matters. The adaptation is driven by a cost model and dif-
ferent strategies that dictate how the system should behave.



494 Cluster Comput (2014) 17:487–502

In particular, they divide the data items into three categories
(A,B,C) and treat each category differently depending on
the consistency level provided. The A category represents
data items for which we need to ensure strong consistency
guarantees as any consistency violation would result in large
penalty costs, the C category represents data items that can
be treated using session consistency as temporary inconsis-
tency is acceptable while the B category comprises all the
data items where the consistency requirements vary over
time depending on the actual availability of an item. There-
fore, the data of this category is handled with either strong or
session consistency depending on a statistical-based policy
for decision making. Keeton et al. [20] have proposed a simi-
lar approach in a system called LazyBase that allows users to
trade off query performance and result freshness. LazyBase
breaks up metadata processing into a pipeline of ingestion,
transformation, and query stages which can be parallelized
to improve performance and efficiency. By breaking up the
processing, LazyBase can independently determine how to
schedule each stage for a given set of metadata, thus pro-
viding more flexibility than existing monolithic solutions.
LazyBase uses models of transformation and query perfor-
mance to determine how to schedule transformation opera-
tions to meet users’ freshness and performance goals and to
utilize resources efficiently. Zhao et al. [56, 57] introduced
an adaptive framework for asynchronous database replica-
tion that enables keeping several replicas of the database, on
virtualized database servers, in different data centers (with
potentially different geographic locations) and provides the
software applications with flexible mechanisms for speci-
fying different levels of service level agreements (SLA) of
data freshness for the database replicas. In particular, the
framework allows specifying an SLA of data freshness for
each database replica and continuously monitor the repli-
cation delay of each replica so that once a replica violates
its defined SLA, the framework automatically injects new
replica at the closest geographic location in order to balance
the workload and re-satisfy the defined SLA.

In general, data replication across different data centers is
expensive. Synchronous wide-area replication mechanisms
are considered to be unfeasible to achieve strong consistency
requirements. Therefore, many solutions either rely on asyn-
chronous replication mechanism and weaker consistency
guarantees. PNUTS (Yahoo’s NoSQL data store) [22] was
one of the earliest systems to natively support geographic
replication using asynchronous replication mechanism and
publish/subscribe message exchange protocol. It uses a per-
record selective replication mechanism by designating one
copy of a record as the master and directing all updates of
the record to its master copy. In this record-level mastering
mechanism, mastership is assigned on a record-by-record
basis, and different records in the same table can be mastered
in different clusters. Each record maintains a metadata field

that stores the identity of the current master. When a replica
receives an update request, it first reads the record to deter-
mine if it is the master, and if not, to which replica to for-
ward the request to. The mastership of a record can migrate
between replicas according to its access pattern. All updates
are propagated to non-master replicas by publishing them
to the message broker and once the update is published, the
system treats the transaction as committed. A master pub-
lishes its updates to a single broker, and thus updates are
delivered to replicas in commit order. Lloyd et al. [38] pre-
sented the design and implementation of COPS (Clusters
of Order-Preserving Servers), a key-value store that deliv-
ers a causal+ consistency guarantee [8] across the wide-
area. A key contribution of COPS is its scalability, which
can enforce causal dependencies between keys stored across
an entire cluster, rather than a single server. The central ap-
proach in COPS is tracking and explicitly checking whether
causal dependencies between keys are satisfied in the local
cluster before exposing writes. Walter [47] is another geo-
replicated key-value store that supports transactions and en-
sures an isolation property called Parallel Snapshot Isola-
tion (PSI) that provides a balance between consistency and
latency. With PSI, hosts within a site observe transactions
according to a consistent snapshot and a common ordering
of transactions. Across sites, PSI enforces only causal or-
dering, not a global ordering of transactions, allowing the
system to replicate transactions asynchronously across sites.
Walter uses multi-version concurrency control within each
site, and it can quickly commit transactions that write ob-
jects at their preferred sites. For other transactions, Walter
resorts to two-phase commit to check for conflicts.

Google Megastore [5] has been presented as a scalable
and highly available datastore which is designed to meet the
storage requirements of large scale interactive Internet ser-
vices. It relies on the Paxos protocol [17], a proven optimal
fault-tolerant consensus algorithm with no requirement for
a distinguished master, for achieving synchronous wide area
replication. Megastore’s replication mechanism provides a
single, consistent view of the data stored in its underlying
database replicas. Megastore replication semantics is done
on entity group basis, a priori grouping of data for fast oper-
ations, basis by synchronously replicating the group’s trans-
action log to a quorum of replicas. In particular, it uses a
write-ahead log replication mechanism over a group of sym-
metric peers where any node can initiate reads and writes.
Each log append blocks on acknowledgments from a ma-
jority of replicas, and replicas in the minority catch up as
they are able. Kraska et al. [35] have proposed the MDCC
(Multi-Data Center Consistency) commit protocol for pro-
viding strongly consistent guarantees at a cost comparable to
eventually consistent protocols. In particular, in contrast to
transactional consistency two-phase commit protocol (2PC),
MDCC is designed to commit transactions in a single round-
trip across data centers in the normal operational case. It also



Cluster Comput (2014) 17:487–502 495

does not require a master node so that apply reads or updates
from any node in any data center by ensuring that every
commit has been received by a quorum of replicas. It does
not also impose any database partitioning requirements. The
MDCC commit protocol can be combined with different
read guarantees where the default configuration is to guar-
antee read committed consistency without lost updates. In
principle, we believe that the problem of data replication
and consistency management across different data centers in
the cloud environment has, thus far, not attracted sufficient
attention from the research community, and it represents a
rich direction of future research and investigation.

5.3 Live migration

In general, live migration is an important component of the
emerging cloud computing paradigm. It provides extreme
versatility for management of cloud resources by allow-
ing applications to be transparently moved across physical
machines with a consistent state. In particular, the advan-
tages of live migration techniques are manifold. For exam-
ple, it can be used to improve compliance with tenant’s SLA
by migrating the tenant with excessive workload to a less
loaded server. Thus, it is a main tool for achieving elasticity
and dynamic provisioning. It is also used to ensure availabil-
ity by migrating tenants to other servers when the host server
is planned to go down for maintenance. Moreover, it can be
used to consolidate multiple tenants onto a relatively idle
server which alleviate the need of extra servers that can be
shut down and thus reduce the operating costs. On the other
side, live migration is a resource-intensive operation and can
come at a price of degraded service performance during mi-
gration due the overhead caused by the extra CPU cycles
which are consumed on both of the source and the desti-
nation servers in addition to the extra amount of network
bandwidth which is consumed for the transmission process.

In general, the performance of a migration process is of-
ten measured by two main metrics:

1. The down time metric which represents the duration
when the application is completely stopped and its ap-
plication’s service is entirely unavailable.

2. The migration time which represents the total time for all
the involved migration process.

In practice, there is always a non-trivial trade-off between
minimizing the total duration of the migration process and
maintaining an acceptable quality of service during the mi-
gration process. In principle, there are two main techniques
for database migration [29]:

1. The Stop and Copy technique represents the simplest
form of migration where the system stops serving up-
dates for the database, takes a snapshot of the database
to be moved, moving and loading the data onto the new

server, and finally restarting the service operations at the
destination. This technique incurs a long service inter-
ruption and down time where the length of this period is
proportional to the database size. However, it has a main
advantage of simplicity and efficiency in terms of mini-
mizing the amount of data transferred and the total mi-
gration time no data transfer overhead is involved in this
approach.

2. The Iterative State Replication that uses an iterative ap-
proach where the checkpoint is created and iteratively
copied. The source checkpoints the tenant’s database
and starts migrating the checkpoint to the destination,
while it continues serving requests. While the destina-
tion loads the checkpoint, the source maintains the dif-
ferential changes which are iteratively copied until the
amount of change to be transferred is small enough or a
maximum iteration count is reached. At this point, a final
stop and copy is performed. Clearly, this technique in-
curs a small down time. However, it requires higher con-
sumption of the computing resources due to the overhead
incurs during the longer total migration time.

Zephyr [29] is a technique that have been proposed to
efficiently migrate a live database in a shared nothing trans-
actional database architecture. It minimizes the down time
for the database being migrated by introducing a synchro-
nized dual mode that allows both the source and destination
to simultaneously execute transactions. The migration pro-
cess starts with the transfer of the tenant’s metadata to the
destination which can then start serving new transactions
while the source completes the transactions that were active
when migration started. During this time, a methodology of
on-demand pull and asynchronous push of data is followed
where the source node, initially, owns the read/write access
to all pages at the start and the destination nodes acquire
the read/write page ownership on-demand as transactions at
the destination access those pages. In addition, lightweight
synchronization between the source and the destination to
guarantees the serializability of transaction execution. Once
the source node completes execution of all active transac-
tions, migration completes with the ownership transfer of
all database pages owned by the source to the destination
node. Therefore, Zephyr can guarantee no service unavail-
ability and few or no aborted transactions. A very similar
approach to Zephyr, called Albatross [26], has been also
proposed which is more focused on a shared process mul-
titenant database environment where the persistent database
image is stored in a network attached storage. Since the stor-
age is shared, Albatross is more focused on optimizing the
migration process by copying the cache during migration
such that the destination starts with a warm cache and thus
it can minimize any impact on transaction latency after mi-
gration.



496 Cluster Comput (2014) 17:487–502

Slacker [6] is another migration technique that leverages
the off-the-shelf hot backup tools to achieve live migration
with effectively nearly zero down-time in a shared process
multi-tenancy environment. It tries to minimize the perfor-
mance impact of the migration process on both the migrat-
ing tenant and collocated tenants, on the source and des-
tination servers, by leveraging migration slack, resources
that can be used for migration without excessively impact-
ing performance latency. In particular, the migration pro-
cess in Slacker is performed in three main steps: (1) The
initial snapshot transferring step where Slacker streams the
snapshot generated by off-the-shelf backup tool to the target
server while the source continues to service queries. (2) The
delta updating step which applies several rounds of deltas
migration from the source node to the target node in order to
bring the target node to the up-to-date at point of the source
node. (3) The handover step which is executed once deltas
between the source and destination are sufficiently small
by performing a freeze-and-handover process in which the
source is frozen, the final delta is copied, and the target be-
comes the new authoritative tenant. In general, the migration
process adds an extra overhead on both of the source and tar-
get servers. Since the majority of the resource cost in migra-
tion is from reading, writing, or sending a large amount of
data, Slacker control the effect of the migration process by
controlling the upper bound rate of data transfer to the point
at which performance latency steadily increases indicating
that the database is overloaded and cannot maintain both its
workloads and migrations. To achieve this goal, it applies
a PID (Proportional-Integral-Derivative) controlling mech-
anism that allows the ability to automatically detect and ex-
ploit the available migration slack of computing resources in
real time according to the dynamics of the executed work-
loads on both of the source and destination servers.

The Dolly [16] system has introduced a live migra-
tion technique for virtualized database servers where each
database replica runs in a separate virtual machine. To cre-
ate a new replica, Dolly clones the entire virtual machine
of an existing replica, including the operating environment,
the database engine with all its configuration, settings and
the database itself. The cloned virtual machine is started
on a new physical server, resulting in a new replica, which
then synchronizes state with other replicas prior to process-
ing application requests. In general, creating a new database
replica is a time consuming process which increases pro-
portionally with the size of the replicated database. In order
to tackle this challenge, Dolly incorporates a model to esti-
mate the latency to create a new database replica based on
the snapshot size of the virtual machine and the database re-
synchronization latency and uses this model to trigger the
replication process well in advance of its necessity to occur
according to the anticipated workload increase.

In principle, live migration of databases in a timely fash-
ion is a challenging task. In addition, there is a tradeoff be-
tween the migration time, the size of the database and the
amount of update transactions in the workload which are ex-
ecuted during the migration process. Although various tech-
niques have been proposed to tackle the challenge of how
to migrate, very little attention from the proposed database
migration mechanisms has been given to other important
aspects such as when to migrate. In addition, in a multi-
tenancy environment, the challenges of deciding which ten-
ant to migrate and where (to which server) this tenant should
be migrated to remain open issues for further investigation
and careful consideration. Curino et al. [24] have outlined
different strategies that can be used to improve the perfor-
mance of live migration process such as: making use of
database partitioning where the data to be moved into a num-
ber of small partitions and incrementally migrating these
smaller partitions, exploiting existing replicas to serve read-
only queries during migration and prefetching of data to
prepare warm stand-by copies. These issues also represent
a rich direction of future research and investigation. More-
over, the problem of database live migration across differ-
ent data centers, which is naturally a very expensive pro-
cess, represents another very challenging aspect that have
not been well addressed yet by the research community and
is widely open for novel solutions and optimization mecha-
nisms.

5.4 SLA management

An SLA is a contract between a service provider and its cus-
tomers. Service Level Agreements (SLAs) capture the agreed
upon guarantees between a service provider and its cus-
tomer. They define the characteristics of the provided ser-
vice including service level objectives (SLOs) (e.g. maxi-
mum response times) and define penalties if these objectives
are not met by the service provider. In practice, flexible and
reliable management of SLA agreements is of paramount
importance for both of cloud service providers and con-
sumers. For example, Amazon found that every 100 ms of
latency costs them 1 % in sales and Google found that an
extra 500 ms in search page generation time dropped traf-
fic by 20 %. In addition, large enterprise web applications
(e.g., eBay and Facebook) need to provide high assurances
in terms of SLA metrics such as response times and service
availability to their users. Without such assurances, service
providers of these applications stand to lose their user base,
and hence their revenues.

In general, SLA management is a common general prob-
lem for the different types of software systems which are
hosted in cloud environments for different reasons such as
the unpredictable and bursty workloads from various users
in addition to the performance variability in the underlying



Cluster Comput (2014) 17:487–502 497

cloud resources [23, 45]. In practice, resource management
and SLA guarantee falls into two layers: the cloud service
providers and the cloud consumers (users of cloud services).
In particular, the cloud service provider is responsible for
the efficient utilization of the physical resources and guaran-
tee their availability for their customers (cloud consumers).
The cloud consumers are responsible for the efficient uti-
lization of their allocated resources in order to satisfy the
SLA of their customers (application end users) and achieve
their business goals. The state-of-the-art cloud databases do
not allow the specification of SLA metrics at the application
nor at the end-user level. In practice, cloud service providers
guarantee only the availability (uptime guarantees), but not
the performance, of their services [4, 7, 28]. In addition,
sometimes the granularity of the uptime guarantees is also
weak. For example, the uptime guarantees of Amazon EC2
is on a per data center basis where a data center is consid-
ered to be unavailable if a customer can not access any of
its instances or can not launch replacement instances for a
contiguous interval of five minutes. In practice, traditional
cloud monitoring technologies (e.g. Amazon CloudWatch)
focus on low-level computing resources (e.g. CPU speed,
CPU utilization, I/O disk speed). In general, translating the
SLO of software application to the thresholds of utilization
for low-level computing resources is a very challenging task
and is usually done in an ad-hoc manner due to the complex-
ity and dynamism inherent in the interaction between the
different tiers and components of the system. Furthermore,
cloud service providers do not automatically detect SLA vi-
olation and leave the burden of providing the violation proof
on the customer [7].

In the multi-tenancy environment of DaaS, it is an impor-
tant goal for DaaS providers to promise high performance
to their tenants. However, this goal normally conflicts with
another goal of minimizing the overall running servers and
thus operating costs by tenant consolidation. In general, in-
creasing the degree of multi-tenancy (number of tenants per
server) is normally expected to decrease per-tenant allocated
resources and thus performance, but on the other side, it also
reduces the overall operating cost for the DaaS provider and
vice versa. Therefore, it is necessary, but challenging for
the DaaS providers to balance between the performance that
they can deliver to their tenants and the data center’s oper-
ating costs. Several provider-centric approaches have been
proposed to tackle this challenge. Chi et al. [19] have pro-
posed cost-aware query scheduling algorithm, called iCBS,
that takes the query costs derived from the service level
agreements (SLA) between the service provider and its cus-
tomers (in terms of response time) into account to make
cost-aware scheduling decisions that aims to minimize the
total expected cost. SLA-tree is another approach that have
been proposed to efficiently support profit-oriented deci-
sion making of query scheduling. SLA-tree uses the infor-
mation about the buffered queries which are waiting to be

executed in addition to the service level agreement (SLA)
for each query that indicates the different profits for the
query for varying query response times and provides sup-
port for the answering of certain profit-oriented “what if ”
type of questions. Lang et al. [36] presented a framework
that takes as input the tenant workloads, their performance
SLA, and the server hardware that is available to the DaaS
provider, and produces server characterizing models that can
be used to provide constraints into an optimization mod-
ule. By solving this optimization problem, the framework
provides a cost-effective hardware provisioning policy and
a tenant scheduling policy on each hardware resource. The
main limitation of this approach is that the input informa-
tion of the tenant workloads is not always easy to spec-
ify and model accurately. PIQL [3] (Performance Insightful
Query Language) is a declarative language that has been pro-
posed with a SLA compliance prediction model. The PIQL
query compiler uses static analysis to select only query plans
where it can calculate the number of operations to be per-
formed at every step in their execution. In particular, PIQL
extends SQL to allow developers to provide extra bound-
ing information to the compiler. In contrast to traditional
query optimizers, the objective of the query compiler is not
to find the fastest plan but to avoid performance degradation.
Thus, the compiler choose a potentially slower bounded plan
over an unbounded plan that happens to be faster given
the current database statistics. If the PIQL compiler can-
not create a bounded plan for a query, it warns the devel-
oper and suggests possible ways to bound the computation.
The CloudDB AutoAdmin framework [42] is more focused
towards the consumer-centric view where traditional single
tenant database with multiple replicas are hosted on virtual-
ized database servers in cloud environments. The framework
continuously monitors the database workload, tracks the sat-
isfaction of the application-defined SLA, evaluates the con-
dition of the application-defined action rules which are de-
fined to maintain the application SLA when violations are
detected, and executes the necessary actions when required.
Therefore, it provides software application with more con-
trol on managing the SLA requirements of the database tier
of their applications.

In general, adequate SLA monitoring strategies and
timely detection of SLA violations represent challeng-
ing research issues in the cloud computing environments.
Salman [7] has suggested that it may be necessary, in the
future, for cloud providers to offer performance based SLAs
for their services with a tiered pricing model, and charge a
premium for guaranteed performance. While this could be
one of the directions to solve this problem, we believe that
it is a very challenging goal to delegate the management of
the fine-granular SLA requirements of the consumer appli-
cations to the side of the cloud service provider due to the
wide heterogeneity in the workload characteristics, details



498 Cluster Comput (2014) 17:487–502

and granularity of SLA requirements, and cost management
objectives of the very large number of consumer applica-
tions (tenants) that can be simultaneously running in a cloud
environment. Therefore, it becomes a significant issue for
the cloud consumers to be able to monitor and adjust the de-
ployment of their systems if they intend to offer viable ser-
vice level agreements (SLAs) to their customers (end users).
It is an important requirement for cloud service providers to
enable the cloud consumers with a set of facilities, tools and
framework that ease their job of achieving this goal effec-
tively.

5.5 Transaction support

A transaction is a core concept in the data management
world that represents a set of operations which are required
to be executed atomically on a single consistent view of a
database [31]. In general, the expertise gained from building
distributed database systems by researchers and practition-
ers have shown that supporting distributed transactions does
not allow building scalable and available system [50]. There-
fore, to satisfy the scalability requirements of large scale in-
ternet services, many systems have sacrificed the ability to
support distributed transactions. For example, most of the
NoSQL systems (e.g. Bigtable, Dynamo, SimpleDB) sup-
ports atomic access only at the granularity of single keys.
This design choice allows these systems to horizontally par-
tition the tables, without worrying about the need for dis-
tributed synchronization and transaction support. Microsoft
SQL Azure Database [10] supports the relational data model
and ACID transactions. However, it requires manual data
partitioning and does not support distributed transactions or
queries across multiple data partitions located in different
servers. In particular, database size is constrained to fit on
a single node. For larger data sets, an application needs to
partition the data among different database instances. While
many web applications can live with single key access pat-
terns [18, 27], many other applications (e.g. payment, auc-
tion services, online gaming, social networks, collaborative
editing) would require atomicity guarantee on multi key ac-
cesses patterns. In practice, leaving the burden of ensur-
ing transaction support to the application programmer nor-
mally leads to increased code complexity, slower applica-
tion development, and low-performance client-side transac-
tion management. Therefore, one of the main challenges of
cloud-hosted database systems that has been considered is to
support transactional guarantees for their applications with-
out compromising the scalability property as one of the main
advantages of the cloud environments.

The G-Store system [25] has been presented as a scal-
able data store which provides transactional multi key ac-
cess guarantees over non-overlapping groups of keys using
a key-value store. The main idea of GStore is the Key Group

abstraction that defines a relationship between a group of
keys and represents the granule for on-demand transactional
access. This abstraction allows the Key Grouping protocol to
collocate control for the keys in the group to allow efficient
access to the group of keys. In particular, the Key Grouping
protocol enables the transfer of ownership for all keys in a
group to a single node which then efficiently executes the
operations on the Key Group. At any instance of time, each
key can only belong to a single group and the Key Group ab-
straction does not define a relationship between two groups.
Thus, groups are guaranteed to be independent of each other
and the transactions on a group guarantee consistency only
within the confines of a group. The Key Grouping protocol
ensures that the ownership of the members of a group reside
with a single node. Thus, the implementation of the trans-
action manager component does not require any distributed
synchronization and is similar to the transaction manager of
any single node relational database management systems.
The key difference is that in G-Store, transactions are lim-
ited to smaller logical entities (key groups). A similar ap-
proach has been followed by the Google Megastore sys-
tem [5]. It implements a transactional record manager on top
of the BigTable data store [18] and provides transaction sup-
port across multiple data items where programmers have to
manually link data items into hierarchical groups and each
transaction can only access a single group. Megastore parti-
tions the data into a collection of entity groups, a priori user-
defined grouping of data for fast operations , where each
group is independently and synchronously replicated over a
wide area. In particular, Megastore tables are either entity
group root tables or child tables. Each child table must de-
clare a single distinguished foreign key referencing a root
table. Thus, each child entity references a particular entity
in its root table (called the root entity). An entity group con-
sists of a root entity along with all entities in child tables
that reference it. Entities within an entity group are mutated
with single- phase ACID transactions (for which the com-
mit record is replicated via Paxos). Operations across entity
groups could rely on expensive two-phase commit opera-
tions but they could leverage the built-in Megastore’s effi-
cient asynchronous messaging to achieve these operations.
Similar to Megastore, Microsoft SQL Azure Database [10]
requires that a table group (i.e., a user database) is either
keyless, meaning that its tables are co-located, or it is keyed,
meaning that its tables have a common partitioning key, and
that every update transaction reads and writes records with a
single value of that partitioning key. This ensures that every
transaction can be executed on one server.

Deuteronomy [37] have presented a radically different
approach towards scaling databases and supporting trans-
actions in the cloud by unbundling the database into two
components: (1) The transactional component (TC) that
manages transactions and their concurrency control and



Cluster Comput (2014) 17:487–502 499

undo/redo recovery but knows nothing about physical data
location. (2) The data component (DC) that maintains a
data cache and uses access methods to support a record-
oriented interface with atomic operations but knows noth-
ing about transactions. Applications submit requests to the
TC which uses a lock manager and a log manager to log-
ically enforce transactional concurrency control and re-
covery. The TC passes requests to the appropriate Data
Component (DC). The DC, guaranteed by the TC to never
receive conflicting concurrent operations, needs to only sup-
port atomic record operations, without concern for transac-
tion properties that are already guaranteed by the TC. In this
architecture, data can be stored anywhere (e.g., local disk,
in the cloud, etc) as the TC functionality in no way depends
on where the data is located. The TC and DC can be de-
ployed in a number of ways. Both can be located within the
client, and that is helpful in providing fast transactional ac-
cess to closely held data. The TC could be located with the
client while the DC could be in the cloud, which is help-
ful in case a user would like to use its own subscription at
a TC service or wants to perform transactions that involve
manipulating data in multiple locations. Both TC and DC
can be in the cloud, which is helpful if a cloud data storage
provider would like to localize transaction services for some
of its data to a TC component. There can be multiple DCs
serviced by one TC, where transactions spanning multiple
DCs are naturally supported because a TC does not depend
on where data items are stored. Also, there can be multiple
TCs, yet, a transaction is serviced by one specific TC.

5.6 Benchmarking

With the emergence of cloud database services, several stud-
ies have attempted to assess the performance and scalability
of cloud computing solutions for data management applica-
tions. Kossmann et al. [33] have used the TPC-W bench-
mark to evaluate the performance of different database ar-
chitectures for processing OLTP workload in commercial
database services (e.g. Amazon RDS, Amazon SimpleDB,
Microsoft SQL Azure). The results of the experiments have
shown that the cost, performance and the scalability of the
cloud services vary significantly depending on the character-
istics of the workload (e.g. read/write ratio). AppScale [13]
is an open source implementation of the Google App En-
gine (GAE) Datastore which unifies access to a wide range
of open source distributed database technologies. AppScale
has been used for conducting an evaluation of the perfor-
mance characteristics of several NoSQL systems including:
HBase, Hypertable, Cassandra, Voldemort and MongoDB.
The Yahoo! Cloud Serving Benchmark (YCSB) [23] is an-
other effort for benchmarking cloud serving systems. The
benchmark consists of a package of workloads with differ-
ent characteristics (e.g. read-heavy workloads, write-heavy

workloads, scan workloads, etc). The initial implementation
of the YCSB benchmark has been used for evaluating four
systems: Cassandra, HBase, PNUTS, and a simple sharded
MySQL in terms of their performance and elasticity char-
acteristics. The scope of the benchmark has been recently
extended, YCSB++ [40], to support complex features such
as including multi-tester coordination for increased load
and eventual consistency measurement, multi-phase work-
loads to quantify the consequences of work deferment and
the benefits of anticipatory configuration optimization such
as B-tree pre-splitting or bulk loading. The YCSB++ fea-
tures are used for evaluating two BigTable-like table stores:
Apache HBase and Accumulo.18 Wada et al. [53] presented
an approach for measuring time-based staleness by writ-
ing timestamps to a key from one client, reading the same
key and computing the difference between the reader’s lo-
cal time and the timestamp read. However, this approach
is very primitive and is unsuitable in a production environ-
ment. In particular, if the workload is such trivial and uses
only a single writer then all operations will be just atomic
and the workload clearly does not cover any complex or
special execution paths that the underlying storage system
need to deal with under heavy or concurrent workloads.
These limitations hurt the accuracy of the reported measure-
ments. Bermbach and Tai [9] have tried to address a side of
these limitations by extending the experiments of [53] using
a number of readers which are geographically distributed.
They measure the consistency window by calculating the
difference between the latest read timestamp of version n

and the write timestamp of version n+ 1. Their experiments
with that Amazon S3 showed that the system frequently vi-
olates monotonic read consistency.

In principle, benchmarks need to play an effective role
in empowering cloud users to make better decisions re-
garding choosing the adequate systems and technologies
that suit their application’s requirements. In general, de-
signing a good benchmark is a challenging task due to the
many aspects that should be considered and can influence
the adoption and the usage scenarios of the benchmark. In
particular, a benchmark is considered to be good if it can
provide true and meaningful results for all of its stakehold-
ers [30]. We believe that it is important that cloud users
become able to paint a comprehensive picture of the re-
lationship between the capabilities of the different type of
cloud database services, the application characteristics and
workloads, and the geographical distribution of the applica-
tion clients and the underlying database replicas. As yet, the
literature does not contain any comprehensive assessments
and measurements of the performance, scalability, elastic-
ity or consistency guarantees of the different categories of
cloud database services. This is a clear gap that we suggest
to attract more attention from the research community.

18http://wiki.apache.org/incubator/AccumuloProposal.

http://wiki.apache.org/incubator/AccumuloProposal


500 Cluster Comput (2014) 17:487–502

Table 2 Open research challenges of cloud-hosted database systems

Research aspect Related factors Open research challenges

Elasticity management – Application workload
– SLA Satisfaction
– Monetary Cost
– Side of Control (Provider

or Consumer)

– Designing accurate models for characterizing and predicting Internet scale ap-
plication workloads.

– Designing flexible dynamic provision mechanisms that carefully consider the
target consumer application SLA and the target monetary costs.

– Enabling the consumer applications with powerful and flexible tools (admission
controllers) to declaratively define and control their elasticity policies.

Data replication and
consistency management

– CAP Theorem
– Levels of Consistency

Guarantee
– Replica Locations

– Designing adaptable consistency mechanisms that can be flexibly configured on
the runtime according to the application context.

– Designing efficient data replication and consistency management protocols
across different data centers in the cloud environment.

– Further understanding to the practical limits of the CAP theorem.

Live migration – Down Time
– Migration Time
– SLA Effect
– Triggering of Migration

Need (When to Migerate?)

– Optimizing the down time and migration time metrics of the live migration tech-
niques.

– Minimizing the performance effect and SLA degradation of the co-located ten-
ants during the migration process.

– Designing partitioning-aware live database migration techniques.
– Designing intelligent schedulers for the activities of the migration processes.
– Designing intelligent techniques for deciding the optimal source and destination

tenants and servers with aim of optimizing the overall system performance and
the overall utilization of the computing resources.

SLA management – Side of Control
– SLA Granularity
– Monetary Cost

– Designing efficient mechanisms for monitoring and timely detecting SLA vio-
lations in cloud environments.

– Providing fine-granular SLA guarantees for cloud hosting database services.
– Designing cost-aware SLA management techniques.
– Enabling the consumer applications with flexible mechanisms to declaratively

define, monitor and control their SLA requirements.

Transaction support – Granularity of Atomicity
– Distributed Transactions
– Performance

– Providing efficient multi row atomicity guarantees on NoSQL systems.
– Designing intelligent workload-aware and transaction-aware database partition-

ing mechanisms for cloud-hosted databases.
– Providing scalable transactional guarantees over multiple partitions for dis-

tributed database (across different data centers) in cloud environments.

6 Conclusion

This article presented an overview of the state-of-the-art of
existing technologies for hosting the database tier of soft-
ware applications in cloud environments. We crystallized
the design choices, strengths, weaknesses of each technol-
ogy. In addition, we discussed a set of novel challenges, that
have been brought on by the reliance on cloud computing
platforms and faced by application developers and design-
ers of cloud database systems, and pointed out alternative
research directions for tackling them. Table 2 summarizes
some of the open research challenges along with the key re-
lated factors which could influence the design of their solu-
tions. We believe that this article could be valuable for both
the designers and developers of new cloud-hosted database
systems and interested users of cloud database services as
well. For user of cloud database services, we can draw the
following recommendations:

• NoSQL systems are viable solutions for applications that
require scalable data stores which can easily scale out
over multiple servers and support flexible data model and
storage scheme. However, the access pattern of these ap-
plications should not require much join operations and
can work with limited transaction support and weaker
consistency guarantees. In general, NoSQL systems are
recommended for newly developed applications but not
for migrating existing applications which are written on
top of traditional relational database systems. For exam-
ple, Amazon Web Services describe the anti-patterns for
using its cloud-hosted NoSQL solution, SimpleDB, to in-
clude: pre-developed software applications which are tied
to traditional relational database or applications that may
require many join operations and complex transactions.19

19http://aws.amazon.com/whitepapers/storage-options-aws-cloud/.

http://aws.amazon.com/whitepapers/storage-options-aws-cloud/


Cluster Comput (2014) 17:487–502 501

In addition, with the wide options and variety of currently
available NoSQL systems, software developers need to
well understand the requirements of their application to
choose the NoSQL system with adequate design decisions
of their applications.

• Database-as-a-Service solutions are recommended for
software applications which are built on top of relational
databases. They can be easily migrated to cloud servers
and alleviate the need to purchase expensive hardware,
deal with software upgrades and hire professionals for
administrative and maintenance tasks. However, these ap-
plication should have the ability to accurately predict their
application workloads and provision the adequate com-
puting resources that can achiever their performance re-
quirements. Unfortunately, these applications should be
ready to not automatically leverage the elasticity and scal-
ability promises of cloud services.

• Virtualied database servers are recommended for software
applications which require to leverage the full elasticity
and scalability promises of cloud services and need to
have full control on the performance of their applications.
However, these application need to build and configure
their admission control for managing the database tier of
their applications.

For designers and developers, it is clear that there is no
single perfect technology or solution for hosting databases
in cloud platforms. Different application target different as-
pects in the design space, and multiple open problems still
remain. Therefore, they can use the challenges which are
discussed in this article to effectively decide on the points
which can be improved in order to make an effective con-
tribution towards the vision of designing and implement-
ing successful data management solutions in the cloud en-
vironment. We believe that there is still many opportuni-
ties for new innovations and optimizations in this area. For
users of cloud database services, they often have the chal-
lenge of choosing the appropriate technology and system
that can satisfy their specific set of application require-
ments. Therefore, a thorough understanding of current cloud
database technologies is essential for dealing with this situ-
ation. Hence, we believe that this article could be helpful
on guiding those users for making an effective decision to
select the most suitable technology for the requirements of
their software applications.

References

1. Abadi, D.J.: Data management in the cloud: limitations and
opportunities. IEEE Data Eng. Bull. 32(1) (2009). http://sites.
computer.org/debull/A09mar/abadi.pdf

2. Agrawal, D., El Abbadi, A., Emekçi, F., Metwally, A.: Database
management as a service: challenges and opportunities. In: ICDE
(2009)

3. Armbrust, M., Curtis, K., Kraska, T., Fox, A., Franklin, M.J.,
Patterson, D.A.: PIQL: success-tolerant query processing in the
cloud. Proc. VLDB Endow. 5(3), 181–192 (2011)

4. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Kon-
winski, A., Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Za-
haria, M.: Above the clouds: a Berkeley view of cloud computing.
Technical Report UCB/EECS-2009-28, University of California,
Berkeley (2009)

5. Baker, J., Bond, C., Corbett, J., Furman, J.J., Khorlin, A., Larson,
J., Leon, J.-M., Li, Y., Lloyd, A., Yushprakh, V.: Megastore: pro-
viding scalable, highly available storage for interactive services.
In: CIDR, pp. 223–234 (2011)

6. Barker, S.K., Chi, Y., Moon, H.J., Hacigümüs, H., Shenoy, P.J.:
“Cut me some slack”: latency-aware live migration for databases.
In: EDBT, pp. 432–443 (2012)

7. Baset, S.A.: Cloud SLAs: present and future. Oper. Syst. Rev.
46(2), 57–66 (2012)

8. Belaramani, N., Dahlin, M., Gao, L., Nayate, A., Venkataramani,
A., Yalagandula, P., Zheng, J.: Practi replication. In: NSDI (2006)

9. Bermbach, D., Tai, S.: Eventual consistency: how soon is even-
tual? An evaluation of Amazon s3’s consistency behavior. In: Pro-
ceedings of the 6th Workshop on Middleware for Service Oriented
Computing (2011)

10. Bernstein, P.A., Cseri, I., Dani, N., Ellis, N., Kalhan, A., Kakivaya,
G., Lomet, D.B., Manne, R., Novik, L., Talius, T.: Adapting mi-
crosoft SQL server for cloud computing. In: ICDE, pp. 1255–1263
(2011)

11. Bodík, P., Fox, A., Franklin, M.J., Jordan, M.I., Patterson, D.A.:
Characterizing, modeling, and generating workload spikes for
stateful services. In: SoCC, pp. 241–252 (2010)

12. Brewer, E.A.: Towards robust distributed systems (abstract). In:
PODC, p. 7 (2000)

13. Bunch, C., Chohan, N., Krintz, C., Chohan, J., Kupferman, J.,
Lakhina, P., Li, Y., Nomura, Y.: An evaluation of distributed data-
stores using the AppScale cloud platform. In: IEEE CLOUD,
pp. 305–312 (2010)

14. Cattell, R.: Scalable SQL and NoSQL data stores. SIGMOD Rec.
(2010). doi:10.1145/1376616.1376691

15. Cecchet, E., Candea, G., Ailamaki, A.: Middleware-based
database replication: the gaps between theory and practice. In:
SIGMOD Conference, pp. 739–752 (2008)

16. Cecchet, E., Singh, R., Sharma, U., Shenoy, P.J.: Dolly:
virtualization-driven database provisioning for the cloud. In: VEE
(2011)

17. Chandra, T.D., Griesemer, R., Redstone, J.: Paxos made live: an
engineering perspective. In: PODC, pp. 398–407 (2007)

18. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A.,
Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a dis-
tributed storage system for structured data. ACM Trans. Comput.
Syst. (2008). doi:10.1145/1365815.1365816

19. Chi, Y., Moon, H.J., Hacigümüs, H.: ICBS: incremental costbased
scheduling under piecewise linear SLAs. Proc. VLDB Endow.
4(9), 563–574 (2011)

20. Cipar, J., Ganger, G.R., Keeton, K., Morrey, C.B., Soules, C.A.N.,
Veitch, A.C.: LazyBase: trading freshness for performance in a
scalable database. In: EuroSys, pp. 169–182 (2012)

21. Cooper, B.F., Baldeschwieler, E., Fonseca, R., Kistler, J.J.,
Narayan, P.P.S., Neerdaels, C., Negrin, T., Ramakrishnan, R., Sil-
berstein, A., Srivastava, U., Stata, R.: Building a cloud for Ya-
hoo! IEEE Data Eng. Bull. 32(1) (2009). http://sites.computer.
org/debull/A09mar/cooper1.pdf

22. Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A.,
Bohannon, P., Jacobsen, H.-A., Puz, N., Weaver, D., Yerneni, R.:
PNUTS: Yahoo!’s hosted data serving platform. Proc. VLDB En-
dow. 1(2), 1277–1288 (2008)

http://sites.computer.org/debull/A09mar/abadi.pdf
http://sites.computer.org/debull/A09mar/abadi.pdf
http://dx.doi.org/10.1145/1376616.1376691
http://dx.doi.org/10.1145/1365815.1365816
http://sites.computer.org/debull/A09mar/cooper1.pdf
http://sites.computer.org/debull/A09mar/cooper1.pdf


502 Cluster Comput (2014) 17:487–502

23. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears,
R.: Benchmarking cloud serving systems with YCSB. In: SoCC
(2010)

24. Curino, C., Jones, E.P.C., Popa, R.A., Malviya, N., Wu, E., Mad-
den, S., Balakrishnan, H., Zeldovich, N.: Relational cloud: a
database service for the cloud. In: CIDR, pp. 235–240 (2011)

25. Das, S., Agrawal, D., El Abbadi, A.: G-Store: a scalable data store
for transactional multi key access in the cloud. In: SoCC, pp. 163–
174 (2010)

26. Das, S., Nishimura, S., Agrawal, D., El Abbadi, A.: Albatross:
lightweight elasticity in shared storage databases for the cloud
using live data migration. Proc. VLDB Endow. 4(8), 494–505
(2011)

27. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Laksh-
man, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.:
Dynamo: Amazon’s highly available key-value store. In: SOSP,
pp. 205–220 (2007)

28. Durkee, D.: Why cloud computing will never be free. Commun.
ACM (2010). doi:10.1145/1735223.1735242

29. Elmore, A.J., Das, S., Agrawal, D., El Abbadi, A.: Zephyr: live
migration in shared nothing databases for elastic cloud platforms.
In: SIGMOD Conference, pp. 301–312 (2011)

30. Gray, J. (ed.): The Benchmark Handbook for Database and Trans-
action Systems, 1st edn. Morgan Kaufmann, San Mateo (1991)

31. Gray, J., Reuter, A.: Transaction Processing: Concepts and Tech-
niques. The Morgan Kaufmann Series in Data Management Sys-
tems. Morgan Kaufmann, San Mateo (1992)

32. Jacobs, D., Aulbach, S.: Ruminations on multi-tenant databases.
In: BTW, pp. 514–521 (2007)

33. Kossmann, D., Kraska, T., Loesing, S.: An evaluation of alterna-
tive architectures for transaction processing in the cloud. In: SIG-
MOD Conference, pp. 579–590 (2010)

34. Kraska, T., Hentschel, M., Alonso, G., Kossmann, D.: Consistency
Rationing in the Cloud: Pay only when it matters. Proc. VLDB
Endow. 2(1) (2009). http://www.vldb.org/pvldb/2/vldb09-759.pdf

35. Kraska, T., Pang, G., Franklin, M.J., Madden, S.: MDCC: multi-
data center consistency. In: CoRR, arXiv:1203.6049 abs (2012)

36. Lang, W., Shankar, S., Patel, J.M., Kalhan, A.: Towards multi-
tenant performance SLOs. In: ICDE, pp. 702–713 (2012)

37. Levandoski, J.J., Lomet, D.B., Mokbel, M.F., Zhao, K.: Deuteron-
omy: transaction support for cloud data. In: CIDR, pp. 123–133
(2011)

38. Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen, D.G.: Don’t
settle for eventual: scalable causal consistency for wide-area stor-
age with COPS. In: SOSP, pp. 401–416 (2011)

39. Minhas, U.F., Yadav, J., Aboulnaga, A., Salem, K.: Database sys-
tems on virtual machines: how much do you lose? In: ICDE Work-
shops, pp. 35–41 (2008)

40. Patil, S., Polte, M., Ren, K., Tantisiriroj, W., Xiao, L., López, J.,
Gibson, G., Fuchs, A., Rinaldi, B.: YCSB++: benchmarking and
performance debugging advanced features in scalable table stores.
In: SoCC (2011)

41. Pritchett, D.: BASE: an acid alternative. ACM Queue 6(3), 48–55
(2008)

42. Sakr, S., Liu, A.: SLA-based and consumer-centric dynamic pro-
visioning for cloud databases. In: IEEE CLOUD, pp. 360–367
(2012)

43. Sakr, S., Liu, A.: Is your cloud-hosted database truly elastic? In:
IEEE 9th World Congress on Services (2013)

44. Sakr, S., Liu, A., Batista, D.M., Alomari, M.: A survey of large
scale data management approaches in cloud environments. IEEE
Commun. Surv. Tutor. 13(3), 311–336 (2011)

45. Schad, J., Dittrich, J., Quiané-Ruiz, J.-A.: Runtime Measurements
in the Cloud: Observing, Analyzing, and Reducing Variance. Proc.
VLDB Endow. 3(1) (2010)

46. Soror, A.A., Minhas, U.F., Aboulnaga, A., Salem, K., Kokosielis,
P., Kamath, S.: Automatic virtual machine configuration for
database workloads. In: SIGMOD Conference (2008)

47. Sovran, Y., Power, R., Aguilera, M.K., Li, J.: Transactional stor-
age for geo-replicated systems. In: SOSP, pp. 385–400 (2011)

48. Stonebraker, M.: One size fits all: an idea whose time has come
and gone. Commun. ACM 51(12), 76 (2008)

49. Suleiman, B., Sakr, S., Jeffrey, R., Liu, A.: On understanding the
economics and elasticity challenges of deploying business appli-
cations on public cloud infrastructure. J. Internet Serv. Appl. 3(2),
173–193 (2012)

50. Tamer Ozsu, M., Valduriez, P.: Principles of Distributed Database
Systems, 3rd edn. Springer, Berlin (2011)

51. Tatemura, J., Po, O., Hacigümüs, H.: Microsharding: a declara-
tive approach to support elastic OLTP workloads. Oper. Syst. Rev.
46(1), 4–11 (2012)

52. Vogels, W.: Eventually consistent. ACM Queue 6, 14–19 (2008)

53. Wada, H., Fekete, A., Zhao, L., Lee, K., Liu, A.: Data consistency
properties and the trade-offs in commercial cloud storage: the con-
sumers’ perspective. In: CIDR (2011)

54. Xiong, P., Chi, Y., Zhu, S., Moon, H.J., Pu, C., Hacigümüs, H.:
Intelligent management of virtualized resources for database sys-
tems in cloud environment. In: ICDE, pp. 87–98 (2011)

55. Zhao, L., Sakr, S., Fekete, A., Wada, H., Liu, A.: Application-
managed database replication on virtualized cloud environments.
In: Data Management in the Cloud (DMC), ICDE Workshops
(2012)

56. Zhao, L., Sakr, S., Liu, A.: Application-managed replication con-
troller for cloud-hosted databases. In: IEEE CLOUD, pp. 922–929
(2012)

57. Zhao, L., Sakr, S., Liu, A.: A framework for consumer-centric
SLA management of cloud-hosted databases. IEEE Trans. Serv.
Comput. (2013)

Sherif Sakr is a Senior Researcher
in the Software Systems Research
Group at National ICT Australia
(NICTA), ATP lab, Sydney, Aus-
tralia. He is also a Senior Lecturer
in The School of Computer Science
and Engineering (CSE) at Univer-
sity of New South Wales (UNSW).
He received his Ph.D. degree in
Computer and Information Science
from Konstanz University, Germany
in 2007. He received his B.Sc. and
M.Sc. degrees in Computer Science
from the Information Systems de-
partment at the Faculty of Comput-

ers and Information in Cairo University, Egypt, in 2000 and 2003
respectively. In 2008 and 2009, Sherif held an Adjunct Lecturer po-
sition at the Department of Computing of Macquarie University. In
2011, he held a Visiting Researcher position at the eXtreme Comput-
ing Group, Microsoft Research Laboratories, Redmond, WA, USA.
In 2012, Sherif held a Research MTS position in Alcatel-Lucent Bell
Labs. Dr. Sakr’s research interest is data and information management
in general, particularly in areas of indexing techniques, query pro-
cessing and optimization techniques, graph data management, social
networks, data management in cloud computing.

http://dx.doi.org/10.1145/1735223.1735242
http://www.vldb.org/pvldb/2/vldb09-759.pdf
http://arxiv.org/abs/arXiv:1203.6049

	Cloud-hosted databases: technologies, challenges and opportunities
	Abstract
	Introduction
	NoSQL database systems
	Database-as-a-Service (DaaS)
	Virtualized database servers
	Challenges and opportunities
	True elasticity
	Data replication and consistency management
	Live migration
	SLA management
	Transaction support
	Benchmarking

	Conclusion
	References


