
Cluster Comput (2014) 17:911–926
DOI 10.1007/s10586-013-0286-3

Fault tolerance and QoS scheduling using CAN in mobile social
cloud computing

SookKyong Choi · KwangSik Chung · Heonchang Yu

Received: 16 February 2013 / Accepted: 2 June 2013 / Published online: 22 June 2013
© Springer Science+Business Media New York 2013

Abstract The performance of mobile devices including
smart phones and laptops is steadily rising as prices plum-
met sharply. So, mobile devices are changing from being
a mere interface for requesting services to becoming com-
puting resources for providing and sharing services due to
immeasurably improved performance.

With the increasing number of mobile device users, the
utilization rate of SNS (Social Networking Service) is also
soaring. Applying SNS to the existing computing environ-
ment enables members of social network to share computing
services without further authentication.

To use mobile device as a computing resource, temporary
network disconnection caused by user mobility and various
HW/SW faults causing service disruption should be consid-
ered. Also these issues must be resolved to support mobile
users and to provide user requirements for services.

Accordingly, we propose fault tolerance and QoS (Qual-
ity of Services) scheduling using CAN (Content Address-
able Network) in Mobile Social Cloud Computing (MSCC).
MSCC is a computing environment that integrates social
network-based cloud computing and mobile devices. In the

This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MEST)
(No. 2012R1A2A2A02046684).

S. Choi · H. Yu (�)
Dept. of Computer Science Education, Korea University, Seoul,
Korea
e-mail: yuhc@korea.ac.kr

S. Choi
e-mail: csukyong@korea.ac.kr

K. Chung
Dept. of Computer Science, Korea National Open University,
Seoul, Korea
e-mail: kchung0825@knou.ac.kr

computing environment, a mobile user can, through mo-
bile devices, become a member of a social network through
real world relationships. Essentially, members of a social
network share cloud service or data with other members
without further authentication by using their mobile device.
We use CAN as the underlying MSCC to logically man-
age the locations of mobile devices. Fault tolerance and
QoS scheduling consists of four sub-scheduling algorithms:
malicious-user filtering, cloud service delivery, QoS provi-
sioning, and replication and load-balancing. Under the pro-
posed scheduling, a mobile device is used as a resource for
providing cloud services, faults caused from user mobility
or other reasons are tolerated and user requirements for QoS
are considered.

We simulate scheduling both with and without CAN. The
simulation results show that our proposed scheduling algo-
rithm enhances cloud service execution time, finish time and
reliability and reduces the cloud service error rate.

Keywords Cloud · Social cloud · Mobile social cloud ·
Fault tolerance · QoS · CAN

1 Introduction

Cloud computing is a model for enabling ubiquitous, con-
venient and on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly pro-
visioned and released with minimal management effort or
service provider interaction [1].

Cloud computing is spreading to other computing areas
such as mobile and social networks. Mobile cloud comput-
ing is a computing environment that extends cloud com-
puting to include mobile devices such as laptops, netbooks,
tablets, PDAs, UMPCs, smartphones, etc.

mailto:yuhc@korea.ac.kr
mailto:csukyong@korea.ac.kr
mailto:kchung0825@knou.ac.kr


912 Cluster Comput (2014) 17:911–926

In mobile cloud computing, each mobile device should
have a suitable application to access mobile cloud comput-
ing. Each mobile device can act as a server to provide cloud
service or data as well as a client to request cloud service or
data. In this case, these mobile devices are used as a resource
in mobile cloud environments. However, given their nature,
mobile devices can move freely in the network, which may
cause network disconnection. Moreover, they may run out
of power, resulting in a suddenly disconnection from the net-
work and subsequent service suspension or cessation. There-
fore, if mobile devices are to displace computing servers,
these inherent problematic aspects of the mobile cloud must
be overcome.

A social network is a social structure composed of in-
dividuals (or organizations) called “nodes”, which are con-
nected by one or more specific type of interdependency, such
as friendship [2]. Essentially, a social network is a dynamic
virtual organization with inherent trust relationships among
friends.

Social Computing is a term for the intersection of social
behavior and computational systems. In Social Computing,
relations among individual users based on real world rela-
tionships create a digital relationship in the form of an on-
line social network, and these relationships within online so-
cial networks have a fundamental level of implicit trust for
sharing data and information. Therefore in social comput-
ing environments, users, through a social network, can share
data and information among individual users based on real
world relationships with low or even no authentication be-
cause members are willing to provide their mobile devices
and their data to other social network members.

Mobile Social Cloud is a new paradigm. Tony Velleca
[3] says that the convergence of cloud computing, mo-
bile applications and social networking provides a powerful
new paradigm for achieving disruptive innovation. Jacques
Pavlenyi [4] also posits that the fusion of mobile devices, so-
cial networks and cloud computing is a new paradigm gen-
erating synergistic effects for the following reasons.

• The ascendency of mobile computing
Mobility is good by itself. Mobile delivery of enter-

prise email, calendar and other critical applications has
become a basic necessity.

• The growth of social networks for business
Social collaboration like blogs, wikis, file sharing, and

social document collaboration create great opportunities
for productivity.

• The continued rise of cloud computing
The cloud offers the promise of faster development

and delivery of services while providing cost savings and
faster iteration of new delivery services. The real beauty
of the cloud is that users can seamlessly deliver services
to multiple end-points such as tablets and PCs.

For the above reasons, we focus on Mobile Social Cloud
Computing (MSCC), which integrates mobile devices, cloud
computing, and social networking. In MSCC, a mobile de-
vice user requests cloud service from a cloud server and the
user is informed of the closest mobile device of a user who
belongs to the same social network and able to provide cloud
service. Eventually the user requesting cloud service and the
user of the closest mobile device are connected and share
cloud service through the social network without further au-
thentication. Using the closest mobile device for cloud ser-
vice, not a faraway cloud server, improves cloud service ex-
ecution time and reduces cloud service waiting time.

However, there are some issues in MSCC that must be
dealt with due to the nature of mobile devices. MSCC has
characteristics that distinguish it from traditional Grid com-
puting as follows:

• Network disconnection resulting from user mobility
MCSS supports user mobility. Therefore, users can

freely move in a network, which may cause network dis-
connection from the AP or communication disconnection
from the cloud server. These hinder user access to cloud
services.

• Inherent problem of mobile device
A mobile device is independently operated, so, the de-

vice may be turned off intentionally by the owner. Fre-
quently, batteries run down. Moreover, there are some
situations in which users cannot use cloud services be-
cause of mobile device faults, including physical defects,
or software faults.

Given the characteristics of MSCC mentioned above,
methods for tolerating faults and providing cloud services
are essential. Accordingly, we propose a fault tolerance and
QoS scheduling algorithm for mobile users to provide cloud
services in the computing environment.

The contributions of this paper are as follows:

1. We propose a scheduling algorithm to support mobile
users and share cloud services directly among users. To
present MSCC environments, we use CAN (content-
addressable network). CAN is a distributed network
structure that has been used to manage moving objects
and will be introduced in Sect. 3.

2. We propose a scheduling algorithm to tolerate faults in
MSCC. Faults may bring loss of results for mobile user
requests. In this paper, we regard all situations, including
network disconnection, battery drain, and other failures
due to mobile device movement as faults.

3. Additionally, we propose a scheduling algorithm to pro-
vide QoS (Quality of Services) to users in MSCC. We
first classify QoS metrics for the Mobile Social Cloud
and then apply the QoS metrics to MSCC.

Our scheduling algorithm is unique because the schedul-
ing algorithm supports user mobility and user QoS concur-



Cluster Comput (2014) 17:911–926 913

rently while considering mobile device characteristics, and
also supports cloud sharing services among mobile users
without any authentication by using social network.

The rest of this paper is organized as follows. Section 2
introduces works related to this paper and discusses vari-
ous existing methods to tolerate fault and support QoS for
users in many computing environments. Section 3 describes
the system environment for this paper. The section exam-
ines CAN, system architecture and data structure for MSCC.
Section 4 proposes fault tolerance and QoS scheduling algo-
rithm for MSCC consisting of four sub-algorithms: (1) ma-
licious user filtering, (2) cloud service delivery, (3) QoS pro-
visioning and (4) replication and load-balancing. Section 5
details the simulation results in MSCC and presents results
with and without CAN. Section 6 summarizes the results
and discusses various avenues for future research.

2 Related works

2.1 Fault tolerance in computing environment

Studies on methods to tolerate various faults that can occur
during a service have been conducted in diverse research ar-
eas.

Jing Deng et al. [5] proposed matrix multiplication as
a cloud selection strategy and technique to improve fault-
tolerance and reliability and prevent faulty and malicious
clouds in cloud computing environment having multiple
clouds.

Jie Li et al. [6] proposed MODISAzure and used addi-
tional redundancy and fault-tolerance capabilities through
retrying task execution, which supports debugging of user
code encountering unanticipated data issues.

Yilei Zhang et al. [7] presented BFTCloud (Byzan-
tine Fault Tolerant Cloud) for building robust systems in
voluntary-resource cloud environments. They used replica-
tion techniques because computing resources in voluntary-
resource clouds are heterogeneous and less reliable and ma-
licious behaviors of resource providers cannot be prevented.
They proposed a BFT group of one primary and 3f replicas
for tolerating different types of failures. The primary and
replicas form a BFT group for executing requests from the
cloud task. If some nodes of the BFT group are identified
as faulty, the cloud module will update the BFT group to
guarantee system reliability.

Yi Hu et al. [8] proposed a security-aware and fault-
tolerant job scheduling strategy for grid computing. The
scheduling strategy includes JRT (Job retry), JMG (Job
migration without checkpointing), and JCP (Job migra-
tion with checkpointing). They concluded that JRT strategy
has the most optimal system performance improvement for
small jobs and JCP strategy leads to the lowest performance

improvement. Unfortunately, the checkpointing method was
not described clearly.

Hyunjoo Kim et al. [9] proposed server selection schemes
for a service migration-based fault-tolerant streaming on
P2P computing.

2.2 QoS in computing environment

Various classification methods for QoS and QoS provision-
ing methods have been studied to meet diverse user needs
for services. QoS is defined in different ways depending on
the research area.

Qian Tao et al. [10] defined a Cloud_Services_QoS
including Basic_ QoS Set and Extended_QoS Set and
proposed a T_QoS (trustworthy QoS) computing algo-
rithm. Basic_ QoS_Set considers time and cost, and Ex-
tended_QoS_Set includes reliability, availability, security,
and reputation.

Sheikh Mahbub Habib et al. [11] provided a landscape of
trust and reputation based approaches for selecting service
providers in a cloud environment. They identified QoS+
(beyond QoS) parameters for cloud computing environ-
ments. In addition, they defined further parameters for per-
formance tests (latency, bandwidth, availability, reliability
and elasticity for performance tests, and crypto algorithms)
and security measures (key management, physical security
support, network security support, and data security sup-
port).

Meng Xu et al. [12] proposed a multiple QoS constrained
scheduling strategy of multi-workflows, not a single QoS
parameter such as execution time or cost. They used covari-
ance for time and cost in cloud computing and tried to sat-
isfy user QoS requirements by first scheduling a task with
minimum covariance nodes.

Peng Zhang and Zheng Yan [13] proposed a QoS aware
system for mobile cloud services that monitors the status
of QoS in each node for mobile cloud services at run time.
They used QoS properties for mobile devices like percent-
age of memory and CPU consumption, connection speed,
remaining battery percentage and packet loss rate, etc.

Yanchao Zhang and Yuguang Fang [14] proposed a rep-
utation system to predict the reliability of candidate servers
for clients and support reliable service selection in P2P net-
works. They defined the reputation of a server as the prob-
ability that the server is expected to demonstrate a cer-
tain behavior, which is assessed by a client based on self-
experiences with and other user feedback on the server. User
QoS experiences are recorded on a data structure called a
QoS experience vector. The reputation system uses reputa-
tion scores from QoS self-experience and support functions
for fault tolerance and load balancing.



914 Cluster Comput (2014) 17:911–926

2.3 Service (data sharing) in cloud or social network
environment

Many studies on service or data sharing among users and
efficiency enhancement of the sharing have been conducted
on cloud or social networks.

Juan M. Tirado et al. [15] proposed a data grouping
and placement strategy on LastFM, an on-line music portal
with social networking capabilities using cloud-based elas-
tic server infrastructure. In the network, users have the pos-
sibility of mutually connecting through friendship.

Kyle Chard et al. [16] defined a social cloud as a resource
and service sharing framework utilizing relationships estab-
lished between members of a social network. The social
cloud allows users to share heterogeneous resources with
low privacy concerns and security overheads by utilizing the
relationships in the computing environment.

Ryan Wooten et al. [17] proposed healthcare as a promis-
ing application of cloud computing and social media. They
described the design and prototype of a social healthcare
network through cloud computing and designed a trust-
aware role-based access control to ensure the privacy and
confidentiality of users.

2.4 Using CAN in computing environment

Most researches regarding CAN [18–21] focus on its utiliza-
tion in P2P networks. There are only a few studies on CAN
applicable to computing environments [22, 23].

Anuchart and Guang [24] proposed a new framework
for the self-organizing and self-healing certificate authority
(CA) group in CAN that provides certificates without a cen-
tralized trusted third party in P2P networks. To realize self-
organizing and self-healing functionalities, the CA group it-
self maintains its CAN structure in a dynamic fashion by
predefined group management policies and eliminates mali-
cious nodes from the CA group through a Byzantine Agree-
ment (BA) protocol. The multicast and broadcast commu-
nication is controlled by a CAN-based flooding algorithm.
As P2P networks are composed of dynamic nodes that join,
leave and fail unpredictably, they have characteristics simi-
lar to MSCC environments.

Henry et al. [25] introduced enhancement strategies to
CAN for computational grids that provide transparent data
distribution and replication. For enhancement to CAN, they
chose CAN as basis for distributed storage algorithm be-
cause of its enormous flexibility. They also used an algo-
rithm for supporting multiple data queries using CAN, an
algorithm supporting locality optimization by reducing la-
tency between underlying network structures using CAN
routing, and an algorithm supporting multiple zones per
node for flexibility. They improved CAN as an algorithmic
basis for a distributed storage system.

Fig. 1 Global view of MSCC

Roger et al. [26] proposed an approach to support spatial
data management over structured P2P systems by extending
CAN virtual space to physical spatial space and introduced
a new hash function for mapping spatial data objects onto
nodes over a modified CAN system. They identified the key
of modified CAN for each data object as a bit string. How-
ever, they did not actually prove it.

3 System environment

3.1 Mobile Social Cloud Computing (MSCC)

MSCC refers to both (1) social networks and mobile cloud
computing and (2) social cloud computing and mobile de-
vices. We regard MSCC as the latter. Namely, we consider
MSCC as social network-based cloud computing supporting
mobile devices. We define MSCC as follows:

Definition 1 Mobile Social Cloud Computing (MSCC) is
a computing model that includes mobile devices to support
user mobility and connects with social networks to reflect
real world user relationships, and therefore provides and
shares cloud services directly among the members of a so-
cial network.

We assume MSCC, the basis of this paper, as follows:

1. MSCC consists of a number of mobile devices for re-
questing cloud services and computing resources for
providing cloud services. Computing resources include
some cloud servers and mobile devices.

2. Mobile devices in MSCC create social networks based
on real world human relationships among mobile users.
Thus a mobile user’s device may belong to several social
networks.

3. Members of a social network share cloud services based
on basic authentication of the social network without any
further authentication.

Figure 1 presents a global view of MSCC in various com-
puting environments.

Figure 2 depicts cloud service utilization in MSCC.
User1 and user2 are on the same social network and user2



Cluster Comput (2014) 17:911–926 915

Fig. 2 Cloud service utilization in MSCC

has cloud service or data. When user1 requests cloud service
to a cloud server, the cloud server returns user2’s mobile de-
vice information. Ultimately, user1 and user2 are connected
and share the cloud service. Therefore, user1 does not have
to connect to a distant cloud server.

3.2 CAN (Content Addressable Network)

Content Addressable Network (CAN) [18, 19] is a space
partitioning mechanism that can be easily adapted for spa-
tial data. Because CAN is a distributed infrastructure that
provides hash table-like functionality, CAN has been used
as a base approach for large scale data management of fre-
quently moving objects in various computing environments:
distributed hash table (DHT) and key-based routing proto-
col, etc. [20, 21].

Each CAN node uses the CAN routing mechanism to for-
ward request messages, like insert, delete, and lookup, for a
key. The message is then routed by intermediate CAN nodes
towards the zone whose CAN node contains that key. For
CAN routing, a routing table containing the IP addresses of
the nodes is used. A node checks on which neighboring zone
is closest to the destination point and looks up the IP address
of a node in the closest neighboring zone via the routing ta-
ble.

In this paper, we use CAN structure not to improve the
performance of computing environment but rather to rep-
resent and manage network space consisting of mobile de-
vices, as well as cloud servers, for the following reasons.

1. As CAN represents distributed, not centralized, infras-
tructure, it is suitable for mobile social cloud environ-
ments consisting of multiple distributed mobile devices
and servers discussed in this paper.

2. CAN is able to represent a computing environment in
which mobile devices join and leave networks freely.
A key in CAN may be a mobile device, and CAN oper-
ations like insert and delete can be matched with joining
and leaving of mobile devices in MSCC.

3. CAN maintains a hash table using (key, value) pairs for
lookup. These (key, value) pairs can be mapped (cloud
service, mobile device) pairs to determine the proper
node for providing and sharing cloud services in MSCC.

Fig. 3 Architecture of MSCC

4. CAN is used in peer-to-peer file sharing systems, such
as Napster, in which data is stored in end-user devices
rather than on a central server. The system is consistent
with social network environments that share multimedia
data with friends, family and others. Therefore, CAN is
also used in MSCC.

3.3 Architecture of MSCC

MSCC, based on wired servers, includes mobile devices to
support mobile users requesting cloud services in the net-
work. Mobile users use mobile devices such as smartphones,
laptops, PDAs, etc. that utilize mobile and wireless net-
works. These mobile devices can communicate with wired
computers and other devices through AP (Access Point).
There are multiple cloud servers in MSCC and each mobile
device can access a cloud server. Cloud servers can provide
services to several mobile devices. Every mobile device has
a main cloud server that the mobile device is registered after
joining the network. Mobile devices transmit their informa-
tion to the main cloud server periodically.

Mobile users can be a member of a social network by
using real world relationships and the members of a social
network can share cloud service or data without further au-
thentication. Not only cloud servers but also mobile devices
provide cloud services to other members of the social net-
work, so mobile devices act as resources.

Cloud servers and mobile devices have their positions de-
termined by GPS in the network and can recognize the oth-
ers’ position through a main cloud server. They know who
is a member of their social network through information
stored in the main cloud server. Therefore, a mobile device
requests cloud services to the closest cloud server or mo-
bile device that is also a member of social network. This
should result in improved service response time as it allows
the sharing of cloud services without any further authentica-
tion.

Figure 3 depicts the architecture of an MSCC environ-
ment. There are some cloud servers and mobile devices con-
necting to APs. Mobile devices form a social network with



916 Cluster Comput (2014) 17:911–926

Table 1 Information stored in a resource

other devices and cloud servers, and a cloud server can be a
member of every social network to provide cloud services.

Every cloud server has a CAN structure to manage mo-
bile devices. Every mobile device is registered on CAN in
the cloud server and is mapped on a point of CAN having a
virtual logical address, namely CAN coordinates, for CAN
routing.

3.4 Preliminary

In MSCC, a mobile device can be used as a resource, so
the mobile device requests and provides cloud service us-
ing a resource ID. Resource ID is managed by the resource
along with GPS-based coordinates (x, y), AP id, current and
neighboring zone IDs of CAN, social network ID, and cloud
service IDs. GPS-based coordinates are used to search for a
resource in a neighboring cloud server and compute the dis-
tance between the resource and a requested resource. Zones
of CAN are used to look up any resource on cloud servers.
Cloud service ID refers to the ID of a cloud service that the
resource can provide to other resources. This information is
periodically sent to the main cloud server. Table 1 shows in-
formation stored in a resource.

Each cloud server stores and manages resource informa-
tion, including resource ID, reputation, resourceability, cost,
social network ID, etc. Reputation and resourceability are
introduced in Sect. 4. Cloud servers also store cloud service
information such as service ID, time, frequency, and IDs of
resources that can provide the cloud service. Moreover, the
cloud server stores social network information, including so-
cial network ID and list of members constructed from social
network ID transmitted by mobile devices. The information
stored in a cloud server is summarized in Table 2.

When a cloud server receives a request for cloud service,
the server looks for the most proper resource to provide the
service. For cloud service delivery, the algorithm to find the
most proper resource is introduced in Sect. 4.

4 Fault tolerance and QoS scheduling

4.1 Filtering for malicious user

It is not fair if one user only requests a cloud service and
another user only provides a cloud service in a network. For

Table 2 Information stored in a cloud server

a sound and healthy network, there should not be a unilateral
service or data flow. In this scheduling, the basis of usage
of networks is mutual communication among users of the
network.

Malicious in this paper includes all user acts that only
use cloud services from other users or avoid providing cloud
services to others. Malicious users may reject another’s re-
quest when getting a request for cloud services from another
user or disconnect another user forcibly even while provid-
ing cloud services to another user.

Because malicious users reduce cloud service quality,
we exclude malicious users from MSCC network configura-
tions. To do this, we use mobile device reputation. If some-
one had behaved badly or maliciously in sharing of cloud
services previously, that person will have a low reputation.

We define the reputation of a mobile device as fol-
lows [14].

Definition 2 Reputation is the probability of a mobile de-
vice that can be assessed by a server or other mobile device
on the basis of feedback. Reputation is used to determine
whether a user of mobile device is malicious or not in a Mo-
bile Social Cloud network.

4.1.1 Calculation of reputation

An MSCC network is represented by CAN. Mobile devices
join the network by communicating with a randomly se-
lected node in CAN and then managed by a main cloud
server. The main cloud server manages the mobile device
after the mobile device joins CAN.

The main cloud server sends a unique resource identifier
(resource_ID) and test application to a newly joined mobile
device. After some time, the main cloud server requests the
result of the test application to the mobile device. Malicious
users may not return the result, return an error result, or re-
turn part of result. Namely, the test application is used to



Cluster Comput (2014) 17:911–926 917

calculate the reputation value of a mobile device and deter-
mine whether the user is malicious or not.

After the mobile device transfers the result of the test ap-
plication to the main cloud server, the main cloud server cal-
culates the reputation value of the mobile device by compar-
ing the original answer of the test application and the result
received from the mobile device. If the reputation value of
the mobile device is below a specified threshold, the main
cloud server evaluates the mobile device as malicious.

We use a series of random matrices for the test applica-
tions. The initial reputation, reputation0, of a mobile device
can be attained as shown in Eq. (1) in which m is the number
of matrix in a series and n is the number of matrix element in
a matrix. The expression CSij represents a value of the an-
swer matrix element for the test application in a main cloud
server, and MDij represents a value of the result matrix el-
ement that is calculated in the mobile device and submitted
to the main cloud server.

reputation0 =
m∑

i=1

n∑

j=1

RSij

RSij =
[

0 (CSij �= MDij )

1 (CSij = MDij )

(1)

If the mobile device is reliable, the reputation value is
high. Conversely, the lower the reputation value, the higher
the probability of malicious user. If the initial reputation
reputation0 of a mobile device is below a certain threshold,
the mobile device may not be connected to that particular
MSCC. That means the mobile device can neither request
nor provide cloud service in the network.

Because the status of a mobile device constantly changes,
reputation is recalculated periodically by Eq. (2) to consider
changes. The notation α is a weighted value for current repu-
tation ranging from 0 to 1. Also, if the reputation reputationi

of a mobile device is below the threshold, the mobile device
can neither request nor provide cloud service.

reputationi+1

=
[

reputationi (if i = 0)

reputationi ∗ α + reputationi−1 ∗ (1− α) (if i ≥ 1)

(2)

The average reputation of a mobile device for some dura-
tion is calculated by Eq. (3). N is the number of calculations
in the duration. In Sect. 4.3, the average reputation is used
for applying mobile QoS to select a proper resource.

avg_reputationMD =
N−1∑

i=0

reputationi/N (3)

Algorithm 1 Algorithm for network construction

4.1.2 Algorithm for network construction

Through reputation, a mobile device that has just joined the
network can be evaluated as to whether it may construct the
network or not.

If the initial reputation is less than the threshold, the mo-
bile device is excluded from the construction of the network
for a particular time unit, which means the device can neither
obtain nor provide cloud service. If the main cloud server
does not receive a result from the mobile device, the main
cloud server sets the reputation of the mobile device to the
minimum value, labeling the mobile device as malicious.
After some time unit, the main cloud server recalculates the
reputation of the mobile device.

Algorithm 1 shows the algorithm for MSCC network
construction in a main cloud server.

4.2 Cloud service delivery with social network

4.2.1 Basic algorithm for cloud service delivery

When a cloud server receives a request for cloud service
from a mobile device, the server checks first whether the
mobile device and the cloud server are in the same network
area, namely the same AP area. If so, the cloud server di-
rectly provides cloud service to the mobile device. If not, the
server searches for a proper resource that has the requested
cloud service and is managed by the cloud server’s CAN.

The cloud server puts searched resources into the first
candidate group. Then, the cloud server checks the social
network of the mobile device and selects resources belong-
ing to the social network of the mobile device, that is,
the same social network among the first candidate group.
These selected resources are included in the second candi-
date group.



918 Cluster Comput (2014) 17:911–926

If there are no proper resources in the second candidate
group, the server may then transfer the request to the clos-
est neighboring cloud server with the resource_ID of the
mobile device. CAN based-coordinates are used to search
the proper resource in a cloud server, and GPS based-
coordinates are used to identify the closest neighboring
cloud server.

In sequence, the cloud server selects a proper resource
by calculating the Euclidean distance between the two re-
sources, mobile device A requesting cloud service and re-
source B included in the second candidate group, in Eq. (4).
If the coordinates of mobile device A is A(p1,p2), then the
coordinate of resource B is B(q1, q2).

distanceAB =
√√√√

n∑

i=1

(pi − qi)2 (4)

After searching for the most appropriate resource, the
cloud server returns its resource_ID to the mobile device re-
questing cloud service. When the requested cloud service is
completed, the mobile device informs the cloud server.

Finally, the cloud server updates the reputation of the
proper resource and the frequency of the requested cloud
service. If the resource does not provide cloud service to the
mobile device, the reputation of the resource will decline.

In addition, if the frequency of a cloud service is greater
than the threshold, the cloud server replicates the cloud ser-
vice to another neighboring cloud server according to the
replication algorithm in Sect. 4.4.

Algorithm 2 shows the basic algorithm for cloud service
delivery in a cloud server.

4.3 QoS provisioning

4.3.1 QoS metrics for MSCC

We propose QoS metrics for MSCC to consider user needs
and mobile device characteristics. We classify QoS metrics
into common QoS and mobile QoS. Common QoS refers
to general QoS for most users and includes time and cost.
Time is task processing time for executing a task, and cost is
task processing cost for using a cloud resource. Mobile QoS
denotes specialized QoS on a mobile device and includes
reputation and resourceability. Figure 4 shows QoS metrics
for MSCC.

Reputation is already described in Sect. 4.1 and is subject
to a mobile user’s usage patterns based on historical infor-
mation. We use average reputation by Eq. (3) for QoS. We
define resourceability as follows.

Definition 3 Resourceability is the probability that a mobile
device can be used to provide cloud service to other mobile
devices, i.e., the ability to be a resource for a mobile device.

Algorithm 2 Algorithm for Cloud Service Delivery

Resourceability is a metric that includes remaining bat-
tery power, network status, and performance of a mobile de-
vice. Resourceability prevents faults that can arise from the
movement or other error of mobile devices during execu-
tion. That means mobile devices with low remaining battery
power, poor network status, or low performance will not be
selected as resources. Inversely, mobile devices with high
remaining battery power, good network status, and high per-
formance are eligible to provide cloud service to other mo-
bile devices.

Users desire a resource with quick time, low cost, higher
reputation, and better resourceability. Because a resource
with higher reputation and resourceability generally has
high cost, a cloud server will try to select a resource with



Cluster Comput (2014) 17:911–926 919

Fig. 4 QoS metrics for MSCC

low cost and higher reputation and resourceability for the
user whenever possible.

4.3.2 Calculation of resourceability

Resourceability, used as a criterion to select the most proper
mobile device, consists of battery power, network status and
performance. These three variables are independent and af-
fect resourceability; therefore, we use multiple regression
analysis. The resourceability value, ranging from 0 to 1, of a
mobile device is computed through Eq. (5). Variables x1, x2,
and x3 represent remaining battery power, network status,
and performance of a mobile device, respectively. Parame-
ters β0, β1, β2 and β3 mean the regression coefficients and
ε means the error rate in multiple regression.

resourceability = β0 + β1x1 + β2x2 + β3x3 + ε (5)

The higher the resourceability value, the higher the prob-
ability of the mobile device to be the most proper resource.

Because a mobile device with low remaining battery
power or poor network status cannot be used as a resource,
if the value of x1 and x2 is less than or equal to the thresh-
old, we set the resourceability value of the mobile device to
zero.

4.3.3 Algorithm for QoS provisioning

If a user wants to use QoS for cloud service, the user re-
quests cloud service through the QoS metrics. Namely, a
mobile device user requesting a cloud service can set the
QoS metrics. If QoS metrics including common QoS and
mobile QoS are set, the QoS algorithm is applied instead
of the basic algorithm for cloud service delivery, as seen in
Sect. 4.2.

When a cloud server receives QoS metrics from a mobile
device, the cloud server applies the QoS metrics to MSCC.
First, the cloud server checks whether the mobile device and
the cloud server are in the same network area, as in Sect. 4.2.
If so, the cloud server provides cloud service to the mobile

device directly. The reason is that a cloud server is unaf-
fected by remaining battery power, its network status and
performance is good and a cloud server is included in ev-
ery social network. If the two are not in the same network
area, the server searches for resources, along the lines of
Sect. 4.2.

After obtaining the second candidate group, the cloud
server applies common QoS to the second candidate group
and obtains resource group Rtc as a result. Namely, resource
group Rtc is a set of resources satisfying time and cost
among the second candidate group.

Rtc = {
mobile devices satisfying(QoStime × QoScost)/

second candidate group
}

If resource group Rtc has only one resource, the cloud
server returns the resource_ID of the resource to the mo-
bile device. If resource group Rtc includes more than one
resource, the cloud server applies mobile QoS to resource
group Rtc and obtains resource group Rrr as a result.
QoSreputation and QoSresourceability are calculated by Eqs. (3)
and (5), respectively

Rrr = {
mobile devices satisfying

× (QoSreputation × QoSresourceability)/Rtc

}

If resource group Rrr has only one resource, it becomes
the proper resource. If resource group Rrr includes more
than one resource, the cloud server ranks the resources in
group Rrr by calculating the distance between the mobile
device requesting cloud service and a resource included
in Rrr using Eq. (4). The cloud server selects the highest
ranked resource as the most proper resource.

After selecting the appropriate resource, the cloud server
returns its resource_ID to the mobile device requesting
cloud service. When the requested cloud service is com-
pleted, the mobile device informs the cloud server to that
effect.

Finally, the cloud server updates the reputation of the
proper resource and the frequency of the requested cloud
service, as in Sect. 4.2.

Algorithm 3 presents the QoS algorithm in a cloud server.



920 Cluster Comput (2014) 17:911–926

Algorithm 3 Algorithm for QoS

4.4 Replication and load-balancing

4.4.1 Algorithm for replication of service request

Mobile devices may have problems such as battery drain,
software error and network disconnection. Therefore, given
these faults, even after a mobile device receives a request
for cloud service, the mobile device may not provide cloud
service to other mobile devices. It is essential to deal with
these faults.

Replication helps improve service availability, service
completion rate and load balancing of the entire network
because the request for cloud service can be distributed to
replicas. Therefore, we use cloud service replication to min-

Algorithm 4 Algorithm for Replication in a Cloud Server

imize waiting time for the request and improve MSCC per-
formance.

When a cloud server receives a request for cloud service,
the cloud server looks for two more proper resources and
returns their resource_IDs using the cloud service delivery
algorithm or QoS algorithm.

A mobile device requests the cloud service to the re-
sources having the resource_IDs that have been received
from the cloud server. If the mobile device cannot connect
with one resource or some faults occur over the cloud ser-
vice, the mobile device asks the other resource to provide
cloud service.

Algorithms 4 and 5 show the algorithm for replication
of service request in a cloud server and a mobile device,
respectively.

4.4.2 Algorithm for replication with load-balancing

Cloud servers check the cloud service frequency periodi-
cally. Frequency increases whenever a request for the cloud
service is issued and decreases whenever a time unit passes
without any request for cloud service.

If the frequency of a cloud service exceeds the thresh-
old, the cloud service is deemed to be popular and the
cloud server replicates the cloud service to other neighbor-
ing cloud servers. For replication, a cloud server informs
a neighboring cloud server to replicate a cloud service and
transfers the cloud service.



Cluster Comput (2014) 17:911–926 921

Algorithm 5 Algorithm for Replication in a Mobile Device

When a neighboring cloud server receives the notification
of replication, it stores the cloud server and set the frequency
value of the cloud service to one.

After some time unit, if there is no request for a cloud
service and the frequency is zero, a cloud server deletes the
cloud service.

Algorithms 6 and 7 present the algorithm for replication
supporting load balancing in a cloud server and the neigh-
boring cloud server, respectively.

5 Performance evaluation

5.1 Experimental setup

We use CloudSim [27] to simulate an MSCC environment.
CloudSim is a framework for modeling and simulation of
cloud computing infrastructures and services.

In order to build a network that includes mobile devices,
we use a network topology generator, BRITE (Boston Uni-
versity Representative Internet Topology gEnerator), a tool
that generates realistic Internet topologies. Each BRITE re-
sult value corresponds to the geographical location of a mo-
bile device.

We assume that there is no data transfer delay between
mobile devices belonging to the same AP. In addition we as-
sume that there is no usage error for cloud services between
SNS members in the same SNS Group.

For the simulation, we set the configuration for simula-
tion as Table 3.

We classify the simulation environments into four cases
according to (1) the filtering of malicious users, (2) use of
SNS, (3) use of user QoS, and (4) use of service replica-
tion. According to the algorithm for QoS Provisioning in
Sect. 4.3, cases supporting user QoS but not supporting SNS
concurrently among them are not considered in this paper.
That is, we exclude these four cases for the simulation.

Algorithm 6 Algorithm for Replication with Load-
balancing in a Cloud Server

Algorithm 7 Algorithm for Replication with Load-
balancing in Neighboring Server

Table 4 shows the twelve cases for simulation accord-
ing to fault tolerance and QoS scheduling. We simulated 30
times for each case.



922 Cluster Comput (2014) 17:911–926

5.2 Evaluation results and analysis

To evaluate the scheduling algorithm performance of 50
cloud services, we use the following criteria: (1) average
execution time, (2) finish time, (3) reliability and (4) error
rate of cloud services. We also use replication factor, i.e.,
the number of replicated service is set to 1, for the replica-
tion and load-balancing algorithm.

Table 3 Configurations for simulation

• number of mobile devices: 100

• number of VM(virtual machine)s: 30

• number of cloud services: 50

• number of AP(access point)s: 4

• number of SNS(social network service)s: 3

Table 4 Simulation cases

Filtering of
malicious users

SNS User
QoS

Service
replication

Case1 No No No No

Case2 No No No Yes

Case3 No Yes No No

Case4 No Yes No Yes

Case5 No Yes Yes No

Case6 No Yes Yes Yes

Case7 Yes No No No

Case8 Yes No No Yes

Case9 Yes Yes No No

Case10 Yes Yes No Yes

Case11 Yes Yes Yes No

Case12 Yes Yes Yes Yes

CAN structure does not affect either fault tolerance or
QoS scheduling performance and is only used to make a log-
ical structure of the mobile devices.

Table 5 and Fig. 5 compare each case of evaluation cri-
teria. Table 6 compares each case of evaluation criteria
through ranking from 1 to 12.

With the CAN structure, for average execution time, case
12 is the fastest and case 2 is the slowest. For finish time,
case 6 is the fastest. For reliability, case 10 is the most re-
liable. For error rate, case 12 is the most reliable. Without
the CAN structure, for average execution time, case 12 is
the fastest. For finish time, case 6 is the fastest. For reliabil-
ity, case 11 is the most reliable. For error rate, case 12 is the
most reliable.

From here on, because there is little difference between
with and without CAN, we consider only cases of evaluation
criteria with CAN.

5.2.1 Cloud service execution time

Under the same conditions, cases that filter malicious users
and use SNS and user QoS are faster and those replicat-
ing cloud service are slower. It seems that filtering mali-
cious users and using SNS and user QoS ensure reliable
cloud service among SNS members because as there are
fewer errors during cloud service, there is no need to re-
provide cloud service and therefore average execution time
decreases. Conversely, service replication is slower because
extra overhead, such as selecting a resource and determining
better cloud service results, is necessary for replication.

Table 7 shows the average execution time for each
scheduling algorithm according to use or not option. Fig-
ure 6 shows the average execution time for each case.

Table 5 Comparison of
evaluation results CASE Execution time Finish time Reliability Error rate

without
CAN

with
CAN

without
CAN

with
CAN

without
CAN

with
CAN

without
CAN

with
CAN

1 602.0 627.5 2097.8 2175.8 0.55 0.52 0.48 0.45

2 873.5 837.1 1637.0 1580.5 0.63 0.64 0.36 0.37

3 506.5 498.5 2166.5 2066.9 0.74 0.76 0.24 0.26

4 612.2 581.8 1602.8 1675.2 0.74 0.73 0.27 0.26

5 357.3 353.3 1423.3 1480.5 0.78 0.77 0.23 0.21

6 402.7 404.7 1262.8 1332.2 0.75 0.76 0.20 0.21

7 536.5 517.6 2275.8 2114.8 0.76 0.74 0.26 0.24

8 586.0 646.4 1683.0 1775.3 0.73 0.74 0.26 0.27

9 508.5 492.4 2169.2 2121.6 0.92 0.93 0.06 0.07

10 407.6 415.7 1649.1 1642.8 0.94 0.91 0.08 0.06

11 341.8 344.9 1456.0 1501.6 0.92 0.97 0.00 0.00

12 313.7 327.8 1359.5 1340.0 0.93 0.92 0.00 0.00



Cluster Comput (2014) 17:911–926 923

Fig. 5 Comparison of evaluation results

Table 6 Comparison of
evaluation results in ranks CASE Execution time Finish time Reliability Error rate

without
CAN

with
CAN

without
CAN

with
CAN

without
CAN

with
CAN

without
CAN

with
CAN

1 10 10 12 9 12 12 12 12

2 12 12 5 6 11 11 11 11

3 7 6 9 10 7 8 8 7

4 9 11 7 5 10 8 9 10

5 3 3 3 3 5 5 5 6

6 4 4 1 1 6 7 6 5

7 8 8 10 12 9 6 7 8

8 11 9 8 8 8 10 10 8

9 6 7 11 11 2 3 4 3

10 5 5 6 7 4 1 3 4

11 2 2 4 4 1 3 1 1

12 1 1 2 2 3 2 1 1

Table 7 Cloud service execution time with CAN

Use or
not

Filtering of
malicious users

SNS User
QoS

Service
replication

No 550.48 657.16 577.13 472.35

Yes 457.47 427.38 357.65 535.59

5.2.2 Cloud service finish time

Under the same conditions, cases that use SNS, user QoS,
and service replication are faster than those not using them.
Regarding the filtering of malicious users, there is no appar-
ent difference between use and non-use. Using SNS and user
QoS is faster as in Sect. 5.2.1. For service replication, using
the algorithm is more optimal as, between the original and
replication cloud services, one cloud service finished earlier
than the other. Its execution time is set to the cloud service
execution time.

Table 8 Cloud service finish time with CAN

Use or
not

Filtering of
malicious users

SNS User
QoS

Service
replication

No 1718.52 1957.04 1894.12 1910.20

Yes 1749.35 1645.10 1413.57 1557.67

Table 8 shows the average finish time for each algorithm
according to the use or not option and Fig. 7 shows the av-
erage finish time for each case.

5.2.3 Cloud service reliability and error rate

Under the same conditions, all cases for each algorithm pro-
duce a more optimal result than when the algorithm is not
used. For all cases, using each scheduling algorithm im-
proves cloud service reliability and simultaneously reduces
the cloud service error rate. For service replication, using
service replication does not seem to have much effect on



924 Cluster Comput (2014) 17:911–926

Fig. 6 Cloud service execution time with CAN

Fig. 7 Cloud service finish time with CAN

Table 9 Cloud service reliability with CAN

Use or
not

Filtering of
malicious users

SNS User
QoS

Service
replication

No 0.69 0.66 0.75 0.78

Yes 0.87 0.84 0.85 0.78

Table 10 Cloud service error rate with CAN

Use or
not

Filtering of
malicious users

SNS User
QoS

Service
replication

No 0.29 0.33 0.25 0.20

Yes 0.11 0.13 0.10 0.19

either cloud service reliability or the error rate because the
replication factor is 1. If the replication factor is increased,
service replication will affect the results.

Tables 9 and 10 exhibit average cloud service reliability
and the error rate for each scheduling algorithm according
to use or non-use. Figures 8 and 9 show the average cloud
service reliability and error rate for each case.

5.2.4 Evaluation results with CAN

When considering the four scheduling algorithms for each
case, cases 11 and 12 produce the most optimal perfor-
mance. These cases filter malicious users and use SNS and

user QoS. Conversely, the worst performing cases, 1 and 2,
neither filter malicious users nor use SNS and user QoS.
In other words, filtering malicious users and using SNS
and user QoS improve cloud service performance, includ-
ing cloud service execution time, finish time, reliability, and
error rate. Service replication with the high replication fac-
tor improves reliability and reduces the error rate.

6 Conclusion

6.1 Summary of the paper

We propose a fault tolerance and QoS scheduling using
CAN in MSCC in this paper.

MSCC is a social network-based cloud computing envi-
ronment supporting user mobility, user QoS, and sharing of
cloud services. We use a CAN structure, one of distributed
network structures, to manage mobile devices in the com-
puting environment.

Fault tolerance QoS scheduling consists of four sub-
scheduling algorithms: malicious user filtering, cloud ser-
vice delivery, QoS provisioning, and replication and load-
balancing. By using fault tolerance and QoS scheduling,
faults arising from mobile device are tolerated, user QoS
needs are considered, and members of a social network share
cloud services with other members without further authenti-
cation.



Cluster Comput (2014) 17:911–926 925

Fig. 8 Cloud service reliability with CAN

Fig. 9 Cloud service error rate with CAN

As described the simulation results in Sect. 5, using a
SNS improves cloud service execution time and service re-
liability because members of a social network do not act ma-
liciously. Also, filtering malicious users increases cloud ser-
vice reliability and service replication increases cloud ser-
vice execution time and reliability.

Therefore, the proposed scheduling algorithms can be ap-
plied to improve execution time and reliability in a wide
range of computing environments that provide shared ser-
vices.

6.2 Future work

We plan to study the replication factor for improving cloud
service reliability and reducing the error rate when using ser-
vice replication, as described in Sect. 4.4. In addition, we are
planning to conduct a wider variety of experiments to study
various QoS metrics and additional factors in MSCC and
will apply this fault tolerance QoS scheduling algorithms to
real world environments.

References

1. Peter, M., Timothy, G.: The NIST definition of cloud computing.
National Institute of Science and Technology, Special Publication
800-145 (2011)

2. http://en.wikipedia.org/wiki/Social_network. Accessed 20 August
2012

3. http://www.ust-global.com/blog/cloud-mobile-social-paradigm.
aspx. Accessed 20 August 2012

4. http://www.wired.com/insights/2012/05/social-mobil_e-cloud/.
Accessed 20 August 2012

5. Jing, D., Scott, H., Yunghsiang, H., Julia, D.: Fault-tolerant and re-
liable computation in cloud computing. In: Globecom Workshops,
pp. 1601–1605 (2010)

6. Jie, L., Marty, H., You-Wei, C., Youngryel, R.: Fault Tolerance
and Scaling in e-Science Cloud Applications: Observations from
the Continuing Development of MODISAzure. e-Science 246–
253 (2010). doi:10.1109/eScience.2010.47

7. Yilei, Z., Zibin, Z., Michael, L.: BFTCloud: A Byzantine Fault
Tolerance Framework for Voluntary-Resource Cloud Comput-
ing. Cloud Computing 444–451 (2011). doi:10.1109/CLOUD.
2011.16

8. Yi, H., Bin, G., Fengyu, W.: Cloud model-based security-aware
and fault-tolerant job scheduling for computing grid. ChinaGrid,
25–30 (2010)

9. Hyunjoo, K., Sooyong, K., Heon, Y.: Server selection schemes
considering node status for a fault-tolerant streaming service on
a peer-to-peer network. J. Inf. Process. Syst. 2(1), 6–12 (2006)

10. Qian, T., Huiyou, C., Yang, Y., Chunqin, G.: A trustworthy man-
agement approach for cloud services QoS data. In: ICMLC, pp.
1626–1631 (2010)

11. Habib, S.M., Ries, S., Muhlhauser, M.: Cloud computing land-
scape and research challenges regarding trust and reputation. In:
UIC/ATC, pp. 412–415 (2010)

12. Meng, X., Lizhen, C., Haiyang, W., Yanbing, B.: A multiple QoS
constrained scheduling strategy of multiple workflows for cloud
computing. In: ISPA, pp. 629–634 (2009)

13. Peng, Z., Zheng, Y.: A QoS-aware system for mobile cloud com-
puting. In: CCIS, pp. 518–522 (2011)

http://en.wikipedia.org/wiki/Social_network
http://www.ust-global.com/blog/cloud-mobile-social-paradigm.aspx
http://www.ust-global.com/blog/cloud-mobile-social-paradigm.aspx
http://www.wired.com/insights/2012/05/social-mobil_e-cloud/
http://dx.doi.org/10.1109/eScience.2010.47
http://dx.doi.org/10.1109/CLOUD.2011.16
http://dx.doi.org/10.1109/CLOUD.2011.16


926 Cluster Comput (2014) 17:911–926

14. Yanchao, Z., Yuguang, F.: A fine-grained reputation system for
reliable service selection in peer-to-peer networks. IEEE Trans.
Parallel Distrib. Syst. 18(8), 1134–1145 (2007)

15. Juan, T., Daniel, H., Florin, I., Jes’us, C.: Predictive data grouping
and placement for cloud-based elastic server infrastructures. In:
CCGrid, pp. 285–294 (2011)

16. Kyle, C., Simon, C., Omer, R., Kris, B.: Social cloud computing: a
vision for socially motivated resource sharing. Serv. Comput. 5(4),
551–563 (2011)

17. Ryan, W., Roger, K., Frank, S., Yan, B., Meeta, S.: Design and im-
plementation of a secure healthcare social cloud system. In: CC-
Grid, pp. 805–810 (2012)

18. Sylvia, R., Paul, F., Mark, H., Richard, K., Scott, S.: A scal-
able content-addressable network. In: SIGCOMM, pp. 161–172
(2001)

19. Alexandru, P., David, E., Markus, F., Demetres, K.: Routing in
content addressable networks: algorithms and performance. In:
IEEE ITC Specialist Seminar (2009)

20. Mohammed, A., Egemen, T., Rui, Z., Lars, K.: Load Balancing
for Moving Object Management in a P2P Network. In: DASFAA.
LNCS, vol. 4947, pp. 251–266. Springer, Berlin (2008)

21. Sahin, O.D., Gupta, A., Agrawal, D., Abbadi, A.: A peer-to-peer
framework for caching range queries. In: ICDE, pp. 165–176
(2004)

22. Amir, B., Anang, H., Muhamad, A., Asad, K.: Under the cloud: a
novel content addressable data framework for cloud parallelization
to create and virtualize new breeds of cloud applications. In: NCA,
pp. 168–173 (2010)

23. Shidong, Z., Bai, W., Gengyu, W., Chao, X.: Web QoS manage-
ment model based on CAN. In: ISCID, pp. 143–146 (2011)

24. Anuchart, T., Guang, G.: A framework toward a self-organizing
and self-healing certificate authority group in a content address-
able network. In: WiMob, pp. 614–621 (2010)

25. Henry, R., Daniel, V., Djamshid, T.: Enhancements to CAN for the
application as distributed data storage system in grids. In: Broad-
Nets, pp. 432–438 (2005)

26. Roger, Z., Wei-Shinn, K., Haojun, W.: Spatial data query support
in peer-to-peer systems. In: COMPSAC, pp. 82–85 (2004)

27. Rodrigo, N.C., Rajiv, R., Anton, B., De Rose, C.A.F., Buyya, R.:
CloudSim: a toolkit for modeling and simulation of cloud com-
puting environments and evaluation of resource provisioning al-
gorithms. SPE J. 41(1), 23–50. ISSN:0038-0644 (2011)

SookKyong Choi earned her Ph.D.
in Computer Science from Korea
University in 2013. She is currently
a research professor at Korea Uni-
versity researching mobile cloud
computing and social cloud comput-
ing.

KwangSik Chung received his
Ph.D. in Computer Science from
Korea University in 2000. He has
been a professor in the department
of Computer Science at Korea Open
National University since 2003. His
research areas are grid computing,
cloud computing and mobile learn-
ing.

Heonchang Yu received his Ph.D.
in Computer Science from Korea
University in 1994. He has been
a professor in the Department of
Computer Science Education in Ko-
rea University since 1998. His re-
search areas are distributed and
cloud computing.


	Fault tolerance and QoS scheduling using CAN in mobile social cloud computing
	Abstract
	Introduction
	Related works
	Fault tolerance in computing environment
	QoS in computing environment
	Service (data sharing) in cloud or social network environment
	Using CAN in computing environment

	System environment
	Mobile Social Cloud Computing (MSCC)
	CAN (Content Addressable Network)
	Architecture of MSCC
	Preliminary

	Fault tolerance and QoS scheduling
	Filtering for malicious user
	Calculation of reputation
	Algorithm for network construction

	Cloud service delivery with social network
	Basic algorithm for cloud service delivery

	QoS provisioning
	QoS metrics for MSCC
	Calculation of resourceability
	Algorithm for QoS provisioning

	Replication and load-balancing
	Algorithm for replication of service request
	Algorithm for replication with load-balancing


	Performance evaluation
	Experimental setup
	Evaluation results and analysis
	Cloud service execution time
	Cloud service finish time
	Cloud service reliability and error rate
	Evaluation results with CAN


	Conclusion
	Summary of the paper
	Future work

	References


