Cluster Comput (2014) 17:79-100
DOI 10.1007/s10586-013-0283-6

SpeQuloS: a QoS service for hybrid and elastic computing

infrastructures

Simon Delamare - Gilles Fedak - Derrick Kondo -
Oleg Lodygensky

Received: 1 October 2012 / Accepted: 29 May 2013 / Published online: 28 June 2013

© Springer Science+Business Media New York 2013

Abstract The large choice of Distributed Computing In-
frastructures (DCIs) available allows users to select and
combine their preferred architectures amongst Clusters,
Grids, Clouds, Desktop Grids and more. In these hybrid
DClIs, elasticity is emerging as a key property. In elastic in-
frastructures, resources available to execute application con-
tinuously vary, either because of application requirements
or because of constraints on the infrastructure, such as node
volatility.

In the former case, there is no guarantee that the com-
puting resources will remain available during the entire exe-
cution of an application. In this paper, we show that Bag-of-
Tasks (BoT) execution on these “Best-Effort” infrastructures
suffer from a drop of the task completion rate at the end of
the execution.

The SpeQuloS service presented in this paper improves
the Quality of Service (QoS) of BoT applications executed
on hybrid and elastic infrastructures. SpeQuloS monitors the
execution of the BoT, and dynamically supplies fast and re-
liable Cloud resources when the critical part of the BoT is
executed. SpeQuloS offers several features to hybrid DCIs

S. Delamare
CNRS, University of Lyon, Lyon, France
e-mail: Simon.Delamare @ens-lyon.fr

G. Fedak (X))
INRIA, University of Lyon, Lyon, France
e-mail: Gilles.Fedak @inria.fr

D. Kondo
INRIA, University of Grenoble, Grenoble, France
e-mail: Derrick.Kondo @inria.fr

0. Lodygensky
IN2P3, University of Paris XI, Paris, France
e-mail: Oleg.Lodygensky @lal.in2p3.fr

users, such as estimating completion time and execution
speedup. Performance evaluation shows that BoT executions
can be accelerated by a factor 2, while offloading less than
2.5 % of the workload to the Cloud.

We report on several scenarios where SpeQuloS is de-
ployed on hybrid infrastructures featuring a large variety of
infrastructures combinations. In the context of the European
Desktop Grid Initiative (EDGI), SpeQuloS is operated to
improve QoS of Desktop Grids using resources from pri-
vate Clouds. We present a use case where SpeQuloS uses
both EC2 regular and spot instances to decrease the cost of
computation while preserving a similar QoS level. Finally,
in the last scenario SpeQuloS allows to optimize Grid5000
resources utilization.

Keywords Distributed computing infrastructures - QoS -
Grids - Cloud

1 Introduction

Bag of Tasks (BoT) applications represent a significant part
of scientific computing workload. In the same time, infras-
tructures to execute these BoTs tend to diversity. Depending
on parameters such as performance, reliability, cost or qual-
ity of service, scientific communities can choose their in-
frastructure amongst Clusters, Grids, Clouds, Desktop Grids
and more, and also use any combinations of them.

An emerging characteristic of these infrastructures is
elasticity. In elastic infrastructures, the set of available re-
sources can change during time. For instance, Cloud com-
puting allows to scale up or scale down resources according
to users’ needs. The other source of elasticity is caused by
constraints from the infrastructures. For instance, Best Ef-
fort DCIs (BE-DClIs) are an infrastructure or a particular us-

@ Springer

mailto:Simon.Delamare@ens-lyon.fr
mailto:Gilles.Fedak@inria.fr
mailto:Derrick.Kondo@inria.fr
mailto:Oleg.Lodygensky@lal.in2p3.fr

80

Cluster Comput (2014) 17:79-100

age of an existing infrastructure that provides unused com-
puting resources without any guarantees that the computing
resources remain available to the user during the complete
application execution.

Desktop Grids (Condor [26], OurGrid [6], XtremWeb
[16]) and Volunteer Computing Systems (BOINC [4]),
which rely on idle desktop PCs are typical examples of Best
Effort DCIs. An example of elasticity in Grid computing is
usage of a best effort queue to harvest idle nodes in a cluster,
implemented by resource managers such as OAR [11]. Tasks
submitted in the best effort queue have the lowest priority; at
any moment, a regular task can steal the node and abort the
on-going best effort task. Cloud computing users can also be
subject to infrastructure elasticity. When Amazon EC2 Spot
instances [2] are used, the resources availability depends on
the evolution of market price. Other Cloud services [30] im-
plement similar concept. This is a relevant example of Cloud
usage as a Best Effort DCIL.

Although these BE-DClIs are prone to node failures and
host churn, they are still very attractive because of the vast
computing power provided at an unmatched low cost. Un-
surprisingly, several projects such as EDGeS [37] or Super-
Link [17] have built hybrid DCIs, where Desktop Grids, can
be used in conjunction with Grids and Clouds.

The drawback of BE-DClIs is their low reliability, and
they offer poor Quality of Service (QoS) with respect to
traditional DClIs. This study presents how the execution of
BoTs, which are the most common source of parallelism in
Grid Computing [31], is affected by the unreliable nature of
BE-DClIs: the main source of QoS degradation in BE-DCls
is due to the tail effect in BoT execution. That is, the last
fraction of the BoT causes a drop in the task completion
throughput.

To enhance QoS of BoT execution in BE-DCIs, we pro-
pose a complete service called SpeQuloS, which abbreviates
“Speculative execution and Quality of Service”. SpeQuloS
improves the QoS in three ways: (i) by reducing time to
complete BoT execution, (ii) by improving BoT execution
stability and (iii) by informing user about a statistical pre-
diction of BoT completion.

SpeQuloS takes advantage of hybrid and elastic DCIs
by dynamically allocating reliable resources from Clouds
to compensate volatility of BE-DCIs nodes. The issue of
outliers’ tasks slowing down parallel executions is known
for MapReduce applications and has been addressed by sys-
tems such as Mantri [3]. We propose a different approach
which does not require knowledge of the resources that
make up the infrastructure. By monitoring the BoT execu-
tion progress, very few information are needed to detect the
tail effect. This allows delivering SpeQuloS as an on-line
multi-BoT, multi-users service and able to serve several BE-
DCI simultaneously. In this article, we investigate several
strategies to decide when to assign tasks to Cloud workers

@ Springer

and how to provision Cloud resources. These strategies are
based on various metrics such as BoT completion thresholds
and task execution variance. Strategies are evaluated and
compared using a trace-driven simulator based from existing
Grid, Cloud, and Desktop Grid infrastructures. Our simula-
tor models two middleware which represents two different
approaches for handling hosts volatility: BOINC, which re-
lies on task deadlines and task replication and XtremWeb-
HEP (XWHEP), which implements host failure detector
based on heartbeats.

Performance evaluation results show that SpeQuloS is
able to effectively remove the tail effect that delays BoT
completion. In half of executions, the tail is totally removed
and is significantly reduced in the other half. As a conse-
quence, both for XtremWeb-HEP and BOINC the execution
of BoT applications is greatly improved on every BE-DClIs
investigated, and for any kinds of BoT workloads: An exe-
cution speed-up greater than 2 can be achieved. In addition,
Cloud provisioning strategies implemented are able to mini-
mize the usage of the Cloud resources: On average, less than
2.5 % of the BoT workload needs to be offloaded on Cloud
resources. Finally, our evaluation shows that SpeQuloS can
provide an accurate estimation of BoT completion time in
90 % of cases, greatly improving hybrid DCI user experi-
ence.

We also report on the SpeQuloS framework and its imple-
mentation. SpeQuloS has been designed to be deployed in
complex hybrid infrastructures involving multiple platforms
and spanning across several administration domains. It sup-
ports various Desktop Grid middleware (XtremWeb-HEP,
BOINC) and Cloud technologies (Amazon EC2, OpenNeb-
ula, Nimbus, Rackspace). Its architecture is modular and
distributed through several independent components.

We present various scenarios involving hybrid infrastruc-
tures and SpeQuloS: SpeQuloS is deployed on part of the
production European Desktop Grid Infrastructure (EDGI),
which interconnects several private and public Desktop
Grids, Grids and private Clouds across all Europe. In this
context, SpeQuloS is employed to improve QoS delivered
to Desktop Grid users, using resources from EDGI private
Clouds. Another use-case is presented where SpeQuloS low-
ers the cost of BoT execution on Amazon EC2. To achieve
this, Spot Instances are provisioned to execute the major part
of the BoT and when necessary, SpeQuloS instantiates reg-
ular instances to keep a satisfactory execution time. Finally,
SpeQuloS can be deployed on Grids, allowing harvesting
unused resources of these platforms while maintaining a
high QoS level by supplying stable resources when needed.
We present such a scenario in Grid5000.

The rest of the paper is organized as follow. In Sect. 2,
we introduce our analysis of running BoT applications on
best effort infrastructures. The SpeQuloS framework is pre-
sented in Sect. 3. Section 4 presents performance evaluation.

Cluster Comput (2014) 17:79-100

81

Section 5 reports on use-cases. Related works are presented
in Sect. 6, and finally we conclude in Sect. 7.

2 Best effort distributed computing infrastructures

In this section, we define Best Effort Distributed Computing
Infrastructures (BE-DCIs). The key principle of BE-DCIs
is that participating nodes can leave the computation at any
moment. We investigate how this characteristic impacts on
BoT execution performance.

2.1 BE-DCI types

The different types of BE-DCls that we study are as follows:

Desktop Grids (DGs) are grids composed of regular
desktop computers typically used for computation when no
user activity is detected. A node becomes unavailable when
the user resumes his activity or when the computer is turned
off. DGs can be supported by volunteer computing projects,
such as SETI@home, where individuals offer their comput-
ing resources. DGs can also be internal to an institution
which uses its collection of desktop computers to build a
computational Grid.

Best Effort Grids are regular Grids used in Best Effort
mode. Grid resource management systems, such as OAR
[11], allow submission in a Best Effort queue. Tasks sub-
mitted to that queue have a lower priority and can be pre-
empted by any other tasks. Therefore, if available grid re-
sources are exhausted when a regular task is submitted, the
resource manager kills as many best effort tasks as needed
to allow its execution.

Cloud Spot Instances are variable-priced instances pro-
vided by Amazon EC2 Cloud service. Contrary to regular
EC?2 instances, which have a fixed price per hour of utiliza-
tion, Spot instance prices vary according to a market price.
A user can bid for a Spot instance by declaring how much
he is willing to pay for one hour of utilization. If the market
price goes lower than the user’s bid, the instance is started.
The user will only be charged at the price of the market, not
at its bid price. If the market price goes higher than the bid,
the instance is stopped. The Nimbus Cloud system has re-
cently added support for Cloud Spot instances, as well as
“Backfill” instances [30], which are low priority instances
started when host resources are unused.

2.2 BoT execution on BE-DClIs

Bag of Tasks (BoT) are set of tasks that can be executed
individually. Although there are many solutions for BoT ex-
ecution on cross-infrastructure deployments, we assume that
a Desktop Grid middleware is used to schedule tasks on the
computing resources. We adopt the following terminology

to describe the main components of Desktop Grid middle-
ware: the server which schedules tasks, the user who sub-
mits tasks to the server, and workers which fetch and execute
tasks on the computing resources.

Desktop Grid middleware have several desired features
to manage BE-DCI resources: resilience to node failures, no
reconfiguration when new nodes are added, task replication
or task rescheduling in case of node failures and push/pull
protocols that help with firewall issues. We consider two
well established Desktop Grid middleware: BOINC which
runs many large popular volunteer computing projects such
as SETI@Home, and XtremWeb-HEP, which is an evolu-
tion of XtremWeb for the EGI Grid and implements several
security improvements such as handling of Grid certificates.
Condor and OurGrid would have also been excellent can-
didates, but we focus on middleware already deployed in
EDGI infrastructure.

User tasks are submitted to the BOINC or XtremWeb-
HEP server. Then, depending on the BE-DClIs targeted, the
BoT is executed in the following way:

— On Desktop Grids, a desktop node runs the worker soft-
ware.

— On the Grid, the worker software is submitted as a Pi-
lotJob, i.e. when the Grid task is executed, it starts the
worker, which connects to the DG server and can start ex-
ecuting tasks from this server.

— When using Cloud resources, we follow a similar proce-
dure by creating an instance, which contains the worker
software and runs it at start-up.

Several projects [17, 28, 36] follow a similar approach, and
find it to be efficient and scalable.

We captured several BoT executions, using the experi-
mental environment described in Sect. 4.1. BoT execution
profiles denote a slowdown in BoT completion rate during
the last part of its execution. Indeed, examination of individ-
ual BoT execution traces showed that most of time, BoTs
execution progression follows a pattern illustrated by Fig. 1:
The last fraction of the BoT takes a large part of the total
execution time. We called this phenomenon the tail effect.
Many factors can be responsible of tail effect, such as fail-
ure and volatility of computing nodes, tasks heterogeneity
and inefficient scheduling. Causes of this problem are not
discussed here.

To characterize this tail effect, we investigate the differ-
ence between the BoT actual completion time and an ideal
completion time. The ideal completion time is the BoT com-
pletion time that would be achieved if the completion rate,
calculated at 90 % of the BoT completion, was constant.
Therefore, the ideal completion time is t"(()%g) , where 7.(0.9)
is the elapsed time when 90 % of the BoT is completed. Fig-
ure 1 illustrates this definition. The ideal completion time is
computed at 90 % of completion because we observed that

@ Springer

82

Cluster Comput (2014) 17:79-100

T T
12 BoT completion b
Continuation is performed Tail part of the BoT £
at 90% of completion
: PESNNN\\
g
= 08¢ o~
8 Tail Duration
3
2 0.6 4
=
o
5]
S 04t :
m
0.2 H Ideal Time Actual Completion Time |
Slowdown = (Tail Duration + Ideal Time) / Ideal Time
0 L L L
0 20 40 60 80 100
Time
Fig. 1 Example of BoT execution with noteworthy values
1 T T
» BOINC ——
v XWHEP ——
s
£3
S 08 1
E3
2
Z)
=
o 06 1
o)
<
E
g
g 041 1
3
=
5]
[
=]
5 02 b
2
[s3)
0 L L
0.1 1 10 100

Tail Slowdown S (Completion time observed divided by ideal completion time

Fig. 2 Profiling execution of BoTs in BE-DClIs: Tail Slowdown is the
BoT completion time divided by the ideal completion time (i.e. deter-
mined by assuming a constant completion rate). The cumulative distri-
bution function of observed slowdowns is represented

except during start-up, the BoT completion rate remains ap-
proximately constant up to this stage of execution. There-
fore, the ideal completion would have been equivalent if it
had been calculated at 50 % or 75 % of BoT completion.

Intuitively, the ideal completion time could be obtained
in an infrastructure which would offer constant computing
capabilities.

We define the fail slowdown metric as the ratio between
ideal completion time and actual BoT completion time. The
tail slowdown reflects the BoT completion time increase fac-
tor resulting from the tail effect. Figure 2 presents the cu-
mulative distribution functions of tail slowdowns observed
during BoT executions in various BE-DCI environments.

One can observe that the distribution is largely skewed
and in some cases, the slowdown seriously impacts BoT
completion time. About one half of BoT executions are not
extremely affected by the tail effect. In those cases, the tail
slowdown does not exceed 1.33, meaning that the tail ef-

@ Springer

Table 1 Average fraction of Bag of Tasks in the tail, i.e. the ratio be-
tween the number of tasks in the tail versus the total number of tasks
in the BoT and average percentage of execution time in tail, i.e. the
percentage of BoT execution time (makespan) spent in the tail

BE-DCI Trace Avg. % of BoT in tail Avg. % of time in tail

BOINC XWHEP BOINC XWHEP
Desktop Grids 4.65 5.11 51.8 452
Best Effort Grids 3.74 6.40 274 16.5
Spot Instances 2.94 5.19 22.7 21.6

fect slows the execution by no more than 33 %. Other cases
are less favorable; the tail effect doubles the completion
time from 25 % of executions with XWHEP middleware to
33 % with BOINC. In the worst 5 % of execution, the tail
slowdown ranges from 400 % with XWHEP to 1000 % for
BOINC. These results are mostly due to host volatility and
the fact that Desktop Grid middleware have to wait for fail-
ure detection before reassigning tasks.

The tail part of a BoT execution is the set of tasks exe-
cuted during the tail effect, i.e. later than the ideal comple-
tion time. These tasks create the tail effect by taking unusu-
ally long to complete. Table 1 shows characteristics of BoT
tails, according to middleware and types of BE-DCIs con-
sidered.

In the table, we see that a few percent of BoTs’ tasks be-
long to the tail, whereas a significant part of the execution
takes place during the tail. Therefore, the completion time
of a small fraction of a BoT is many times longer than com-
pletion time of most of the BoT. This also explains why the
ideal time remains approximately the same when it is cal-
culated up to 90 % of BoT completion; the tail effect never
appears before that stage.

Results of this section show that the tail effect can affect
all kind of BE-DCls, whatever is its volatility, or amount of
resources, for both BOINC and XWHEP middleware. It may
strongly slow down the completion time of BoTs executed
on BE-DClIs and cause high execution variance, precluding
any performance prediction.

3 SpeQuloS

In this section, we are describing SpeQuloS service and im-
plementation, which aims at providing QoS to BoT execu-
tion on BE-DCls.

3.1 Overview of the SpeQuloS service

SpeQuloS is a service which provides QoS to users of Best
Effort DCIs by provisioning stable resources from Cloud
services.

Cluster Comput (2014) 17:79-100

83

Fig. 3 Sequence diagram of User I

SpeQulosS interactions in a
. . _
typical use-case scenario -

Cl‘editSystemI Oracle I Schcdulcrl quormatioul

‘(

BE-DCI I Cloud worker I
_
»

submitiBoT,Id)

Jonitor Loop)
grablnfo() al

BoTsCompIﬁioK

BoT Execution Loop

getPrediction(BoT _Id)

Compute

PrexjictedComp@etionT ime

To supply resources to a BE-DCI, SpeQuloS uses Infras-
tructure as a Service (IaaS) Cloud to instantiate a virtual in-
stance, called a Cloud worker. To be able to process tasks
from the BE-DCI, a Cloud worker typically runs the DG
middleware worker software that is used in the BE-DCI.

SpeQuloS implements various strategies to ensure effi-
cient usage of Cloud resources and provides QoS features
to BE-DCI users. As access to Cloud resources is costly,
SpeQuloS provides a framework to regulate access to those
resources among users and account for their utilization.

SpeQuloS is composed of several modules as shown in
Fig. 3. The Information module gathers and stores infor-
mation from BE-DClIs (see Sect. 3.2). The Credit System
module is in charge of the billing and accounting of Cloud-
related operations (Sect. 3.3). The Oracle module helps Spe-
QuloS determine how to efficiently deploy the Cloud re-
sources, and gives QoS information to users (Sects. 3.4
and 3.5). The Scheduler module manages the BoT and the
Cloud workers during its execution (Sect. 3.6).

Figure 3 presents a simplified sequence diagram of a typ-
ical usage of SpeQuloS and the different interactions be-
tween the components of the system.

The progression of the scenario is represented vertically,
and the various function calls between SpeQuloS modules
are represented by arrows. A description of the various steps
of this scenario is as follows:

— The first step of the scenario is a user submitting a BoT
tagged with a unique identifier (BoT_Id). The BoT exe-
cution is then monitored by the Information module.

— At any moment, the user can request the Oracle to pre-
dict the BoT completion time to estimate QoS benefits of

olderQoS(BoT _Td,Credits)
—

Scheduler Loop

getQoSOrders()

QoSOrdersList/BoT_Id]. |

shouldUseCjoug(BoT.Id

CloudworkersT oStart

startClougWorker(Cloud,BE-ID :I,BoT,Id)k

Compute
stopQloudWorker(Cloud,BoT _1d)

bill(BOT_Id,Credits)

|
|
|
|
|
|
1
|
1
|
1
|
|
|
|
|
[
|
|
|
|
:
% {‘

pay(BoT_1d)

using Cloud resources. Then, the user may order to the
Credit System QoS support for his BoT by allocating an
amount of credits. The Credit System verifies that there
are enough credits on the user’s account to allow the or-
der, and then it provisions credits to the BoT.

— The Scheduler periodically asks the Credit System if there
are credits allocated for some BoTs. If credits are provi-
sioned for a BoT, it asks the Oracle if it should start Cloud
workers to accelerate the BoT execution.

— Cloud workers are started by the Scheduler to take part
in the BoT execution. The Scheduler has to ensure that
appropriate BE-DCI tasks are assigned to Cloud workers.

— At each fixed period of time, the Cloud resource usage
must be billed. For each Cloud worker started, the Sched-
uler reports to the Credit System the corresponding cred-
its used. If all the credits allocated to the BoT have been
spent, or if the BoT execution is completed, Cloud work-
ers are stopped.

— The Scheduler finally asks the Credit System to pay for
the Cloud resources usage. The Credit System closes the
order relative to the BoT. If the BoT execution was com-
pleted before all the credits have been spent, the Credit
System transfers back the remaining credits to the user’s
account.

3.2 Monitoring BoT executions
SpeQuloS collects information on BoT executions which are
relevant to implement QoS strategies with two objectives:

(1) provide real-time information on BoT execution and BE-
DCI computational activities and (2) archive BoT execution

@ Springer

84

Cluster Comput (2014) 17:79-100

traces from which a statistical model can be extracted in or-
der to compute a prediction of BoT execution time. To do so,
the Information module stores in a database the BoT com-
pletion history as a time series of the number of completed
tasks, the number of tasks assigned to workers and the num-
ber of tasks waiting in the scheduler queue. The amount of
information transmitted per BoT is less than few hundreds
bytes per minute, which allows the system to handle many
BoTs and infrastructures simultaneously.

One key point is to hide infrastructure idiosyncrasies, i.e.,
different Desktop Grid middleware that have specific ways
of managing queues should appear in a unified format. Be-
cause we monitor the BoT execution progress, a single QoS
mechanism can be applied to a variety of different infras-
tructures.

3.3 Cloud usage accounting and arbitration

Because Cloud resources are costly and shared among users,
amechanism is required to account for Cloud resource usage
and to enable Cloud usage arbitration. The Credit System
module provides a simple credit system whose interface is
similar to banking. It allows depositing, billing and paying
via virtual credits.

BE-DCI users spend their credits to support a BoT exe-
cution. Credits denote an amount of Cloud worker usage. At
the moment, the Credit Systems uses a fixed exchange rate;
1 CPU.hour of Cloud worker usage costs 15 credits. At the
end of the BoT execution, the amount of credits correspond-
ing to the actual usage of Cloud resources is withdrawn from
the user’s credit account.

SpeQuloS manages users’ accounts. A deposit policy
is used by administrators for the provisioning of these ac-
counts. Although simple, the system is flexible enough to
give administrators control over Cloud usage. For instance,
a simple policy that limits SpeQuloS usage of a Cloud to
200 nodes per day would be to write a deposit function,
run once every 24 hours, which deposits d = max(200 x
node_cost_per_hour x 24,200 x node_cost_per_hour X
24 — user_credit_spent) credits into an account. Further-
more, the mechanism allows one to easily implement more
complex policies, such as the “network of favors” [5], which
would allow cooperation among multiple BE-DCIs and mul-
tiple Clouds providers.

3.4 Providing QoS estimation to BE-DCI users

Providing QoS features to BE-DCI users requires one to ap-
propriately inform these users on the QoS level they can ex-
pect. These objectives are the responsibility of the Oracle
module and are allowed by a careful exploitation of history
of BoT execution traces collected by the Information mod-
ule as well as real-time information about the progress of

@ Springer

BoT execution. With this information, the Oracle module is
able to compute a predicted completion time for the BoT.
This prediction helps users to decide if it worth spending
credits for BoT QoS.

The following prediction methods are currently used in
SpeQuloS: when a user asks for a prediction, SpeQuloS re-
trieves the current user BoT completion ratio () and the
elapsed time since BoT submission (#.(r)), using the BoTs
execution history stored in the Information module. It com-
putes the predicted completion time 7, as: f, = « @ Spe-
QuloS then returns this predicted time and its associated sta-
tistical uncertainty.

The o factor allows one to adjust the prediction based
on the history of previous BoT executions in a given BE-
DCI. At initialization, « factor is set to 1. Then, after some
BoTs executions, the value of « is adjusted to minimize the
average difference between the predicted time and the com-
pletion times actually observed. The statistical uncertainty
returned to the user is the success rate (with a 20 % toler-
ance) of predictions performed on previous BoT executions,
observed from the historical data.

3.5 Cloud resources provisioning strategies

We design and evaluate several different strategies for the
Oracle module to decide when and how many Cloud work-
ers should be started. We introduce three strategies to decide
when to launch Cloud workers:

— Completion Threshold (9C): Cloud workers are started as
soon as the number of completed tasks reaches 90 % of
the total BoT size.

— Assignment Threshold (92): Cloud workers are started as
soon as the number of tasks assigned to workers reaches
90 % of total BoT size.

— Execution Variance (V): Let #.(x) be the time at which x
percent of BoT tasks are completed and ¢, (x) be the time
at which x percent of BoT tasks were assigned to workers.
We call the execution variance var(x) = f.(x) — t,(x). In-
tuitively, the sudden change in the execution variance in-
dicates that the system in no longer in steady state. Cloud
workers are launched when the execution variance dou-
bles compared to the maximum one measured during the
first half of the BoT execution. More precisely, if ¢ is the
fraction of the BoT completed, Cloud workers are started
as soon as:
var(c) >2 max (Var(x))

x€[0,50 %]
Assuming that users spend an amount of credits corre-
sponding to S CPU.hours of Cloud usage, we propose two
approaches to decide how many Cloud workers to start:

— Greedy (G): S workers are immediately started. Cloud
workers that do not have tasks assigned stop immediately

Cluster Comput (2014) 17:79-100

85

to release the credits. Doing so, other workers which have
obtained tasks can complete their task.

— Conservative (C): Let #.(x) be the elapsed time at which
x percent of BoT tasks are completed. Then t”;—x) is the
BoT completion rate. At time f,, x, and #.(x,) are known
from the SpeQuloS Information module monitoring. We
can give an estimation of the remaining time #, by assum-
ing a constant completion rate:

Ie (xt)

Xt

tr=t:(1) —to =1c(1) — tc(xe) = —1c(xr)

Then, max(ir, S) Cloud workers are launched, ensuring

that there will be enough credits for them to run during
the estimated time needed for the BoT to complete.

We present three methods in the way of using these Cloud
resources:

— Flat (F): Cloud workers are not differentiated from any
regular workers by the DG server. Thus, in this strategy,
all workers compete to get the remaining tasks of the tail.

— Reschedule (R): In contrast with Flat, the DG server
differentiates Cloud workers from the regular workers.
Cloud workers are served first with pending tasks if there
are some, and if not with a duplicate of the tasks which
are being executed on regular workers. This strategy en-
sures that tasks executed on regular workers and which
may cause the tail are scheduled in the Cloud. However,
the strategy is optimistic in the sense that it allows a regu-
lar worker which has computed a result to send the result
and finish the task.

— Cloud Duplication (D): Cloud workers do not connect to
DG server, but connect to a dedicated server hosted in
the Cloud. All uncompleted tasks (even those under exe-
cution) are duplicated from the DG server to this Cloud
server and are processed by Cloud workers. This strategy
allows one to execute all the tasks of the tail on the stable
Cloud resources, while keeping Cloud workers separated
from regular Cloud workers.

Note that these strategies have different implementation
complexities. Flat is the simplest one which does not need
modification of the DG scheduler. Reschedule requires one
to modify the DG scheduler in order to differentiate Cloud
workers from regular one, which is not always possible in
a production infrastructure where system administrators are
reluctant to patch their DG servers. Cloud Duplication al-
lows one to keep the DG scheduler unchanged, and there-
fore is transparent to the BE-DCI. But requires that SpeQu-
loS implement the task duplication from DG to Cloud server
and the merging of results coming from Cloud workers and
the regular BE-DCI.

3.6 Starting workers on the cloud

The Scheduler module manages the Cloud resources provi-
sioned to support execution of the BoT for which users have

Algorithm 1 MONITORING BOT
for all B in BoTs do
if Oracle.shouldUseCloud(B) then
if CreditSystem.hasCredits(B) then
for all CW in Oracle.cloudWorkersToStart(B) do
CW.start()
configure(B.getDCI(),CW)
end for
end if
end if
end for

Algorithm 2 MONITORING CLOUD WORKERS
for all CW in startedCloudWorkers do
B < CW.getSupportedBoT()
if (Info.isCompleted(B)) or
(not CreditSystem.hasCredits(B)) then
CW.stop()
else
CreditSystem.bill(B,CW)
end if
end for

required QoS. If credits have been allocated, and the Ora-
cle decides that Cloud workers are needed, the Scheduler
starts Cloud workers to support a BoT execution. As soon as
Cloud resources are not needed anymore, or allocated cred-
its are exhausted, the Cloud workers are shutdown remotely.

Technically, this feature is achieved by building Cloud
instances which embed the DG worker middleware. We use
the libcloud library, which allows unifying access to various
TaaS Cloud technologies in a single API. Once the Cloud
worker is executed on a Cloud resource, the Scheduler con-
nects through SSH to the instance and configures the worker
to connect to the BE-DCI for processing tasks from the ap-
propriate BoT. Indeed, it is important to ensure that a Cloud
worker on which a user is spending credits is not computing
tasks belonging to other users.

Algorithms 1 and 2 present the various operations per-
formed by the Scheduler module to monitor BoT execution
and to manage Cloud workers.

3.7 Implementation

SpeQuloS has been developed as a set of independent mod-
ules, using the Python programming language and MySQL
databases. Communication between modules use web ser-
vices, therefore modules can be deployed on different net-
works. Several BE-DCIs and Cloud services can be con-
nected at the same time to a single SpeQuloS server.

The SpeQuloS implementation targets a production level
of quality. Testing and deployment are performed by differ-

@ Springer

86

Cluster Comput (2014) 17:79-100

ent teams of the EDGI consortium. The SpeQuloS source
code is publicly available.'

3.7.1 Desktop Grid’s middleware and Grid’s integration

SpeQuloS supports both BOINC and XWHEP middleware
which are used in BE-DClIs. To distinguish QoS-enabled
BoT from others, tasks belonging to these BoT are tagged
by the users using a special field in the middleware task de-
scription (batchid in BOINC and xwgroup in XWHEP).

One issue is to ensure that Cloud workers only compute
tasks belonging to the BoT for which credits has been pro-
visioned. We solve this situation in BOINC by adding a new
policy to the matchmaking mechanism. Note that BOINC
requires that scheduling policies be coded and specified by
compile time, which requires patching the BOINC server.
For XWHEP, developers agreed to include a new configura-
tion option in version 7.4.0 that met our needs.

Another challenge is to enable SpeQuloS support in hy-
brid infrastructures, where regular Grids are used. The 3G-
Bridge [37] developed by SZTAKI is used in the EDGI in-
frastructure to provide Grid and Desktop Grid interoperabil-
ity. Tasks submitted to a regular Grid computing element
connected to the 3G-Bridge may be transparently redirected
to a Desktop Grid. To enable SpeQuloS support of BoTs
submitted using the 3G-Bridge, it has been adapted to store
the identifier used by SpeQuloS to recognize a QoS-enabled
BoT.

3.7.2 Cloud services support

Thanks to the versatility of the libcloud library, SpeQu-
loS supports the following IaaS Cloud technologies: Ama-
zon EC2 and Eucalyptus (which are two compliant tech-
nologies deployed either on commercial or private Clouds),
Rackspace (which is a commercial Cloud), OpenNebula and
StratusLab (which implements the Open Cloud Computing
Interface specification, delivered through the Open Grid Fo-
rum), and Nimbus (a Cloud system targeting scientists). In
addition, we have developed a new driver for libcloud so that
SpeQuloS can use Grid5000 [8] as an TaaS cloud.

4 Evaluation

In this section we report on the performance evaluation of
SpeQuloS using simulations.

We have developed simulator of BOINC and XWHEP,
which uses node availability traces from real infrastructure
and generates traces of BoT execution. It also optionally
simulates SpeQuloS utilization.

Uhttp://graal.ens-lyon.fr/~sdelamar/spequlos/.

@ Springer

4.1 Simulations setup
4.1.1 BE-DClIs availability traces

There have been many studies around nodes volatility for
BE-DCIs. In particular several data-sets are provided by
the Failure Trace Archive [24]. However, to our knowledge,
there was no availability measurement for Cloud Spot in-
stances or Grid systems used in best effort mode. We col-
lected the following traces:

— Desktop Grid: For this study we consider the public vol-
unteer computing project SETI@Home (seti) ran by
BOINC [22], and the private Desktop Grid deployments
at University Notre Dame, ran by Condor [35] (nd). All
these traces are provided by the Failure Trace Archive
[24].

— Best Effort Grid: We consider the best effort queues of
Grid5000 [8] (G5K) infrastructure. We generated traces
from the Gantt utilization charts for both Lyon (g5k1yo)
and Grenoble (g5kgre) G5K clusters for December
2010 period. The unused resources reported in the charts
are considered as resources available in best effort. In
other words, a node is available in Best Effort Grid traces
when it does not compute regular tasks, and vice-versa.

— Cloud Spot instances: Cloud Spot instances such as Ama-
zon EC2 Spot instances are variable-priced instances.
These instances are only started if a user bid is higher
than their current price. Thus, with Spot instances, the
host availability depends both on the user’s bids and the
instance price market variation.

We consider the following usage of Spot instance: a to-
tal renting cost per hour () is set by the user to use several
instances. As this cost is constant while the market price
varies, the number of provisioned instances will vary. To
implement this scenario, we use the following strategy:
We place a sequence of n bids at price 1—5, where i € 1..n.
n should be chosen high enough so that % is lower than
the lowest possible Spot Instance price. Hence, we ensure
that the maximum number of Spot Instances is started for
total renting cost of S.

Bids are placed using the persistent feature, which en-
sures that the requests will remain in consideration after
each instance termination. Using price market history pro-
vided by Amazon from January to March 2011, we have
generated the instances availability traces of the cl.large
instance for a renting cost of 10 dollars (spot10) and
100 dollars (spot100) per hour.

Variation of the number of nodes over time Figure 4 and
Table 2 present the number of available nodes during the
first 10 days of each trace. The figure emphasizes the diver-
sity among infrastructures. seti contains more than 10000
nodes whereas other infrastructures have between 100 and

http://graal.ens-lyon.fr/~sdelamar/spequlos/

Cluster Comput (2014) 17:79-100

87

1000 nodes. Number of nodes variability also differs. It is
high for some traces (g5klyon), and less important for others
(spot10, nd). Some periodic patterns can also be observed
in some traces. Indeed, each 24 hours, repetitive patterns

10 seti ——
nd
e gSklyo —
4 gSkgre —
107 F 1 spotl0 ——
spotl00 —
3
3 10°
t=
—
o
oy
T2
5 10
Z
10'
10°

0 50 100 150 200
Time (hours)

Fig. 4 Number of nodes during the first 10 days of BE traces
Table 2 Number of nodes in Best Effort DCI traces. The trace length,

number of nodes average (Mean), standard deviation (Deviation), min-
imum (Min) and maximum (Max) are presented

are exhibited in seti traces: we can see that some nodes are
turned off during nights and weekends.

Availability and unavailability periods Figures 5(a), 5(b),
summarized in Table 3, show distributions of availability
and unavailability periods of nodes for each trace. Availabil-
ity periods are various uninterrupted periods when a node
can participate to computation. Unavailability periods are
periods comprised between two successive availability pe-
riods.

Figure 5(a) shows differences between traces. In some
infrastructures, the node volatility is high: nodes are likely
to stay available only during few minutes, or even seconds
(g5klyo). Volatility may be low: nodes usually stay available
for more than tens of minutes (nd, spotl0, spot100). Finally,
some BE-DCIs exhibit a “mixed” volatility pattern (g5kgre,
seti): Some availability periods are short whereas others are
longer.

In Fig. 5(b), fewer differences are observed. Indeed, most
of unavailability periods are comprised between one minute
and one hour. However, highly volatile infrastructures tend

Table 3 Availability and unavailability of Best Effort DCI nodes. Av.
quartiles and Unav. quartiles are the nodes availability and unavailabil-
ity duration quartiles, in seconds

Trace Length (days) Mean Deviation Min Max Trace Av. quartiles (s) Unav. quartiles (s)
seti 120 24391 6793 15868 31092 seti 61, 531, 5407 174, 501, 3078
nd 413.87 180 4.129 77 501 nd 952, 3840, 26562 640, 960, 1920
g5klyo 31 90.573 105.4 6 226 g5klyo 21,51,63 191, 236, 480
g5Skgre 31 474.69 178.7 184 591 g5kgre 5, 182, 11268 23,547, 6891
spotl0 90 82.186 3.814 29 87 spotl0 4415, 5432, 17109 4162, 5034, 9976
spotl100 90 823.95 4.945 196 877 spotl100 1063, 5566, 22490 383, 1906, 10274
1 1
<
v ost 1 vost 1
2] =l
£ z
5 &
2 06} 1 zoef 1
E [%
< 04r [I 1 5047 1
o | | Y
= | | =}
2 | | seti g seti ——
g | J nd B-] nd
£ 02 p ucb —— g 02 ucb ——
= / g5klyo — = g5klyo ———
|] g5kgre /r-" g5kgre
| e spotl0 ——— _ spotl0 ———
0)) __—) spot100 —— 0 J) spot100 ——
10° 10" 10° 10° 10* 10° 10° 10° 10! 10° 10° 10* 10° 10°

Period of Availability A (seconds)
(a) Availability

Period of Unavailability A (seconds)
(b) Unavailability

Fig. 5 Nodes availability and unavailability periods cumulative distribution functions

@ Springer

88

Cluster Comput (2014) 17:79-100

to have shorter unavailability periods, whereas low volatile
infrastructures have longer ones, and mixed volatile infras-
tructures have mixed unavailability periods.

Computing power Computing power of BE-DCI nodes de-
pends on its nature. As DG workers use regular desktop
computers, their computing power is much lower than Grid
or Cloud ones. In addition, whereas Grid computing re-
sources are usually homogeneous, DG and even Cloud re-
sources show heterogeneity. Previous works [18, 25] allow
us to model nodes power. Table 4 shows BE-DCIs workers
computing power drawn from those studies: Cloud and Grid
nodes are three times faster than DG nodes average and DG
and Cloud computing power is heterogeneous and follows a
normal distribution.

Summary The BE-DCI availability traces presented dem-
onstrate diversity among infrastructures. However, these
traces can be classified along common attributes, such as
the amount of resources, volatility and presence of cycles.

Table 4 Computing power of Best Effort DCI nodes. Avg. power and
Power std. dev. are the average node power (in instructions per second)
and node power standard deviation

Trace Avg. power (nops/s) Power std. dev.
seti 1000 250
nd 1000 250
g5klyo 3000 0
gSkgre 3000 0
spotl0 3000 300
spot100 3000 300

Table 5 summarizes the characteristics of the BE-DCI in-
vestigated in this document.

4.1.2 BoT workloads

BoT applications are a major source of DCIs workload. We
follow the definition of BoT given in [20, 31] where a BoT is
an ordered set of n independent tasks: 8 = {T1, ..., T,,}. All
tasks in 8 have the same owner and the same group name or
group identifier. In addition, Desktop Grid systems impose
users to register applications in the server, thus we also have
the requirement that tasks refer to the same application.

Tasks may not be submitted at the same time. We de-
fine AT (T;), the arrival time of the task 7; and we have
AT(T;) < AT(Tj) if i < j. More, we define €, the max-
imal time between two tasks arrivals, thus we have Vi €
(1,...,n), AT(T;+1) — AT (T;) < €. A typical € value is 60
seconds, as used in [31].

BoTs are also defined by their size i.e. the number of
tasks. Each task also has a number nops of instructions to
be processed. In homogeneous BoT, all the tasks have the
same number of instructions. Conversely, in heterogeneous
BoTs, the number of operations per tasks follows a proba-
bilistic distribution.

The BoT workloads that we selected in our experimenta-
tion come from our experience in distributed computing in-
frastructures, such as the ones used in the EDGI project. The
BIG workload is representative of BoT observed in public
volunteer computing projects, and SMALL workload is rep-
resentative of BoT observed in Grids such as Grid5000 [19].
The RANDOM workload is statistically generated based on
scientific studies conducted by Minh and Al, cited in [31].
Those BoTs vary in terms of size, number of instructions
per task and task arrival times. Table 6 summarizes the BoT

Table 5 Main attributes of

investigated Best Effort DCIs Trace Amount of nodes Cycles Volatility Computing power
g5klyo hundreds no high high
g5kgre hundreds no mixed high
seti thousands yes mixed low
nd hundreds no low low
spot10 hundreds no low high
spot100 hundreds no low high

Table 6 Characteristic of BoT workload: size is the number of tasks in the BoT, nops/task is the number of instructions per tasks and arrival the
repartition function of tasks arrival time. weib is the Weibull distribution and norm, the Normal distribution

Size nops/task Arrival time
SMALL 1000 3600000 0
BIG 10000 60000 0

RANDOM norm(u = 1000, o2 = 200)

norm(z = 60000, o2 = 10000)

weib(A =91.98,k =0.57)

@ Springer

Cluster Comput (2014) 17:79-100

89

attributes. As shown in the table, SMALL and LARGE BoTs
are homogeneous BoT, whereas RANDOM is heterogeneous.

4.1.3 Simulations parameters

Simulators are configured with DG middleware standard
parameters. For the BOINC simulator, each task is repli-
cated 3 times (target_nresult = 3), and 2 replicas results
are needed to consider a task completed (min_quorum = 2).
Two task replicas cannot be executed on the same worker
(one_result_per_user_per_wu = 1). After it is assigned to
a worker, the maximum time to receive a replica result be-
fore reassigning it is set to 1 day (delay_bound = 86400).
For XW simulator, workers send a keep alive message every
minute (keep_alive_period = 60). When the server does not
receive any keep alive message from a worker for 15 min-
utes (worker_timeout = 900), it reassigns task executed on
this worker to another one.

Pseudorandom number generator used in simulators can
be initialized by a seed value to reproduce exactly the same
simulation executions. Therefore, using the same seed value
allows a fair comparison between a BoT execution where
SpeQuloS is used and the same execution without SpeQu-
loS.

SpeQuloS users can choose the amount of credits they al-
locate to support BoT executions. In simulations, the amount
of credits is set to be equivalent, in terms of CPU.hour, to
10 % of total BoT workload. Therefore, depending on the
BoT category considered, the number of provisioned credits
varies. The BoT workload is computed as its size multiplied
by tasks’ wall clock time. Task wall clock time is an esti-
mated upper bound for individual task execution time and is
set to 11000 seconds for SMALL BoTs, 180 seconds for BIG
BoTs and 2200 seconds for RANDOM BoTs.

The simulator executes the various BoTs described in Ta-
ble 6 on selected BE-DCIs representative of Desktop Grids
(seti, nd), Best Effort Grids (g5klyo, gbkgre) and
Clouds (spot10, spot100), using BOINC and XWHEP.
Different BoT submission times are used in order to simu-
late execution in different time period of the BE-DCI traces.
Results of this section are produced thanks to simulations of
more than 25000 BoT executions.

4.2 Evaluation of Cloud resources provisioning strategies

In this section, we report on the performance evaluation
of SpeQuloS strategies for Cloud provisioning presented in
Sect. 3.5. We evaluate every combinations of the strategies
to find which one gives the best performance. We evalu-
ate these combined strategies via trace-driven simulation for
different middleware (BOINC or XWHEP), different BE-
DCI availability traces, and different classes of BoTs. We
look for the best strategy over all scenarios. The naming

of the strategy combinations follows this scheme: 9A-G-D
means that Cloud workers will start when 90 % of the tasks
have been assigned (Assignment Threshold), all the Cloud
workers are started at once (Greedy) and all uncompleted
tasks are duplicated to the Cloud (Cloud Duplication).

4.2.1 Tail removal efficiency

The first experiment aims at comparing the efficiency of
the Cloud provisioning strategies to alleviate the tail effect.
We define the Tail Removal Efficiency (TRE) as the per-
centage reduction of the tail duration with SpeQuloS com-
pared to without SpeQuloS. We calculate TRE as TRE =
1— %, where fos5pegs is the completion time mea-
sured without SpeQuloS (which is likely to be affected by
tail), #;peq is the completion time measured for the same
BoT execution when SpeQuloS is used. #jgeq; is the ideal
completion time for that execution without the tail.

Figures 6(a), 6(b) and 6(c) present the complementary
cumulative distribution function of TRE for several com-
binations of Cloud resource provisioning strategies. For a
given efficiency, the figures show the fraction of BoT execu-
tions which obtained a greater efficiency.

We first observe that all the strategies are able to signif-
icantly address the tail effect. In the best cases (Fig. 6(c),
9A-G-D, 9A-C-D), the tail has disappeared in one half of
the BoT executions (TRE = 100 %) and for 80 % of the BoT
executions the tail has been at least halved (TRE > 50 %),
which is satisfactory.

A comparison of the strategies shows that for the Flat
deployment strategy (Fig. 6(a)) has the worst performances
regardless of the combination used: in half of the BoT ex-
ecutions the tail has not been significantly reduced (TRE <
30 %). Reschedule (Fig. 6(b)) and Cloud Duplication strate-
gies (Fig. 6(c)) both perform better than Flat if the Execu-
tion Variance is excluded: 80 % of the BoT executions have
addressed the tail effect (TRE > 30 %). Clearly, the Execu-
tion Variance causes a severe drop of performance of any
combinations which include this strategy. The Assignment
threshold strategy has slightly better results than the Com-
pletion threshold strategy, and Reschedule is slightly bet-
ter than Cloud duplication, especially when the Completion
threshold strategy is used.

The Flat strategy cannot reach the same level of perfor-
mance as the others because Cloud resources are in compe-
tition with BE-DCls resources. In this strategy, tasks are as-
signed without distinction between Cloud workers and nor-
mal workers, which leads to Cloud workers not receiving
tasks from DG server even during the tail part of the BoT
execution. The Execution Variance strategy which tries to
dynamically detect the tail effect by monitoring the varia-
tion of tasks’ execution time, is shown to be less efficient

@ Springer

90

Cluster Comput (2014) 17:79-100

Tail Removal Efficiency (Percentage P)
(a) Flat deployment strategy

1 T T

A~ T
A 9C-G-F ——
g 9A-G-F
5 sl V-G-F ——
o 08 9C-C-F ——
% 9A-C-F
F 06 V-CF
2
£
S04
=3
m
bS]
02t
S
3
£ 0 : : : :
0 20 40 60 80 100

Fraction of BoT where tail efficiency > P

0 20 40 60 80 100
Tail Removal Efficiency (Percentage P)
(b) Reschedule deployment strategy

>P

0.8

0.6

hhhahd

Clvivivivhv]

<28<¥8

Fraction of BoT where tail efficiency
=)
~

L L

0

553
S

40

60 80 100

Tail Removal Efficiency (Percentage P)
(c) Cloud duplication deployment strategy

Fig. 6 Complementary cumulative distribution functions of Tail Re-
moval Efficiency for several combinations of Cloud resources pro-
visioning strategies. Tail removal efficiency denotes the reduction

than the others. We observed that unfortunately this strat-
egy starts Cloud workers too late for a significant number of
executions.

4.2.2 Cloud resource consumption

The second criterion for the performance comparison of the
strategies is the Cloud resource consumption. Lower is the
resource consumption, better is the strategy. In our system,
1 CPU.hour of Cloud workers usage is billed as 15 cred-
its. The metric used to measure the Cloud utilization is the
number of credits spent during the execution.

Figure 7 shows the average percentage of credits spent
against the credits provisioned. In most cases, less than 25 %
of provisioned credits are spent. In our evaluation, provi-
sioned credits are equivalent to 10 % of the total BoT work-
load in terms of Cloud worker CPU .hours. Our results mean
that actually, less than 2.5 % of the BoT workload is exe-
cuted in the Cloud, and so is the equivalent consumption of
credits.

Figure 7 shows that credit consumption of the Cloud du-
plication strategy is lower than Flat which is lower than
Reschedule. Indeed, in this last strategy, Cloud workers are

@ Springer

percentage of the tail duration using SpeQuloS compared to without
SpeQuloS. Notation of strategies combination is described in Sect. 3.5

00—

40 +

Percentage of credits used

bbb LiL

e W e G, S0

Combination of SpeQuloS strategics

Fig. 7 Credits consumption of various SpeQuloS strategies combina-
tions. Lower is better. Notation of strategies combination is described
in Sect. 3.5

continuously busy because they receive uncompleted task
duplicates until the BoT execution is finished. Results also
show that Assignment threshold consumes more than the
others because it starts Cloud workers earlier, and that Con-
servative method saves a little more credits than Greedy.
Overall, our strategies have low credit consumption. It
ensures that enough credits are supplied to support the BoT

Cluster Comput (2014) 17:79-100

91

140000 ‘ ‘ : :
No SpeQuloS
~ 120000 | SpeQuloS
Eg 100000 |
'g 80000 |
5 60000
=
E 40000
© 20000 f
0
BE-DCI
(a) BOINC & SMALL BoT
70000 ‘ ‘ : :
No SpeQuloS
—~ 60000 | SpeQuloS =
,é 50000
= 40000 |
'S 30000
=
£ 20000
“ 10000 |
0
BE-DCI
(c) BOINC & RANDOM BoT
25000 : ‘ : :
No SpeQuloS
2 20000 | SpeQuloS
g
S 15000
=
g
3 10000 |
o
g
S 5000
0

BE-DCI
(e) BOINC & BIG BoT

40000
35000
30000
25000 r
20000
15000
10000
5000

2 No Si)eQul(;S —
SpeQuloS

Completion time (s)

BE-DCI
(b) XWHEP & SMALL BoT
8000 : : : ‘
No SpeQuloS

- 7000 SpeQuloS
F 6000 |
= 5000 |
S
£ 4000 |
=
£ 3000 |
o
© 2000

1000 o b o o o

D P % Y, 0, 0,
o R 0 0
BE-DCI
(d) XWHEP & RANDOM BoT
8000 : : : ‘
No SpeQuloS Hmm—

o~ 7000 ¢ SpeQuloS
- 6000 t
£ 5000 |
£ 4000 |
< 3000 |
g 2000 |
@]

1000 |

BE-DCI
(f) XWHEP & BIG BoT

Fig. 8 Average completion time measured with and without SpeQuloS under various execution environments

execution until it ends and leaves more credits to users to
support other BoT executions.

4.3 SpeQuloS performance

In this section, we evaluate SpeQuloS performance to effec-
tively enhance QoS of BoT executed on BE-DCIs. The re-
sults of this section use the Completion threshold, Conserva-
tive and Reschedule (9C-C-R) strategy combination, which
is a good compromise between Tail Removal Efficiency per-
formance, credits consumption and ease of implementation.

4.3.1 Completion speedup

Figures 8(a), 8(e), 8(c), 8(b), 8(f) and 8(d) show the average
BoT completion time measured with and without SpeQuloS.
Each figure presents results from one DG middleware and
BoT. Each figure pair of columns shows results for each BE-
DCI trace.

The results show that in all cases, SpeQuloS decreases
the completion time. Performance enhancement depends on
the BE-DCI, BoT and middleware considered. More im-
portant gains are observed with BOINC, seti, and the

@ Springer

92

Cluster Comput (2014) 17:79-100

0.35 T . . .
No SpeQuloS ——
03 SpeQuloS
g
g 025
3
5 02
©
= 0.15
5
B=
g 017
£ W
0.05 | \A
0 L SOCDAs —eeeeee— T N
0 1 2 3 4
Completion time repartition arround the average

(a) BOINC

0.3 T . . .
No SpeQuloS ——
_ 025 | SpeQuloS
2
§ 02 |
5 J
g 0.15 | |
8
B 1 F
§ 0
= 005 .
A
() 1 = e e —— |
0 1 2 3 4
Completion time repartition arround the average
(b) XWHEP

Fig. 9 Repartition functions of execution completion time normalized with the average completion time observed under same environment
(BE-DCI traces, DG middleware, BoT). Curves centered around 1 denote stable executions

RANDOM BoT, for which average completion time is re-
duced from 28818 seconds to 3195 seconds. In contrast,
with XWHEP, spot10 and BIG BoT, the average comple-
tion is not much improved (from 2524 to 2521 seconds).

More important benefits are observed with highly volatile
BE-DCIs (seti, nd, gbklyo). As the tail effect is more
important in these BE-DClIs, using SpeQuloS can signifi-
cantly increase the performance.

Benefits are also more important for SMALL BoTs, which
are made of long tasks, and RANDOM BoTs, which are het-
erogeneous, in particular with Desktop Grid DCIs (seti
& nd), for which node characteristics (low power and high
volatility) make it difficult to execute such BoTs without
SpeQuloS.

Even if BOINC and XWHEP completion times cannot
be compared, as these middleware differ in the way they de-
tect and handle task execution failures, one can note that
XWHERP is slightly less improved than BOINC when Spe-
QuloS is used.

4.3.2 Execution stability

One additional QoS enhancement that SpeQuloS aims to
provide to BE-DCI users is execution stability. The execu-
tion stability is the ability to observe similar BoT completion
times on the same execution environment (i.e., the BE-DCI
considered, BoT workload, and DG middleware used). Pro-
viding a stable execution allows users to deduce from pre-
vious executions the QoS level they can expect from a BE-
DCI. Figures 9(a) and 9(b) show the repartition functions of
normalized BoT completion times around the average. Each
execution completion time is divided by the average comple-
tion time measured under the same execution environment in
terms of BE-DCI availability traces, DG middleware used,
and BoT category. Figures report on results obtained with
every BE-DCI traces and BoT categories mixed.

@ Springer

For the XWHEP middleware, the execution stability is
not much improved by SpeQuloS, as it was already good
without it. However, the execution stability of BoTs using
BOINC middleware is significantly improved by SpeQu-
loS. Without SpeQuloS, Fig. 9(a) shows that a high num-
ber of executions have a normalized completion time lower
than 1. This means that the average completion time is in-
creased by a few, lengthy executions. As SpeQuloS is able to
avoid such problematic cases, the average completion time
becomes much more representative. This leads to very satis-
factory execution stability, actually better than for XWHEP.

4.3.3 Completion time prediction

Table 7 shows the percentage of successful SpeQuloS pre-
dictions, described in Sect. 3.4, made when the BoT com-
pletion is 50 %. A successful prediction is reported when
the actual completion time matches the SpeQuloS predicted
time associated with an uncertainty of £20 % (meaning that
the actual completion time is comprised between 80 % and
120 % of the predicted time). For each BoT execution pro-
filed, the o factor is computed using all available BoT exe-
cutions with same BE-DCI trace, middleware, and BoT cat-
egory. In other words, the “learning phase” (during which «
is adjusted), is discarded and we assume perfect knowledge
of the history of previous BoT executions.

Results show that the success rate of SpeQuloS predic-
tion is high, except for some execution environments for
which prediction is an issue. Still, the overall success rate
is higher than 90 %, meaning than the predicted comple-
tion time given by SpeQuloS is correct within 20 % in
9 cases out of 10, which is remarkable given the unpre-
dictable nature of BE-DCIs. Results also show that predic-
tions are slightly better with BOINC middleware than with
XtremWeb-HEP, which can be explained by the more stable
execution of this middleware, as reported in previous sec-
tion. Another observation is that the RANDOM BoTs gives

Cluster Comput (2014) 17:79-100 93

Table 7 Percentage of success ;

for SpeQuloS completion time BE-DCI BoT category & middleware

prediction, according to BoT SMALL BIG RANDOM Mixed

execution environment. BOINC XWHEP BOINC XWHEP BOTINC XWHEP

A successful prediction is

reported when the actual BoT seti 100 100 100 82.8 100 87.0 94.1

completion time is comprised

between £20 % of the predicted nd 100 100 100 100 100 96.0 99.4

completion time g5klyo 88.0 89.3 96.0 87.5 75 75 85.6
g5kgre 96.3 88.5 100 92.9 83.3 34.8 83.3
spotl0 100 100 100 100 100 100 100
spot100 100 100 100 100 76 3.6 78.3
Mixed 97.6 96.1 99.2 93.5 89.6 65.3 90.2

inferior prediction quality. Indeed, as this BoT is highly het-
erogeneous, predicting completion time is harder as task ex-
ecution times vary greatly amongst BoT executions.

Results of this section have shown that SpeQuloS is able
to effectively enhance the QoS of BoTs executed on BE-
DClIs. Indeed, using SpeQuloS, BoT completion time is ac-
celerated by a factor of as much as 5, while assigning to
Cloud resources less than 2.5 % of the total workload. Ad-
ditionally, SpeQuloS increases the execution stability, mean-
ing that BoTs executed in similar environments will present
similar performance. Finally, SpeQuloS can accurately pre-
dict the BoT completion time and provide this information
to BE-DCI users.

5 SpeQuloS use cases
5.1 SpeQuloS deployment in EDGI

In this section, we present the deployment of SpeQuloS
as a part of the European Desktop Grid Infrastructure [14]
(EDGI). EDGI connects several private and public Desk-
top Grids (IberCivis, University of Westminster, SZTAKI,
CNRS/University of Paris XI LAL and LRI DGs) to several
Grids (European Grid Infrastructure (EGI), Unicore, ARC)
and private Clouds (StratusLab and local OpenStack, Open-
Nebula).

The main objective of EDGI is to transparently provide
the vast amount of computing power of DGs to EGI users.
Ultimately, these users would submit their applications to
regular Computing Elements and thanks to EDGI, these
tasks can be executed on DGs without any difference no-
ticed by the user. SpeQuloS is one element amongst a full
software stack, featuring a bridge from Grids to Desktop
Grids, a data distribution network, monitoring framework,
e-Science portal and more.

We present the current preliminary deployment of Spe-
QuloS, on part of the EDGI production infrastructure, which
is illustrated in Fig. 10. The current deployment includes a

production infrastructure, composed of two DGs, XW @LRI
and XW@LAL, both ran by XWHEP and managed by the
University of Paris-XI. For testing purposes, XW@LRI is
connected to Grid5000 and gathers resources in best effort
mode from 6 of its clusters with a bound on 200 nodes at a
time. SpeQuloS uses Amazon EC2 as a supporting Cloud for
XW@LRI. The XW@LAL server is connected to the local
Desktop Grid of the laboratory. XW @LAL can also harvest
computing resources from the EGI Grids through the EDGI
3G Bridge [37]. If a BOT is submitted to XW@LAL with
the user’ proxy certificate allowing an access to the Grid
resources, then XW@LAL will detect it and launch corre-
sponding PilotJob under user identity so that the whole Grid
security and accounting chain is not broken. A user submit-
ting BoT to XW@LAL without the proper Grid credential
will have his BoT computed by the local Desktops. A local
OpenNebula part of the StratusLab infrastructure is used as
a supporting Cloud for the LAL Desktop Grid.An interest-
ing side-effect of this setup is that BoTs submitted through
XtremWeb-HEP to EGI can eventually benefit from the QoS
support provided by SpeQuloS using resources from Stra-
tusLab. In the context of the EDGI project, another SpeQu-
loS deployment provides QoS support to other EDGI DGs,
such as SZTAKTI’s one, through a fully-dedicated OpenNeb-
ula Cloud service.

Several EDGI applications are installed and used regu-
larly, such as DART (a Framework for Distributed Audio
Analysis and Music Information Retrieval by Cardiff Uni-
versity), BNB-Grid (which is aimed at solving hard combi-
natorial, discrete and global optimization problems) and IS-
DEP (which is a fusion plasma application which simulates
the Tokamak of ITER). Table 8 summarizes the usage of the
infrastructure during the first half of 2011 where SpeQuloS
has been gradually deployed.

5.1.1 Experimentation in the EDGI testing infrastructure
To test SpeQuloS implementation and evaluate its perfor-

mance under realistic conditions, we performed experimen-
tations using Grid5000 [8].

@ Springer

94

Cluster Comput (2014) 17:79-100

SpeQuloS Testing Infrastructure

EDGI Production Infrastructure -l_

SUBMISSION FROM EGI VOs

Grid5000

Best Effort Mode SpeQuloS

@ Lyon

Information Module|

3G Bridge

TASKS SUBMISSION

|
.

I

|

|

SaarnsanesAnnnnnnnnnnnnnnnn,

I XW @ LRI XW @ LAL BOINC @ SZTAKI
I > Y
| SpeQulos | Aoos ~ A MONITORING |
Oracle, CreditSystem e SUPPORT 00S —_— oS S (U—
& Scheduler Modules | SUPPORT r SUPPOR' -
| SpeQuloS — |
-u-luu-runn =1) Scheduler I K jj I
I Module
CLOUD WORKERS OpenNebula < SpeQuloS |
I MANAGEMENT l I I CLOUD | WORKERS I Q peQ II
MANAG|EMENT
— - — CLOUD WORKERS
KJ - | | N | MANAGEMENT |
I Ji I | On going deployment II
Amazon EC2 | 7/ Stratus Lab _— e = e e e e o e e - —
- (OpenNebula)

T

Fig. 10

h

N <

Table 8 The University Paris-XI part of the European Desktop Grid
Infrastructure. The table reports on the number of tasks executed on
XW@LAL and XW@LRI Desktop Grids, as well as the number of
EGI tasks executed on those DGs and the number of tasks assigned by
SpeQulosS to StratusLab and Amazon EC2 Cloud services

XW@LAL XW@LRI EGI StratusLab ~ EC2

#rasks 557002 129630 10371 3974 119

In usual Desktop Grids, from few hundreds to several
thousands worker nodes are participating to computational
effort during several days. To reproduce this situation, we
used Grid5000 resources as Desktop Grids workers. Our ex-
perimentation is supported by the XtremGS5K project, which
main goal is to use Grid5000 to provide computational re-
sources to an XWHEP server. The XtremG5K project is
composed of several components:

— The XWHEP XW@LRI Desktop Grid server. It can
accept jobs submission from EGEE users through the
3Gbridge middleware. Unfortunately, at the time of the
experiment, the 3Gbridge was not functioning and we had
to use the XWHEP server as an entry point. However,
this does not impact the SpeQuloS scenarios presented
here. The XWHEP server is in charge of jobs distribution
among XWHEP workers, and results collection.

@ Springer

\

TN //J

SpeQuloS’ current deployment as a part of the EDGI infrastructure. SpeQuloS’ modules are split and duplicated across the deployment

— A gateway, administrated in Grid5000, which enables
communications between Grid5000 network and the
XW@LRI server.

— A set of XWHEP workers, executed on Grid5000 nodes.
In this experimentation, a Grid5000 job is considered as a
pilot job which runs one or several XWHEP workers. To
approximate voluntary-based and best effort participation
to computation as observed with DG worker nodes, we
used the “best effort” queue of Grid5000.

Figure 11(a) shows the experimentation architecture.
5.2 Grid5000 as a Best-Effort DCI

A solution for Grid5000 users who want their BoT to com-
plete within a certain time is to reserve a block of nodes for
a given time and to launch Pilot Jobs to execute the BoT.
Although this approach is suitable for the users, these rigid
reservations lead to an inefficient management of the plat-
form. By using Grid50000 as a Best-Effort DCI combined
with SpeQuloS allows giving a more satisfactory experience
to the user while keeping flexible resource management.

The experimentation has been deployed on seven
Grid5000 clusters (from Lyon, Grenoble, Bordeaux, Lille,
Nancy, Sophia and Toulouse sites). On each of them, we
ran Algorithm 3 for Pilot Jobs submission. Each Pilot Job,
denoted as start_XWHEP_workers in the algorithm, is
submitted to one Grid5000 node and starts one XWHEP
worker per available CPU.

Cluster Comput (2014) 17:79-100

95

Grid5000

XWHEP server
@ LRI

Cloud Service

1
-

Grid5000 to
LRI gateway

INFORMATION \

GRABBING

SpeQuloS
START AND STOP INSTANCES

(a) The XtremG5K project and SpeQuloS architecture

Fig. 11 The XtremG5K project

Algorithm 3 Algorithm for Pilot Jobs submission executed
on each Grid5000 site
max_#pjobs < 30
max_#pjobs_waiting <7
while true do
if current_#pjobs < max_#pjobs then
if current_#pjobs_waiting < max_#pjobs_waiting
then
“Submit start_ XWHEP_workers to one Grid5000
node in best effort queue”
else
“Too many pilot jobs waiting”
end if
else
“Maximum number of pilot jobs reached”
end if
sleep(15 minutes)
end while

We ran this experimentation during 4 days. Figure 11(b)
shows the number of pilot jobs, running or waiting for
submission in Grid5000, and the corresponding number of
XWHEP workers, according to time of experimentation. We
can see that the total number of Grid5000 pilot jobs was
comprised between 100 and 200, which leads to 400-1000
workers to participate to the DG. The number of Grid5000
pilot jobs waiting for submission on all sites simultaneously
never exceeds 30.

We ran several BoT execution scenarios with or without
using SpeQuloS. In each scenario, an XWHEP user submits
a BoT containing from 1000 to 10000 jobs. Each individual
job typically needs few minutes to be computed by a worker.
Jobs are distributed by the XW @LRI server to nodes hosted

(e.g. Amazon EC2)

WORK REOUES7: —
s
\

XWHEP workers
1200 GS5K running jobs
G5K waiting jobs
» 1000
=3
2
o 800 -
Qo
-
2
& = 600
) 2
f E 400
Z
200
P L PO S i et =t e L ashan L L
0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90
Time - hours

(b) Number of XWHEP workers and Grid5000 pilot jobs
running and waiting during the experimentation

in Grid5000 and to Cloud workers from Amazon EC2 (when
SpeQuloS was used).

Figure 12(a) shows result from a scenario where SpeQu-
10S is not used. A BoT of 3630 jobs is submitted at the be-
ginning of the scenario. The figure shows the number of jobs
completed as well as the number of DG workers, according
to the scenario time. The number of jobs completed denotes
the number of jobs for which execution by DG node has
been completed, and results sent back to the LRI server.

We can see that the BoT completion increases quick-
ly during the first 4000th seconds of the scenario. Then,
the completion grows slowly while all jobs have been dis-
tributed to workers. This figure illustrates the “tail effect” of
BoT completion in DG, discussed in Sect. 2.2.

By provisioning stable resources from Cloud, one goal of
SpeQuloS is to address this problem. Figure 12(b) shows a
similar scenario, at the difference that SpeQuloS is used. In
this scenario, a BoT of 4750 jobs was submitted. In addi-
tion to previous scenario results, the figure shows the Cloud
workers started by SpeQuloS to participate to the DG. The
amount of cloud resources available to SpeQuloS was lim-
ited and equivalent to 60 CPU.hours of the “small” instance
of Amazon EC2.

No tail effect can be observed in this scenario. The BoT
completion increases regularly during the first 8000th sec-
onds of the scenario and grows even faster afterwards. We
can see that SpeQuloS, according to the policy used in its
Scheduler module, starts Cloud workers which participate
to the computation. The first worker is started at the 15th
minute of the scenario. SpeQuloS then adds Cloud workers
gradually until the maximum of 20 simultaneous workers is
reached.

Additional experimentations are needed to draw any gen-
eral conclusion on the accordance of the SpeQuloS im-
plementation with the simulation results presented earlier.

@ Springer

96 Cluster Comput (2014) 17:79-100
5000 1250 5000 1250
Jobs completed 4 1225 Jobs completed 4 1225
Best-Effort workers 4 1200 4500 Additional Cloud workers 1 1200
1 1175 Best-Effort workers 1 1175
1 1150 1 1150
4000 1 1135 4000 1135
1100 1100
1075 3500 1075
2 1050 & 1050
© 3000 1025 2 3000 1025
« 1000 1000
5 975 5 2500 975
2 950 2 950
5 2000 | 925 2 2000 925
Z 900 Z 900
875 875
850 1500 850
1000 | s 1000 S
775 775
750 500 750
725 725
0 s s s s s 700 0 s s s s s 700
0 1000 2000 3000 4000 5000 0 2000 4000 6000 8000 10000
Time - s Time - s
(a) SpeQuloS not used (b) SpeQuloS used
Fig. 12 Completion of jobs with number of desktop grid workers, according to the scenario time
However, the experimentations presented in this section 4000 Jobs completed %0
monstr hi ili i run lar 1 i Additional Cloud workers from GSK. —— | 975
de 0_ strate the ab K t)_/ to use G dSOO_O .tO un farge scale Additional Cloud workers from Amazon EC2 ——
experiments of hybrid infrastructure, mixing DG and Cloud 3500 | Best-Effort workers only 1 900
services in order to experiment SpeQuloS in realistic condi-
. 3000 | 875
tions. ”
=
S 2500 850
5.3 Grid5000 as a Cloud o 825
& 2000 |
o E 800
To evaluate the benefits of Cloud resources provisioning in a Z 1500 +
large scale scenario, a large amount of resources from Cloud 1000 | 775
must be available to experiments. However, those resources 750
are not always available to researchers because of the cost 500 | 1 725
of public Cloud services such as Amazon EC2 and the com- 0 ‘ ‘ ‘ ‘ ‘ ‘ 200
plexity to build and maintain private Cloud services using 0 500 1000 1500 2000 2500 3000 3500
technologies such as Eucalyptus or OpenNebula. To address Time - s

this issue, we decided to use Grid5000 as a new type of
Cloud available to SpeQuloS. Indeed, Grid5000 can provide
on-demand computing resources and includes most of the
features provided by commercial Cloud services.

As SpeQuloS uses the libcloud API as a common inter-
face to interact with various types of Cloud services, we de-
cided to use the Grid5000 API? to implement a new libcloud
driver to access to Grid5000 resources. This implementation
allows interaction with Grid5000 as a typical IaaS Cloud
service, with the same API as any other Cloud service for
which driver exists in libcloud. With the Grid5000 libcloud
driver, a large amount of Cloud resources is made available
for experiments. It is also possible to combine Grid5000 and
other Cloud services in the same experiment.

To validate the Grid5000 libcloud driver, we ran an ex-
perimentation scenario with SpeQuloS provisioning Cloud

Zhttps://api.grid5000.fr/.

@ Springer

Fig. 13 Completion of jobs with number of desktop grid workers, ac-
cording to the scenario time. Grid5000 resources are used as Cloud
workers

resources from both Amazon EC2 and Grid5000. The rest
of the experiment environment is similar to that presented in
Sect. 5.2.

Figure 13 shows results from a scenario where Spe-
QuloS uses, in addition to Amazon EC2 resources, some
Grid5000 resources as Cloud workers. In this scenario, up
to 15 Grid5000 Cloud workers are started by SpeQuloS
to participate to the DG, each Cloud worker running on a
Grid5000 node hosted in the Rennes site.

5.4 Using spot instances and SpeQuloS to decrease BoT
execution costs on Amazon EC2

This scenario features a low cost usage of Amazon EC2.
User wants to execute a BoT on Cloud resources from Ama-

https://api.grid5000.fr/

Cluster Comput (2014) 17:79-100

97

zon EC2. Instead of regular instances, spot instances are pro-
visioned to decrease the total cost. As spot instances are not
as reliable as regular instances, SpeQuloS is used to bring
similar level of QoS for the BoT execution.

We deployed an experimentation implementing this sce-
nario for a period of 7 days and bid to instantiate the maxi-
mum number of spot instances, according to the spot market
price, for a renting cost of 10 dollars per hour. In the exper-
imentation, we used the cl.large instance. BOINC middle-
ware executes the BoT which is composed of 10000 tasks
of the DSP application. The BOINC server is deployed on a
regular instance and each spot instance ran a BOINC client
that connects to this server. SpeQuloS modules are deployed
on the same host than the BOINC server. We configured
SpeQuloS to start Amazon EC2 regular instances as Cloud
worker to support the BoT execution.

The BoT execution took 6.65 hours to complete. The to-
tal cost of the spot instances was 70 dollars and the cost of
the instance which ran the server was 2.4 dollars. As Spe-
QuloS started 20 instances during 9 minutes at the end of
the BoT execution and one hour of cloud usage is billed for
each of these instances, the total cost of the SpeQuloS cloud
worker is 6.8 dollars. Hence, the total cost of the execution
is 79.2 dollars. Executing the BoT on the same amount of re-
source, but using regular instances instead of spot instances
would cost 206.7 dollars. Using spot instances and SpeQu-
loS allows cutting more than twice the cost of BoT execution
on Amazon EC2, while preserving the same level of QoS,
thanks to SpeQuloS features.

6 Related work

Many scenarios motivate the assemblage of Grids or Clouds
with Best Effort infrastructures, and in particular Desk-
top Grids. GridBot [36] puts together Superlink @ Technion,
Condor pools and Grid resources to execute both through-
put and fast-turnaround oriented BoTs. The European FP7
projects EDGeS [37] and EDGI [14] have developed bridge
technologies to make Desktop Grid infrastructure transpar-
ently available to any EGI Grid users as a regular Comput-
ing Element. Similarly, the Latin America EELA-2 Grid has
been bridged with the OurGrid infrastructures [9].

In [34], authors investigate the cost and performance of
running a Grid workload on Amazon EC2 Cloud. Similarly,
in [25], the authors introduce a cost-benefit analysis to com-
pare Desktop Grids and Amazon EC2. ElasticSite [29] of-
floads a part of the Grid workload to the Cloud when there
is peak user demand. In [1], authors propose a Pareto ef-
ficient strategy to offload Grid BoTs with deadlines on the
Cloud.

Providing QoS features in Grids is hard and not solved
yet satisfactorily [13, 21, 39]. It is even more difficult in an

environment where there are no guaranteed resources [7].
Unlike aforementioned work, we do not modify the resource
manager scheduling policies to incorporate QoS features.
Instead, we use an extrinsic approach by providing addi-
tional resources. However, the two approaches could coex-
ist by classifying the DG workers according to their histor-
ical behavior and allocating applications with QoS needs to
the more trustable and faster workers. In [38], a framework
is presented to extend Grid resources using Cloud comput-
ing. Similarly, Aneka [10] supports the integration between
Desktop Grids and Clouds. These works would be the clos-
est to ours although we went further in term of implementa-
tion and evaluation.

There exists a large literature about predicting tasks com-
pletion time. For instance QBETS [32] uses time series
to model and forecast task queues. Closer to our context,
[15] proposes a framework to model and predicts the vari-
ous steps (submission, validation, waiting in the scheduler
queue) that a work unit spend in a volunteer computing
project. Our work differs by the fact that we address het-
erogeneous environments. As a result, we adopted a unique
representation based on BoT progression to hide idiosyn-
crasies of BE-DClIs. Thus, the Oracle never accesses directly
the BoT Queue, but rather a history of past BoTs and on-line
monitoring information.

Mitigation of the tail in Desktop Grid computing has
been addressed in the past [23]. The difference between that
prior work and ours is that we provide prediction and stabil-
ity estimates for QoS, we devise new algorithms for using
dedicated cloud resources, and we evaluate these algorithms
more completely in a wide range of scenarios (in terms of
different BoT classes, desktop grid middleware, and plat-
forms with different degrees of volatility and heterogeneity).

In [40], authors propose the LATE (Longest Approximate
Time to End) scheduling to alleviate outliers in MapReduce
computation. The LATE scheduler monitors tasks execution
and speculatively executes those of the tasks which are an-
ticipated to have the latest finished time on the fastest hosts.
Recently, the Mantri system [3] have been proposed, where
the authors identifies several causes of dramatic slowdown
of computation, including workload imbalance due to data
skew, network contention due to disadvantageous commu-
nication patterns and overloaded machine. Because these
MapReduce systems run within a cluster, they assume a
finer grain of information: individual task monitoring versus
global BoT progress rate monitoring in the case of SpeQu-
10S. SpeQuloS deals with considerably large infrastructures,
potentially hundreds of thousands hosts with very different
characteristics in the case of Desktop Grids. As infrastruc-
tures are treated as black box, SpeQuloS cannot implement
MapReduce speculative execution heuristics which relies on
a per-hosts information or network topologies information
in the case of Mantri.

@ Springer

98

Cluster Comput (2014) 17:79-100

Providing cost-effective usage of Cloud resources is a
topic of growing interest. Authors of [27] propose a mecha-
nism to minimize the cost of scheduling an entire workflow
on Cloud resources, while trying to satisfy a user-supplied
deadline. Conversely, [33] presents a scheduler that mini-
mizes completion time of BoT executed on multiple Clouds
under a constrained budget. In our work, most of workload
is processed by BE-DCIs and we only use Cloud resources
to process its most critical part. However, these works could
be considered to optimize Cloud resources usage by SpeQu-
loS.

In the paper [12], we have presented SpeQuloS design
and performances. We augment this publication by show-
ing several new use-cases and the experimental performance
evaluation associated. In addition, we give the user more de-
tails about the simulation evaluation and the framework it-
self.

7 Conclusion and future works

We have introduced SpeQuloS, a service to enhance QoS
for BoT applications when executed in hybrid DCIs. By
taking advantage of their elasticity properties, SpeQuloS
allows Best Effort Distributed Computing Infrastructures
(BE-DCIs) such as Desktop Grids, Best Effort Grids or
Cloud Spot instances to become more widely accessible.

SpeQuloS monitors execution of BoTs and dynamically
provisions reliable and efficient resources from Cloud to of-
fload critical part of BoT execution from BE-DClIs. Several
Cloud provisioning strategies were investigated and eval-
uated using trace-driven simulations. Although providing
QoS to grid computing is considered as a difficult issue, our
approach is able to substantially improve QoS according to
several metrics, such as completion time, execution stability
and prediction, and by providing feedback to users on the
QoS benefits they can expect.

The context of hybrid infrastructures had consequences
on SpeQuloS development and deployment. Our framework
is composed of four different distributed modules dedicated
to specific tasks: information, accounting, prediction and
scheduling. We have presented three use cases to demon-
strate versatility and effectiveness under various hybrid de-
ployments. In particular, it is a key component of the Eu-
ropean Desktop Grid Infrastructure, where the service will
allow users to have a similar experience when using Desktop
Grids than computing on regular DClIs.

Our future work will focus on improving the performance
of tail detection and mitigation. In particular, we would like
to anticipate when a BoT is likely to produce a tail by cor-
relating the execution with the state of the infrastructure: re-
source heterogeneity, variation in the number of computing
resources and rare events such as massive failures or net-
work partitioning.

@ Springer

Acknowledgements Authors would like to thank Peter Kacsuk,
Jozsef Kovacs, Michela Taufer, Trilce Estrada and Kate Keahey for
their insightful comments and suggestions throughout our research and
development of SpeQuloS.

Some of the experiments presented in this paper were carried out
using the Grid5000 experimental testbed, being developed under the
INRIA ALADDIN development action with support from CNRS, RE-
NATER and several Universities as well as other funding bodies.

This work was funded by the EDGI project, supported by the Euro-
pean Commission FP7 Capacities Programme under grant agreement
RI-261556.

References

1. Agmon Ben-Yehuda, O., Schuster, A., Sharov, A., Silberstein, M.,
Tosup, A.: EXPERT: Pareto-efficient task replication on grids and
clouds. Technical Report CS-2011-03, Technion (2011)

2. Amazon Web Services: An introduction to spot instances. Techni-
cal Report, Amazon Elastic Compute Cloud (2009)

3. Ananthanarayanan, G., Kandula, S., Greenberg, A., Stoica, L., Lu,
Y., Saha, B., Harris, E.: Reining in the outliers in map-reduce clus-
ters using Mantri. In: Proceedings of the 9th USENIX Confer-
ence on Operating Systems Design and Implementation, OSDI’ 10
(2010)

4. Anderson, D.: BOINC: a system for public-resource computing
and storage. In: Proceedings of the 5th IEEE/ACM International
GRID Workshop, Pittsburgh, USA (2004)

5. Andrade, N., Brasileiro, F., Cirne, W., Mowbray, M.: Automatic
grid assembly by promoting collaboration in peer-to-peer grids.
J. Parallel Distrib. Comput. 67(8), 957-966 (2007)

6. Andrade, N., Cirne, W., Brasileiro, F., Roisenberg, P.: OurGrid: an
approach to easily assemble grids with equitable resource sharing.
In: Proceedings of the 9th Workshop on Job Scheduling Strategies
for Parallel Processing (2003)

7. Anglano, C., Brevik, J., Canonico, M., Nurmi, D., Wolski, R.:
Fault-aware scheduling for bag-of-tasks applications on desktop
grids. In: Proceedings of the 7th IEEE/ACM International Confer-
ence on Grid Computing, GRID *06 (2006)

8. Bolze, R., et al.: Grid5000: a large scale highly reconfigurable
experimental grid testbed. Int. J. High Perform. Comput. Appl.
20(4), 481-494 (2006)

9. Brasileiro, F., Duarte, A., Carvalho, D., Barber, R., Scardaci,
D.: An approach for the co-existence of service and opportunis-
tic grids: the EELA-2 case. In: Latin-American Grid Workshop
(2008)

10. Calheiros, R.N., Vecchiola, C., Karunamoorthy, D., Buyya, R.:
The Aneka platform and QoS-driven resource provisioning for
elastic applications on hybrid clouds. Future Gener. Comput. Syst.
28(6), 861-870 (2011)

11. Capit, N., Da Costa, G., Georgiou, Y., Huard, G., Martin, C.,
Mounie, G., Neyron, P., Richard, O.: A batch scheduler with high
level components. In: Proceedings of the Fifth IEEE International
Symposium on Cluster Computing and the Grid (CCGrid’05),
Washington, DC, USA (2005)

12. Delamare, S., Fedak, G., Kondo, D., Lodygensky, O.: SpeQuloS:
a QoS service for BoT applications using best effort distributed
computing infrastructures. In: Proceedings of the 21st ACM Inter-
national Symposium on High Performance Distributed Computing
(HPDC’12), Delft, The Netherlands, pp. 173-186 (2012)

13. Dong, F., Akl, S.G.: Scheduling algorithms for grid computing:
State of the art and open problems. Technical Report, Queen’s
University Kingston (2006)

14. European desktop grid infrastructure (2010). http://edgi-project.
eu/

http://edgi-project.eu/
http://edgi-project.eu/

Cluster Comput (2014) 17:79-100

99

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

Estrada, T., Reed, K., Taufer, M.: Modeling job lifespan delays in
volunteer computing projects. In: 9th IEEE International Sympo-
sium on Cluster Computing and Grid (CCGrid) (2009)
Fedak, G., Germain, C., Neri, V., Cappello, F.: XtremWeb:
a generic global computing platform. In: CCGRID’2001 Special
Session Global Computing on Personal Devices (2001)

. Fishelson, M., Geiger, D.: Exact genetic linkage computations

for general pedigrees. Bioinformatics 18(Suppl 1), S189-S198
(2002)

Heien, E., Kondo, D., David, A.: Correlated resource models
of Internet end hosts. In: 31st International Conference on Dis-
tributed Computing Systems (ICDCS), Minneapolis, Minnesota,
USA (2011)

Tosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C., Wolters, L.,
Epema, D.H.: The grid workloads archive. Future Gener. Comput.
Syst. 24(7), 672-686 (2008)

Tosup, A., Sonmez, O., Anoep, S., Epema, D.: The performance
of bags-of-tasks in large-scale distributed systems. In: Proceed-
ings of the 17th International Symposium on High Performance
Distributed Computing, HPDC ’08 (2008)

Islam, M., Balaji, P., Sadayappan, P., Panda, D.: QoPS: a QoS
based scheme for parallel job scheduling. In: Job Scheduling
Strategies for Parallel Processing. Lecture Notes in Computer Sci-
ence. Springer, Berlin (2003)

Javadi, B., Kondo, D., Vincent, J., Anderson, D.: Mining for statis-
tical availability models in large-scale distributed systems: an em-
pirical study of SETI@home. In: 17th IEEE/ACM International
Symposium on Modelling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS) (2009)

Kondo, D., Chien, A., Casanova, H.: Resource management for
rapid application turnaround on enterprise desktop grids. In: ACM
Conference on High Performance Computing and Networking, SC
2004, USA (2004)

Kondo, D., Javadi, B., Iosup, A., Epema, D.: The Failure Trace
Archive: enabling comparative analysis of failures in diverse dis-
tributed systems. In: 10th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid) (2010)

Kondo, D., Javadi, B., Malecot, P., Cappello, F., Anderson, D.:
Cost-benefit analysis of cloud computing versus desktop grids. In:
18th International Heterogeneity in Computing Workshop (2009)
Litzkow, M., Livny, M., Mutka, M.: Condor—a hunter of idle
workstations. In: Proceedings of the 8th International Conference
of Distributed Computing Systems (ICDCS) (1988)

Mao, M., Humphrey, M.: Auto-scaling to minimize cost and meet
application deadlines in cloud workflows. In: International Con-
ference for High Performance Computing, Networking, Storage
and Analysis, SC ’11. ACM, New York (2011)

Marosi, A.C., Kacsuk, P.: Workers in the clouds. In: Euromicro
Conference on Parallel, Distributed, and Network-Based Process-
ing (2011)

Marshall, P., Keahey, K., Freeman, T.: Elastic site: using clouds to
elastically extend site resources. In: Proceedings of CCGrid’ 2010,
Melbourne, Australia (2010)

Marshall, P., Keahey, K., Freeman, T.: Improving utilization of
infrastructure clouds. In: IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid 2011) (2011)

Minh, T.N., Wolters, L.: Towards a profound analysis of bags-of-
tasks in parallel systems and their performance impact. In: High-
Performance Parallel and Distributed Computing (2011)

Nurmi, D.C., Brevik, J., Wolski, R.: QBETS: queue bounds esti-
mation from time series. In: Proceedings of the 2007 ACM SIG-
METRICS International Conference on Measurement and Model-
ing of Computer Systems, SIGMETRICS °07 (2007)

Oprescu, A.M., Kielmann, T.: Bag-of-tasks scheduling under bud-
get constraints. In: CloudCom (2010)

Palankar, M.R., lamnitchi, A., Ripeanu, M., Garfinkel, S.: Ama-
zon S3 for science grids: a viable solution? In: Proceedings of the

35.

36.

37.

38.

39.

40.

2008 International Workshop on Data-Aware Distributed Comput-
ing, DADC *08 (2008)

Rood, B., Lewis, M.J.: Multi-state grid resource availability char-
acterization. In: 8th Grid Computing Conference (2007)
Silberstein, M., Sharov, A., Geiger, D., Schuster, A.: GridBot: ex-
ecution of bags of tasks in multiple grids. In: Proceedings of the
Conference on High Performance Computing Networking, Stor-
age and Analysis, SC *09 (2009)

Urbah, E., Kacsuk, P., Farkas, Z., Fedak, G., Kecskemeti, G.,
Lodygensky, O., Marosi, A., Balaton, Z., Caillat, G., Gombas, G.,
Kornafeld, A., Kovacs, J., He, H., Lovas, R.: EDGeS: bridging
EGEE to BOINC and XtremWeb. J. Grid Comput. 7, 335-354
(2009)

Viazquez, C., Huedo, E., Montero, R.S., Llorente, .M.: On the use
of clouds for grid resource provisioning. Future Gener. Comput.
Syst. 27(5), 600-605 (2011)

Weng, C., Lu, X.: Heuristic scheduling for bag-of-tasks applica-
tions in combination with QoS in the computational grid. Future
Gener. Comput. Syst. 21(2), 271-280 (2005)

Zaharia, M., Konwinski, A., Joseph, A., Katz, R., Stoica, I.: Im-
proving MapReduce performance in heterogeneous environments.
In: OSDI’08 (2008)

Simon Delamare is a research en-
gineer from CNRS, working inside
the LIP laboratory at ENS Lyon.
He received his Master at Univer-
sité Paris 6 and his Ph.D. at Telecom
ParisTech in 2010. His research in-
terests include quality of service and
reliability of distributed computing
infrastructures.

PG e, Gilles Fedak has been a perma-
nent INRIA research scientist since
2004 and is currently working in
the AVALON team. After graduated
from University Paris Sud in 2003,
he has followed a postdoctoral fel-
lowship at University California San
Diego in 2003-2004. His research
topics encompass parallel and dis-
tributed computing with a focus on
resource management, large scale
data processing, security and relia-
bility.

@ Springer

100

Cluster Comput (2014) 17:79-100

@ Springer

Derrick Kondo received his Bache-
lor’s at Stanford University in 1999,
and his Master’s and Ph.D. at the
University of California at San Diego
in 2005, all in computer science. His
general interests are in the areas of
reliability, fault-tolerance, statistical
analysis, job and resource manage-
ment.

Oleg Lodygensky is a research en-
gineer at CNRS, working at LAL
(a high energy physics laboratory)
since 1996. He had his Master at
Université Paris 6 and defended
his PhD at Université Paris 11. He
works on research in distributed
computing and is the project man-
ager of XtremWeb-HEP, a large
scale computing platform, involved
in major european projects.

	SpeQuloS: a QoS service for hybrid and elastic computing infrastructures
	Abstract
	Introduction
	Best effort distributed computing infrastructures
	BE-DCI types
	BoT execution on BE-DCIs

	SpeQuloS
	Overview of the SpeQuloS service
	Monitoring BoT executions
	Cloud usage accounting and arbitration
	Providing QoS estimation to BE-DCI users
	Cloud resources provisioning strategies
	Starting workers on the cloud
	Implementation
	Desktop Grid's middleware and Grid's integration
	Cloud services support

	Evaluation
	Simulations setup
	BE-DCIs availability traces
	Variation of the number of nodes over time
	Availability and unavailability periods
	Computing power
	Summary

	BoT workloads
	Simulations parameters

	Evaluation of Cloud resources provisioning strategies
	Tail removal efficiency
	Cloud resource consumption

	SpeQuloS performance
	Completion speedup
	Execution stability
	Completion time prediction

	SpeQuloS use cases
	SpeQuloS deployment in EDGI
	Experimentation in the EDGI testing infrastructure

	Grid5000 as a Best-Effort DCI
	Grid5000 as a Cloud
	Using spot instances and SpeQuloS to decrease BoT execution costs on Amazon EC2

	Related work
	Conclusion and future works
	Acknowledgements
	References

