
Cluster Comput (2013) 16:915–931
DOI 10.1007/s10586-013-0266-7

Towards a conceptualization of ETL and physical storage
of semantic data warehouses as a service

Nabila Berkani · Ladjel Bellatreche · Selma Khouri

Received: 30 December 2012 / Accepted: 9 April 2013 / Published online: 26 April 2013
© Springer Science+Business Media New York 2013

Abstract The data warehouse technology has become the
incontestable tool for businesses and organizations to make
strategic decisions to ensure their competitively. The con-
struction of a data warehouse (DW) passes by selecting rel-
evant information sources, extracting relevant data and load-
ing them into the DW . These processes require a precise
expertise from designers related to logical and physical im-
plementations of information sources, which is not usually
an easy task. The diversity and heterogeneity of information
sources makes the construction process of the DW com-
plex and time consuming. Domain ontologies have been pro-
posed to reduce heterogeneity between sources, platforms,
services, etc. They resolve syntax and semantic conflicts.
The phenomenon of adopting domain ontologies by orga-
nizations creates a new type of databases, called semantic
databases (SDB). As a consequence, they become a candi-
date for building the semantic DW (SDW). To handle the
diversity of information sources and hide the implementa-
tions aspects of sources, proposing a generic framework for
constructing DW becomes a necessity. In this paper, we first
proposed an ontology-based approach for designing SDB.

N. Berkani · S. Khouri
National High School for Computer Science (ESI), Algiers,
Algeria

N. Berkani
e-mail: n_berkani@esi.dz

S. Khouri
e-mail: s_khouri@esi.dz

L. Bellatreche (B) · S. Khouri
LIAS/ISAE-ENSMA, Futuroscope 86960, France
e-mail: bellatreche@ensma.fr

S. Khouri
e-mail: selma.khouri@ensma.fr

Secondly, ETL phases are defined at ontological level to
hide the implementation details. Thirdly, a storage service
for ontologies and its associated data is given. Finally, our
proposal is validated through a case study and a tool.

Keywords Semantic databases · Data warehouse ·
Ontologies · ETL processes · Service · BPMN

1 Introduction

The data warehouse technology (DWT) has become the in-
contestable tool for businesses and organizations to make
strategic decisions. It is considered as a pillar of the inte-
gration industry widely developed in last two decades [1].
A data warehouse (DW) is defined as a stepwise infor-
mation flow from information sources through materialized
views towards analyst clients [2]. One of the difficulties
of building a DW application is handling the heterogene-
ity of information sources. A DW system may be viewed
as a Data Integration System (DIS), where parts of data
sources are duplicated in the same repository after applying
the ETL (extraction, transformation, loading) process. ETL
phase aims at designing the mappings and the data transfor-
mations required to load data sources into the logical schema
of the DW . This loading should take into account the model
of the logical schema (Relational OLAP,1 Multidimensional
OLAP, Hybrid OLAP). ETL represents the most important
stage of the DW design. Note that 70 % of the risk and ef-
fort in the DW project is attributed to this stage. The vast
amount of data makes ETL extremely time-consuming [3].

1On-Line Analytical Processing.

mailto:n_berkani@esi.dz
mailto:s_khouri@esi.dz
mailto:bellatreche@ensma.fr
mailto:selma.khouri@ensma.fr

916 Cluster Comput (2013) 16:915–931

A DIS is formally defined by the following triplet:
〈G,S,M〉 [4], where G represents the global schema pro-
viding a unified view of data stored in different heteroge-
neous sources. Each source Si ∈ S is associated with a local
schema. Mappings (M) represent correspondences defined
between local and global schemes. In the first generation
of DIS , the mapping are performed at the logical/physical
level by the means of relational views. This is due to two
main factors: (i) the large availability of relational databases
in organization that aliment the DW and (ii) the deep knowl-
edge of designers of the relational model. Note that, defin-
ing mapping at logical/physical levels forces developers and
designers to go inside operational sources which is not an
easy task, especially when the number of sources is large
which is usually the case of advanced DW applications. In
the meantime, the nature of sources has been evolved, where
new types were launched: XML, semantic sources, etc. As
a consequence, the construction process of DW may also
evolve and should be generic. In the other hand, the de-
velopment of the cloud computing pushes and encourages
designers and developers to hide implementations and in-
frastructures details [5, 6]. To be independent from the logi-
cal and the physical implementations of each schema, in the
past, some research efforts propose to express the mapping
on the conceptual level. To do so, the conceptual model of
sources and the DW is expressed by formal languages such
as Description Logics formalism (DL) or one of its frag-
ments [4, 7].

Parallel to these research efforts, in last two decades, a
new era of developing and using ontologies arises. An on-
tology is an explicit specification of a conceptualization [8].
Several ontologies have been developed in various domains
like e-commerce, engineering, medicine, semantic web, etc.
They have been largely used in data integration systems to
reduce heterogeneities between sources by offering mecha-
nisms to resolve conflicts between entities that may be en-
countered at the schema level and at the data level [9]. Some
studies argue that ontologies leverage conceptual models by
making them more consensual and enriching them by rea-
soning mechanisms. The intensive use of ontologies gener-
ates a new type of data, called semantic data. In order to fa-
cilitate the management of big semantic data, a new database
solution has been proposed by academician and industrials,
called semantic databases (SDB). Both industrial and aca-
demic communities proposed SDB solutions like: Rdfsuite,
Ontodb [10], IBM SOR [11] and Oracle [12]. These SDB
differ according to: (i) the used ontological formalisms to
define the ontology like RDF, RDFS, OWL, PLIB, FLIGHT,
etc. (ii) The storage schema of the ontology and of the
data model. We distinguish three main relational represen-
tations: vertical, binary and horizontal. Vertical representa-
tion stores data in a unique table of three columns (subject,
predicate, object) [12]. In a binary representation, classes

and properties are stored in different tables [11]. Horizontal
representation translates each class as a table having a col-
umn for each property of the class [10]. (iii) The architec-
ture dedicated to store the SDB. In systems like Oracle [12],
use the same architecture of traditional databases with two
parts: data schema part and the meta schema part to store
SDB. In systems like IBM Sor [11], the ontology model
is separated from its data which gives an architecture with
three parts: the ontology model, the data schema and the
meta-schema. Systems like Ontodb [10] consider an archi-
tecture with four parts, where a new part representing the
meta-schema is added.

Note that domain ontologies have been widely used in
DIS , where they represent the global schema of the DIS
[9, 13]. Some other works proposed then to attach an on-
tology (usually called local ontology) to each source, and
to define mappings between the global and local ontologies
[14, 15]. DIS considering SDB correspond to this archi-
tecture, where each SDB is a source storing a local on-
tology. Two integration scenarios can be defined: (i) corre-
spondences between global and local ontologies are defined
a priori at the design time of SDB. In such case, the in-
tegration process is simply assimilated to an integration of
mappings. Designers agree to make efforts when designing
the sources in order to get a ‘free’ ETL process. (ii) Corre-
spondences are discovered a posteriori either manually or
automatically, which is an issue related to the domain of
schema and ontology matching/alignment. Once the map-
pings discovered, the integration process resembles to the
first scenario.

The diversity of information sources, ontology for-
malisms (RDF, DAML, OWL, PLIB), storage layouts ded-
icated to ontologies and their associated data, the archi-
tectures of the target DBMS, requires the development of
generic solutions to construct DW . In this paper, we pro-
pose generic solutions for a part of the chain of the DW
process that includes ETL by exploiting the presence of on-
tologies information sources and the physical storage as a
service of ontologies and its associated instances during the
physical phase. It takes into account the diversity of storage
models (vertical, horizontal, and hybrid).

The paper is organized as follows. Section 2 presents a
rich state of art related to ETL processes and semantic DW .
Section 3 presents the background introducing the descrip-
tion logic formalisms to describe domain ontologies. Sec-
tion 4 describes our generic framework for constructing a se-
mantic warehouse from semantic sources. Section 5 gives a
model for ETL processes based on Business Process Model
and Notation (BPMN) and a definition of the ten generic
operators of the ETL processes (already proposed in the lit-
erature) at the ontological level. Section 6 presents a case
study of our proposal to show its feasibility. Section 7 dis-
cusses solutions based on the service technology dedicated

Cluster Comput (2013) 16:915–931 917

to ETL and the storage deployment of the target DW . Sec-
tion 8 concludes the paper.

2 Related work

In this section, we analyze the most important works done
on the ETL. We have realized that these studies cover the
three phases of the ETL process: conceptual, logical and
physical.

At the conceptual level, some research efforts have been
concentrated on proposing formalism languages for ETL
process modeling. We can cite ad-hoc formalisms [16], stan-
dard languages using UML [17], model driven architec-
ture (MDA) [18], BPMN [19, 20] and mapping modeling
[21–23]. The model proposed in [16] represents ETL pro-
cesses as a graph G(N,E); where nodes N represent trans-
formations, constraints, attributes as first-class modeling el-
ements, and data stores. An edge between two node ni and
nj (i �= j) represents data flows, inter-attribute relations,
compositions, or concurrent candidates. Trujillo et al. [17]
formalize ETL processes by the means of UML class dia-
grams, where UML notes can be attached to each ETL oper-
ation indicating its functionality. In [19], a methodology for
designing ETL processes is proposed. It is centered on the
notion of quality objectives. It models the operational pro-
cesses of the enterprise as well as the processes for gener-
ating the end-to-end business views required for operational
decision-making. In [20], a BPMN2-based conceptual mod-
eling of ETL processes is described. It is based on a clas-
sification of ETL objects resulting from a study analyzing
the most used commercial and open source ETL tools. In
[21] the authors proposed a UML data mapping diagram
which considers relations as classes and attributes as proxy
classes. Attributes are connected to the relation classes via
stereotyped “Contain” relationships. They can be related to
each other via stereotyped “Map” relationships. These con-
ceptual approaches focus on the graphical design of the
ETL process, whereas the identification of the required map-
pings and transformations are usually done manually. To
make automatic these mapping, Calvanese et al. [21, 22] fo-
cus on the construction of a DW , where its global schema
is expressed through an enriched Entity-Relationship (ER)
model formalized in DLR language.3 Logical schemes (re-
lations) of sources and the target schema of the DW are
defined as views on this conceptual model. Three types of
reconciliation correspondences are defined (namely conver-
sion, matching, and merging correspondences) in order to
load data sources into the DW .

2Business Process Modeling Notation.
3DLR is a subset of Description Logics (DL) formalism.

The logical modeling of ETL processes gets less atten-
tion from the DW community. In [24], ETL workflow is
modeled as a graph. The nodes of the graph are activities,
record-sets, attributes, and the edges are the relationship be-
tween nodes defining ETL transformations. In [25] a formal
ETL logical model is given using LDL [26] as a formal lan-
guage for expressing the operational semantics of ETL ac-
tivities.

Regarding the studies done at the physical design of ETL,
a couple of works have been proposed [27–30]. In [27], the
authors present an UML-based physical model of ETL pro-
cess. This work makes efforts on modeling the logical struc-
ture related to the data storage model and the hardware and
software configurations supporting ETL. In [28], a set of al-
gorithms was proposed to optimize the physical ETL design.
Alkis et al. [29] propose algorithms for optimizing the per-
formance of ETL (efficiency). Other non functional proper-
ties (freshness, recoverability, and reliability) of ETL have
been proposed in [30]. From the industrial point of view, a
plethora of commercial ETL tools exist in the market and
the physical design aspects are an entire part of them, since
they take into account implementation and execution aspects
of ETL. The most prominent tools are Microsoft Integra-
tion Services [31], Oracle Warehouse Builder [32], IBM
Datastage [33] and Informatica PowerCenter [34]. These
tools are based on different paradigms and with different ex-
pressivity power.

Another relevant criterion related to ETL works is its au-
tomation. Recall that ETL process is costly for organiza-
tions. Ontologies may contribute on automating ETL pro-
cess by the use of their reasoning capabilities and conceptu-
alization. However, ontologies were timidly used in the ETL
and researchers do not study their contributions to facilitate
the ETL process. Skoutas et al. [35] automate the ETL pro-
cess by constructing an OWL ontology linking schemes of
semi-structured and structured (relational) sources to a tar-
get DW schema. The work in [36] is based on [35]’s pro-
posal. The authors define an ETL process for analyzing data
source and define ETL operations to be executed according
to a pre-defined multidimensional model. The logical and
physical design steps are ignored. [37] consider data pro-
vided by the semantic web and annotated by OWL ontolo-
gies, from which a DW model is defined and populated.
However, the ETL process in this work is dependent on the
storage model used for instances which is the triples. [37]
and [36] are two attempts that propose ontological methods
combining multidimensional modeling and ETL design.

A comparison including Nebot et al. [37] and Romero et
al. [36] works and our proposal is given in Table 1 based
on five criteria: (1) the nature of information sources (NIS),
(2) the language formalism used to express mapping be-
tween source schemes and the warehouse schema (LFM),
(3) the level of ETL definition (conceptual, logical and phys-
ical) (LED), (4) the degree of automation of ETL process

918 Cluster Comput (2013) 16:915–931

(AETL) and (5) the chosen storage layout during the de-
ployment (SL).

3 Background

We present in this section the background related to the lan-
guages used to describe ontologies, and semantic databases.

Ontologies are actually defined as conceptual models
describing a domain and providing reasoning capabilities.
Most of these studies used Description logics (DL) formal-
ism (one of its fragments) to define this conceptual layer,
because it is able to capture the most popular data class-
based modeling formalisms presently used in databases and
Information system analysis [38]. Ontology Web Language
(OWL), the language standardized by W3C to define ontolo-
gies, is also based on DL formalism.

DLare defined as the formalism used to define logics
specifically designed to represent structured knowledge and
to reason upon. In DL, structured knowledge is described
using concepts and roles. Concepts (like concepts Student
and Publication in the University ontology of Fig. 1) denote
sets of individuals, and roles (like author and takeCourse
roles) denote binary relationships between individuals. Two
types of concepts and roles are used: atomic and concept

Table 1 Comparison of ontology-based approaches of the DW con-
struction

Criteria Work

Nebot et al. [37] Romero and al. [36] Our proposal

NIS Webdata sources Webdata sources Semanc databases

LFM Description logic No specified description logic

LED C/L/P C C/L/P

AETL semi automatic semi automatic automatic

SL Triple none à la carte

descriptions, which are defined using other concepts by ap-
plying suitable DL constructors. There are many families
(fragments) of Description Logic. The most basic family
is AL (Attributive Language), whose concept descriptions
are formed using constructors: C,D → A| (atomic concept)
�| (universal concept) ⊥| (bottom concept) ¬A| (atomic
negation) C 	 D| (intersection) ∀R.C| (value restriction)
∃R.� for limited existential quantification (A: atomic con-
cept, R and S: atomic roles, C and D: concept descrip-
tions). A knowledge base in DL is composed of two
components: the TBOX (Terminological Box) stating the
intensional knowledge and the ABOX (Assertion Box) stat-
ing the extensional knowledge or the instances (Eg. Stu-
dent(Student#1) denotes that Student#1 is an instance of
concept Student). Terminological axioms have the form of
inclusions: C � D (R � S) or equalities: C ≡ D (R ≡ S)
(Eg. Student � Person in Fig. 1).

4 Generic framework for constructing SDW

In this section we propose a generic framework based on the
DL formalism for a DW system integrating SDB. Initially,
our generic framework is composed of a global schema G
representing the intentional knowledge or the TBOX (the
global ontology), a set of local sources S and mappings M
between G and S . The extensional knowledge or instances
are stored in local sources.

The global schema 〈G,S,M〉 The global schema is de-
fined by its conceptual structure that we call Information
Model (IM). IM is defined as follows IM : 〈C,R,Ref (C),

formalism〉
– C: denotes Concepts of the model (atomic concepts and

concept descriptions).
– R: denotes Roles (relationships) of the model. Roles can

be relationships relating concepts to other concepts, or re-

Fig. 1 LUBM global schema

Cluster Comput (2013) 16:915–931 919

Fig. 2 Transitive closure of the
SDW definition

lationships relating concepts to data-values (like Integers,
Floats, etc).

– Ref : C → (Operator, Exp(C,R)). Ref is a function defin-
ing terminological axioms of a DL TBOX. Operators
can be inclusion (�) or equality (≡). Exp(C,R) is an
expression over concepts and roles of IM using con-
structors of description logics such as union, intersec-
tion, restriction, etc. (e.g., Ref (Student) → (�,Person 	
∀takesCourse(Person,Course))).

– Formalism is the formalism followed by the global ontol-
ogy model like RDF, OWL, etc.

This definition allows representing any domain ontology.

The information sources 〈G,S,M〉 Each local source
Si ∈ S representing a semantic database is defined as fol-
lows: Si : 〈IMi , Ii ,Popi ,SMIMi

,SMIi
,Ari〉.

– IMi : 〈Ci,Ri,Ref i , formalismi〉 is the information model
of the source.

– Ii : presents the instances or data of the source.
– Popi : Ci → 2Ii is a function that relates each concept to

its instances.
– SMIMi

: is the Storage Model of the information model
(vertical, binary or horizontal).

– SMIi
: is the Storage Model of the instances part Ii .

– Ari : is the architecture model of the source.

The mappings DIS: 〈G,S,M〉 The mappings are defined
between global and local schemes as follows
M : 〈MapSchemaG, MapSchemaS, MapElmG, MapElmS,
Interpretation, SemanticRelation〉. This formalization is
based on [39] meta-model defined for conceptual mappings.

– MapSchemaG and MapSchemaS: present respectively the
mappable schema of the global schema and of the local
schema (the information model).

– MapElmG and MapElmS: present respectively the map-
pable element of the global schema and of the local
source. This element can be a simple concept or an ex-
pression over the schema.

– Interpretation: presents the Intentional interpretation or
Extensional interpretation of the mapping.

– SemanticRelation: presents the type of semantic relation-
ship between MapElmG and MapElmS. Three relation-
ships are possible: Equivalence, Containment (Sound,
Complete) or Overlap. Equivalence states that the con-
nected elements represent the same aspect of the real
world. Containment states that the element in one schema
represents a more specific aspect of the world than the ele-
ment in the other schema. Overlap states that some objects
described by the element in the one schema may also be
described by the connected element in the other schema
[39].

The SDW is defined as a transitive closure as follows
(Fig. 2): SDW : 〈IMDW , IDW , PopDW , SMIMDW , SMIDW ,

ArDW〉.

5 ETL process

The goal of the ETL process is to populate the target DW
schema, represented by an Integrating Ontology (IO). IO
schema is defined from the global ontology schema (G)
using users’ requirements. Three scenarios are possible:
(1) IO = G: Global schema corresponds exactly to user’s
requirements; (2) IO ⊆ G: IO extracted from global schema
using modularity methods; (3) IO ⊇ G: Global schema does
not fulfill the whole users’ requirements. The designer ex-
tracts the fragment of the G corresponding to requirements
and enriches it with new concepts and properties. The ETL
process is applied in order to populate IO with available in-
stances extracted from sources. [35] has defined ten generic
conceptual operators typically encountered in an ETL pro-
cess, which are:

1. extract(S,C): extracts, from incoming record-sets, the
appropriate portion;

2. retrieve(S,C): retrieves instances associated to the
class C from source S;

920 Cluster Comput (2013) 16:915–931

3. merge(S, I): merges instances belonging to the same
source;

4. union(C,C′): unifies instances whose corresponding
classes C and C′ belong to different sources S and S′
respectively;

5. join(C,C′): joins instances whose corresponding classes
C and C′ are related by a property;

6. store(S,C, I): loads instances I corresponding to the
class C in target data store S,

7. DD(I): detects duplicate values on the incoming record-
sets;

8. filter(S,C,C′): filters incoming record-sets, allowing
only records with values of the element specified by C′;

9. convert(C,C′): converts incoming record-sets from the
format of the element C to the format of the element C′;

10. Aggregate(F,C,C′): aggregates incoming record-set
applying the aggregation function F (count, sum, avg,
max) defined in the target data-store.

5.1 BPMN for ETL process

The conceptual design of the ETL process still remains a
complex and error-prone activity, due to its complexity and
the lack of standards. Existing conceptual approaches and
their tools have focused on providing graphical solutions,
based on different formalisms (ad hoc, UML, MDA, BPMN,
etc.). Consequently, there is a need to have a generic and
a standardized method. On the other hand, ETL process
can be considered as a particular type of business process
applied in DW environment. Several authors [19, 20] ar-
gue that the ETL process can be seen as a workflow pro-
cess. BPMN (Business Process Model and Notation) has
emerged as a standard notation for designing business pro-
cesses. Consequently, BPMN can be customized for design-
ing ETL processes. BPMN 2.0 is a process modeling lan-
guage whose semantics are supported by a standard pro-
posed by the OMG.4 BPMN is not owned by vendors. In

4http://www.omg.org/cgi-bin/doc?dtc/10-06-02.

addition, the OMG does not provide any official method-
ology for BPMN design. Consequently, BPMN is highly
adopted by the Business Process Management community.
There are several improvements between BPMN 1.2 and
BPMN 2.0 specifications. The most significant one is the
BPMN meta-model and the mechanism allowing his exten-
sion, remaining BPMN-compliant. BPMN 2.0 meta-model
is available through two syntaxes: graphical notation and
textual using XML Schema Definition (XSD) proposed by
W3C. BPMN 2.0 meta-model consists of more than one
hundred elements giving rise to many combinations of con-
cepts and semantics. In this paper, we consider a fragment
of BPMN as core elements that we consider sufficient to de-
scribe ETL processes. Figure 3 depicts a relevant fragment
of the BPMN meta-model.

The list of meta-classes and their descriptions are pre-
sented as follows:

– BaseElement: the abstract super class for all BPMN meta-
classes.

– Flow objects: inherits the attributes and model associ-
ations of BaseElement. It consists of activities, events,
gateways, input and output specifications.

– Activity: is a process step that can be atomic (Tasks) or
decomposable (Sub-Processes).

– Task: is an atomic activity within a process flow. A task is
used when the work in the process cannot be broken down
to a finer level of detail.

– Event: is something that happens during the course of a
process. It affects the flow of the process and usually has
a cause or an impact.

– DataInput: represents the declaration of entries of a given
process.

– DataOutput: represents the declaration of outputs of a
given process.

– InputSet: is a collection of DataInput elements.
– OutputSet: is a collection of DataOutput elements.
– Gateway: used to control how the flow interacts (converge

or diverge) within a process.
– Inclusive: used to create alternative and parallel choices

within a process flow.

Fig. 3 BPMN for ETL Process

http://www.omg.org/cgi-bin/doc?dtc/10-06-02

Cluster Comput (2013) 16:915–931 921

Fig. 4 Connection of ETL Model to Ontology Model

– Exclusive: used to create alternative choices within a pro-
cess.

– Parallel: used to synchronize (combine) parallel flows
and to create parallel flows.

– Complex: used to model complex synchronization behav-
ior.

Note that the BPMN meta-model focuses only on the struc-
ture of concepts and relationships, without taking into ac-
count either their representations (textual or graphical) or
their semantics. The meta-model can be instantiated by as-
signing the required semantic for each concept and relation-
ship. It can be extended with new non-standard elements to
satisfy specific needs without contradicting the semantics of
any BPMN element used. In addition, constraints defining
the role and semantic of concepts are not explicitly included
in a set of rules in BPMN 2.0 specification. They are not
expressed by a formal language.

To make the corresponding between ETL and business
processes, we propose to extend BPMN in such way that
ETL operations will be described at the ontological level.
We enrich BPMN with the generic conceptual ETL opera-
tors typically encountered in an ETL process (Extract, Re-
trieve, Merge, Union, Join, Filter, Conversion, Aggregation
and Store). The model is presented in Fig. 4.

The instantiated ETL model contains the following
classes:

– ETL Process Class: is the central class which provides
the mechanisms to manage the instances extracted from
the source until their loading into the DW . The ETL pro-
cess class is composed of several sub ETL process, defin-
ing different ETL operations, that corresponds to each re-
quirement. It means that ETL processes sharing the same
requirement are represented as a SubETLProcess.

– InputSet Class: represent the entry parameter of the ETL
process which is the source schema (semantic databases
defined by mean of concepts and roles) and the target DW
schema (the ontology is defined by the means of concepts
and roles).

– OutputSet: represent the output of the ETL process. It can
be either the intermediate output (sub process) or the final
output (ETL process). The final output corresponds to the
DW schema, defined by mean of concepts and roles.

– Data Input: represents the retrieved instances of sources.
– Data Output: represents the loaded data into the target
DW .

– Gateway: controls the flow of both diverging (Branching
class) and converging (Merging) data Flow.

– Branching Class: delivers multiple output-sets which can
be further classified in Filter operations (filters instances
based on conditions) or Extract operations (the appropri-
ate portion of instances is selected).

– Merging Class: combines multiple instances into a single
one. We identify three possible operations: (i) Merge op-

922 Cluster Comput (2013) 16:915–931

eration applied when the instances belong to classes of
the same source; (ii) Union operation applied when in-
stances belong to classes that have the same super class;
and (iii) Join operations applied when instances belong
to classes that are related by same property (object prop-
erty).

– Activity: represents points in the process where work is
performed. It corresponds to all operations of conversion
and aggregation.

– Aggregation: aggregates incoming instances applying the
aggregation function F (count, sum, avg, max, min).

– Conversion: converts incoming instances from the format
specified in the corresponding source to the format of the
target DW .

Recall that a given domain ontology is described by con-
cepts and properties, both are used to define the schemes of
data sources and the DW . Thereby, a connection between
the instantiated ETL model and the ontology model is fea-
sible. Figure 4 illustrates this connection. A connection be-
tween core elements describing the input/output flow of an
ETL process (InputSet, OutputSet) and the resources (con-
cepts and roles) of the ontology is established. This connec-
tion allows designers to choose the most relevant ontological
concepts to derive ETL transformations at ontological level,
without wondering about the implementation details.

5.2 ETL on ontological level

Based on these generic conceptual operators, we proposed
an algorithm for populating the integrated ontology IO. Ac-
cording to our framework, four semantic mappings are iden-
tified:

1. CG ≡ CSi
: Equivalent mappings between global classes

and the classes of source Si (no transformation is
needed), instances are extracted from sources, merged,
united or joined then loaded in the target warehouse;

2. CG ⊃ CSi
: Containment (Sound) mappings between G

classes and the classes of source Si : source instances sat-
isfy all constraints required by the G and more (no trans-
formation needed), instances are extracted from sources,
merged, united or joined then loaded to the target data
store;

3. CG ⊂ CSi
: Containment (Complete) mappings between

the classes of G and the source Si : source instances sat-
isfy only a subset of the constraints required by G’s
classes, some instances need to be transformed (con-
verted, filtered and aggregated) then merged, unified or
joined after that they are loaded to the target warehouse;

4. Overlap mappings between G Classes and the classes of
source Si : in this case we are interested to identify the
constraints required by G classes and not applied to the
source classes then it can be considered same as the Con-
tainment (Complete) mappings.

Algorithm 1 depicts these four scenarios.
The consequence to connect the ontology model to the

ETL model allows us to augmenting/extending the initial
definition of the DW defined as: 〈G,S,M〉. It becomes as:
〈G,S,M,ETL〉

6 Case study

In this section, a case study using Lehigh University Bench-
Mark (LUBM) [40] is conducted, based on an industrial
SDB: Oracle. It illustrates the instantiation of the generic
integration framework described above and the application
of the ETL algorithm proposed.

Oracle has incorporated support for languages RDF and
OWL in its system to enable its customers to benefit from
a management platform for semantic data. Oracle has de-
fined two subclasses of DLs: OWLSIF and a richer frag-
ment OWLPrime. We use OWLPrime fragment which offers
the following constructors:5 rdfs:domain, rdfs:range, rdfs:
subClassOf, rdfs:subPropertyOf, owl:equivalentClass, owl:
equivalentProperty, owl:sameAs, owl:inverseOf, owl:
TransitiveProperty, owl:SymmetricProperty, owl:
FunctionalProperty, owl:InverseFunctionalProperty. Note
that OWLPrime limits the expressive power of DL formal-
ism in order to ensure decidable query answering.

The scenario adopted consists on the creation of 4 Oracle
SDBs considered as sources (S1, S2, S3 and S4) and popu-
lated locally using Lehigh University Benchmark (LUBM)
ontology, as illustrated in Fig. 5. We consider a scenario
where a director organism (for example the education min-
istry) imposes the same vocabulary for all universities.
Each university refers to the same global schema (LUBM
schema), extracts its local schema from this global schema
using simple and complex mappings, and populates this
schema locally (using LUBM instances). Each source stores
its schema and instances in an Oracle SDB. Assume that
the education ministry needs to perform some analysis stud-
ies to take relevant decisions. These SDBs need thus to be
integrated in a DW system following an ETL process. First,
we start our case study by presenting the process of creation
of the SDB in Oracle. We then instantiate the integration
framework presented above using these sources. Finally, we
apply the integration algorithm to integrate these sources in
a DW schema.

6.1 Creating SDB from LUBM ontology

Two types of sources participating in the construction of the
target data warehouse are considered: (i) sources are de-
fined by a simple mapping from the global ontology and

5http://www.w3.org/2007/OWL/wiki/OracleOwlPrime.

http://www.w3.org/2007/OWL/wiki/OracleOwlPrime

Cluster Comput (2013) 16:915–931 923

begin
Input: (1) IO: The integrating Ontology IO (the schema only), (2) Si : Local source (SDB)
Output: The integrating ontology IO (schema + instances)
for Each C : Class of ontology IO do

IIO = φ

for Each source Si do
if C exists in Si /*Equivalent mappings, instances in Si satisfy all constraints imposed by IO*/ then

C′ = IdentifyClass (Si , C) /*identify class from source*/
end
else if Cs ⊂ C /*Instances in Si satisfy all constraints imposed by IO, plus additional ones*/ then

C′ = IdentifyClass (Si,C) /*identify class from source*/
end
else if Cs ⊃ C or Overlap mappings /*Instances satisfy only a subset of constraints imposed by IO*/
then

if format of C is different from format of C′ then
C′ = CONVERT(C,C′) /*Convert instances from format of sources to that of IO*/

end
if C represent aggregation constraint defined by F then

C′ = AGGREGATE(F,C,C′) /*Aggregates instances using function F */
else if C represents filter constraint then

C′ = FILTER(Si,C,C′) /*Filter instances depending on C of IO*/
end

end
C′ = ClassFiltred(Si,C) /*Select the class filtered*/

end
end
ISi

= RETRIEVE(Si,C
′) /*Retrieve instances associated to C′ in Si∗/

if more than one instance are identified in the same source then
IIO = MERGE(IIO, ISi

) /*Merge instances associated to C∗/
end
if classes have the same super class then

IIO = UNION(IIO, ISi
) /*Unites instances incoming from other sources*/ else if classes are related

by same property then
IIO = JOIN(IIO, ISi

) /*Join incoming instances*/
end

end
if Source contain instances more than needed then

IIO = EXTRACT(IIO, ISi
) /*Extract appropriate portion of instances*/

end
end
STORE(IO,C,DD(IIO)) /*Detects duplicate values of instances and store them in IO*/

end
Algorithm 1: Algorithm for populating the DW using conceptual ETL operators

(ii) sources are defined by a complex mapping from the
global ontology (using DL constructors).

6.1.1 Simple mappings

In this mapping, we consider three scenarios: vertical, hori-
zontal and mixed fragmentation.

Definition 1 A vertical fragment over an ontology is de-

fined as the projection on a set of classes of the global on-

tology. Each class inherits all her roles. Figure 6 depicts a

vertical ontological fragmentation. Formally, following the

integration framework, we define the global ontology by

its information model: Ontology = {C : Set of Classes,R :
roles,Ref ,Formalism}, and we define the vertical fragmen-

924 Cluster Comput (2013) 16:915–931

Fig. 5 General architecture of the approach: Integrating Oracle SDB using LUBM Benchmark

Fig. 6 Vertical ontological
fragmentation based on
projection of classes

tation as follows: Π(Ci,Cj ,...,Cm)(C). The ontological projec-
tion is quite similar to the relational projection.

Definition 2 A horizontal fragmentation over ontology is
defined as a restriction of a set of roles for each class of the
ontology. More formally, it is defined as σ(restri ,...,restrm)(Cj),
where restri and Cj represent respectively, a restriction on

the role ri and the ontology class Cj . Figure 7 depicts a hori-
zontal ontological fragmentation. The ontological restriction
saves the global schema of the ontology.

Definition 3 A mixed fragmentation over ontology is de-
fined as the process of applying simultaneously horizontal
and vertical fragmentation on the ontology.

Cluster Comput (2013) 16:915–931 925

Fig. 7 Horizontal ontological
fragmentation based on
selection of roles

6.1.2 Complex mappings

Note that a concept of a local source may be defined from
atomic concepts and roles of the global ontology. This def-
inition is performed by the means of DL constructors. The
most used constructors in DLs are constructors of AL frag-
ment, enriched by: negation of arbitrary concepts (¬C),
union of concepts (C ∪ D) and number restriction con-
structor (≥ .nR). Formally, a local ontology with complex
mappings may be defined as follows: OntologyCM = {C′ =
Ref (C),R′,Ref ′,Formalism}. Note that Ref denotes exter-
nal references between the local and global ontology. For
example: StudentLO (LO for local ontology) is defined us-
ing concepts and roles of the global ontology as follows:
StudentLO = Person ∩ ∀takesCourse(Person,Course). Ref ′
denotes internal references between classes and roles of the
local ontology. Note that the consistency of the resulting lo-
cal ontology must be checked by the designer.

Based on the simple and complex mappings; four Oracle
SDBs sources are created: S1, S2, S3 and S4. The first three
sources were created using simple mappings and represent
respectively: vertical, horizontal and mixed fragments over
LUBM ontology.

1. S1: contains three classes: person (Age, EmailAdress,
Telephone, Title), Student and GraduateStudent.

2. S2: (i.e. it contains all its classes). A projection on
the class person is done on two properties: Age and
EmailAdress. The other classes are the same classes of
LUBM classes.

3. S3: is a mixed fragment over LUBM ontology contain-
ing three classes: Person, Student and GraduateStudent.
A projection is done on two properties of the class Per-
son: Age and EmailAdress.

4. S4: is defined as a fragment of LUBM ontology using
complex mappings. It contains three classes: Person, Stu-
dent and Employee defined as follows:

– S4.C1: Person, Ref (Person) = (Student ∪ Employee)
∩ ∀member (Person, Organization)

– S4.C2: Student, Ref (Student) = Student
∩ ∀takesCourse (Person, Course)

– S4.C3: Employee, Ref (Employee) = Person
∩ ∀WorksFor (Person, Organization)

6.2 Instantiation of the generic integration framework

The generic integration framework 〈G,S,M〉 can be instan-
tiated for our case study as follows:

The global schema G: The global schema is represented
by LUBM ontology,6 and is formalized by its Information
Model as follows:

IMOracle: 〈Classes C,Properties P(Datatype Property and
Object Property),Ref: (Operator,Expressions),OWLPrime〉.

Ref is a function that gives the expression (or defi-
nitions) of classes and properties using operators avail-
able in OWLPrime (rdfs:subClassOf, owl:equivalentClass,
rdfs:subPropertyOf, owl:equivalentProperty). Expression is
an expression over classes and properties using OWLPrime
constructors described above.

The local sources S: Each local source Si is instantiated
for Oracle SDB as follow:

Si : 〈IMOracle, Individuals (triples), Pop is given in tables
RDF_link$ and RDF_values$, Vertical, Vertical, type I〉.
Vertical storage is a relational schema composed of one table
of triples (subject, predicate, object). For example: (Student,
type, Class) for the ontology storage and (Student#1, type,

6http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl.

http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl

926 Cluster Comput (2013) 16:915–931

Student) and (Student#1, takeCourse, Course#1) for the in-
stances storage.

The mappings: Mapping assertions between global and
local schema are instantiated for Oracle as follows:

Mapping M: 〈IMOracle of each source, IMOracle of the
global schema, Expression over G, Class of a source S, In-
tentional interpretation, (Equivalent, Containment or
Overlap (owl:SubClassOf and owl:equivalentClass in
OWLPrime))〉.

6.3 ETL process

Note that generic ETL operators defined in the previous sec-
tion are expressed on the conceptual level. Therefore, each
operation has to translated according the logical level of the
target DBMS (Oracle). Oracle offers two ways for querying
semantic data: SQL and SPARQL. We choose SPARQL to
express this translation as follows:

– The namespace of University Ontology of benchmark
LUBM:

PREFIX univ-bench:
http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.
owl#

– EXTRACT: Select ?Instance# Where {?Instance# rdf:type
nameSpace:Class. ?Instance NameSpace:DataProperty
value_condition}

Example 1 Extract students those age = 15 years.
Select ?student Where {?student rdf:type univ-bench:
Student . ?student univ-bench:age 15}

– RETRIEVE: Select ?Instances# Where {?Instances#
rdf:type Namespace:Class}

Example 2 Retrieve the instances of the Student class.
Select ?InstanceStudent Where {?InstanceStudent rdf:type
univ-bench:Student}

– MERGE: Select ?instance Where {{?instance rdf:type
namespace:Class1} Union {?instance rdf:type names-
pace:Class2}}

Example 3 Merge instances of classes Employee and Stu-
dent belonging to the same source:
Select ?instance Where {{?instance rdf:type univ-bench:
Student} Union {?instance rdf:type univ-bench:
Employee}}

– UNION: Select ?instance Where {{?instance rdf:type
namespace1:Class1} Union {?instance rdf:type names-
pace2:Class2}}

Example 4 Unify instances of classes Student and Person
belonging respectively to univ-bench1 and univ-bench2
ontologies. Note that namespace enables to distinguish
between different sources.

PREFIX univ-bench1:
http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.
owl1#

PREFIX univ-bench2:
http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.
owl2#

Select ?instance Where {{?instance rdf:type univ-bench1:
Student} Union {?instance rdf:type univ-bench2:Person}}.

– JOIN: Select ?instance1 ?instance2 Where {?instance1
rdf:type namespace:Class1 . ?instance2 rdf:type names-
pace:Class2 . ?instance1 namespace:P ?instance2}.

Example 5 Join the classes Student and Course that are
related by the object property takesCourse:
Select ?instanceStudent ?instanceCourse Where {?in-
stanceStudent rdf:type univ-bench:Student . ?instance-
Course rdf:type univ-bench:Course . ?instanceStudent
univ-bench:takesCourse ?instanceCourse}.

– DD: detects duplicate values on the incoming record-
sets. Select Distinct ?instance Where {{?instance rdf:type
namespace:Class1} Union {?instance rdf:type names-
pace:Class2}}}.

Example 6 Detect and remove duplicate values on the in-
coming instances associated to the classes Student and
Person:
Select Distinct ?instance Where ?instance rdf:type univ-
bench:Student Union ?instance rdf:type univ-bench:
Person .

– FILTER: filters incoming record-sets, allowing only
records with specific values of a data property P .
Select ?instance ?P where {?Instance rdf:type names-
pace:Class ; namespace:P ?P . FILTER (?P > value_
condition)}.

Example 7 Filter incoming student instances allowing
only those with age is greater than 16 years:
Select ?instanceStudent ?age where {?instanceStudent
rdf:type univ-bench:Student; univ-bench:age ?age . FIL-
TER (?age > 16)}.

– AGGREGATE: Aggregates incoming record-set applying
aggregation function (F = count, sum, avg, max).
Select (Count(?Instance) AS ?count) Where {?Instance
rdf:type namespace:Class} Group By ?Instance.

Cluster Comput (2013) 16:915–931 927

Example 8 Select number of student:
Select (count(?Student) AS ?count) Where {?Student
rdf:type univ-bench:Student} Group By ?Student.

– STORE: loads instances corresponding to a class in
the target data store. The following statement shows a
SPARQL query selecting all triples from a source then in-
serts them into a staging table of oracle SDB using a SQL
query:
Select ?subject ?prop ?object Where {?subject ?prop ?ob-
ject} Insert Into Staging_table Values (id,
SDO_RDF_TRIPLE_S (subject, prop, object));

Figure 5 summarizes the steps of our proposal.

7 ETL as service

In the traditional DW , the storage model followed one-2-
one rule, where each warehouse table is stored following
one storage layout. This is equivalent to an implicit as-
sumption that the DW model will be usually deployed us-
ing the same logical and physical representations (the rela-
tional model). Consequently, the potential storage deploy-
ment model of the DW is always known in advance and
frozen. With the evolution of the storage layouts, this hy-
pothesis will not make sense. Storage deployment models
can follow different representations according to specific re-
quirements. A DW can be deployed using horizontal, verti-
cal, hybrid models, NoSQL, etc.

To overcome this problem and provide more flexible and
adequate storage deployment of DW , we propose a service
allowing designers the possibility to choose her/his favorite
representation and storage layout. This service leverages the
one-2-one rule to one-2-many rule. To achieve this goal, the
integration of SDB into the DW by the means of an ETL
process is implemented as a services, shown in Fig. 8: ETL
as a Service (ETLaaS) and Physical storage as a Service
(PDaaS).

The proposed tool is implemented in Java language and
uses OWL API to access ontologies. The tool takes as in-
puts a set of requirements and a set of SDB that participates
in the construction of the DW . These sources reference a
shared ontology formalized in OWL. The first step (concep-
tual design) is supported by a model-to-model transforma-
tion process. The warehouse ontology (DWO) is extracted
as a module using ProSé plug-in available within protégé ed-
itor. Fact++ reasoner is invoked to classify the DWO class’s
taxonomy and to check its consistency.

The storage deployment of the DW is done according to
the target platform. The diversity of storage models (verti-
cal, horizontal, and hybrid) is handled by our proposed tool,
where the suitable web service is invoked in order to trans-
late the logical schema according to the physical model of
the target DBMS. The ETL process is implemented in our
tool such that technical details are hidden to the user. Each
generic ETL operator is implemented as a Web Service. The
proposed ETL algorithm consists thus in composing these

Fig. 8 ETL as Service

928 Cluster Comput (2013) 16:915–931

Fig. 9 A general architecture of
the ETL and Physical Storage
Services

Web Services. Based on the existing mappings between the
schemes of SDB and the target DW schema, the imple-
mented web services allows an automatic extraction of the
appropriate data from the SDB sources, their transforma-
tion (filtering, conversion and aggregation) and the compu-
tation of the new values in order to obey to the structure of
the DW classes. Then, data are loaded to the appropriate
classes of the DW model. Each web service that accesses
the persistent storages is implemented using Data Access
Object (DAO) Design patterns [41]. DAO implements the
access mechanism required to handle the SDB. The DAO
solution abstracts and encapsulates all access to persistent
storage, and hides all implementation details from business
components and interface clients. The DAO pattern provides
flexible and transparent accesses to different storage layout.
Based on the architecture of the SDB and the target DW ,
the right object DAO is selected.

In order to obtain a generic implementation of the ETL
process, we implemented our solution following service ori-
ented architecture (SOA). SOA offers the loose coupling
of the web services defined bellow, and interaction among
them. It allows the integration of new web services with-
out affecting the existing one. This provides the flexibility
of the physical deployments of DW . A demonstration video
summarizing the different services offered by our proposal
is available at: http://www.lias-lab.fr/forge/ETL/video.html.

7.1 Experimental study

In this section, we conduct experiments to evaluate the per-
formance of our system by considering large data sets. Fig-
ure 9 describes the general architecture of the semantic DW
deployment system. Two main services are distinguished:

the ETL as a service and the physical storage as a service.
Note that our system offers an automatic deployment ser-
vice based on the chosen storage layout and the architec-
ture of the target DBMS. During the experimental phase, we
identified two criteria to be evaluated: the complexity of the
proposed algorithm and the scalability in terms of instances
of sources.

Data sets and environment Six sets of ontologies with re-
spectively 1, 3, 6, 9, 12 and 15 universities are generated.
The number of instances in each set is shown in Table 2. This
generation is guided by the Data Generator tool (UBA) pro-
vided by the benchmark LUBM. This tool allows creating a
domain ontology “University”. Each university consists of
15 to 25 departments. In each department, different cate-
gories of Professors, Students, GraduateStudents, Courses,
etc. can be found. The UBA generates OWL data over the
LUBM ontology in the unit of a university. These data are
repeatable and customizable, allowing us to specify the seed
for random number generation. The generated data guaran-
tee the inclusion of correct cases (e.g. respects the hierarchy
of classes and relationship between the generated instances).
However, we have added some contradictory cases to test
their influence on the semantic data integration.

Our evaluations were performed on a laptop computer
(HP) with an Intel (R) CoreTM i5-3320M CPU 2.60 GHZ
and 4 GB of RAM and a 500 GB hard disk. We used Win-
dows XP Professional OS and Java SDK 1.7. We use Oracle
11g release 2 DBMS.

SDB source creation We have created six Oracle SDB
sources using simple and complex mappings. Oracle 11g
offers only the data loading under N-Triple format (.nt). To

http://www.lias-lab.fr/forge/ETL/video.html

Cluster Comput (2013) 16:915–931 929

Table 2 Data Sets generated

Ontological Data Set OWL Instances N-Triple Instances

1 University 70 193 84 231

3 Universities 210 579 259 012

6 Universities 421 158 505 389

9 Universities 631 737 770 719

12 Universities 842 316 1 027 625

15 Universities 1 052 895 1 295 060

Fig. 10 Complexity of the proposed algorithm

meet this requirement, we used the Jena API which provides
a converter named rdfcat. It enables the transformation of
the generated OWL files to N-Triple format. The number
of instances obtained for each ontological set is depicted
in Table 2 column N-Triple Instances. These N-triple in-
stances are loaded into the six SDB sources using Oracle
SQL Loader.

Obtained results We consider the following scenario: we
construct a semantic warehouse from the six SDB and the
obtained warehouse is deployed. First of all, we examine
the number of iterations of our algorithm to populate each
DW ontological class (Ci). Figure 10 shows the obtained
results. They show that the search space is not exponential
regarding the number of semantic DW classes. Note that our
algorithm is based on intentional mappings (concepts) and
not on extensional mappings (number of instances). Indeed,
although the average number of iterations per source is 15,
in the worst case, our algorithm computes no more than 125
iterations. These findings verify the feasibility and efficiency
of our approach in real-world cases.

Secondly, we evaluate the scalability and performance is-
sues regarding the population of the constructed DW . Fig-
ure 11 illustrates the results of the integration of the six
SDB. For these sources, we measure the time spent to in-
tegrate instances into the DW . Notice axis x measures the
number of instances shown in thousands.The time perfor-
mance remains reasonable w.r.t. the size of the stored in-
stances. This means that our method scales; the time spent

Fig. 11 The impact of the size of the stored instances during the pop-
ulation of the SDB

to integrate the six SDB does not exceed 4 minutes which
represents good performance.

8 Conclusion

In this paper, we have shown the evolution of information
sources and diversity of storage models of the target ware-
house. Inspired by Cloud computing technology, we pro-
pose a generic framework to construct a semantic DW from
SDB. Different kinds of mappings between source schemes
and a global ontology schema of the warehouse are defined,
allowing the creation of data sources: (i) simple mappings
by selecting vertical, horizontal or mixed fragments of the
global ontology; and (ii) complex mappings by selecting
views of the global ontology. This framework contributes
on defining ETL process at ontological level. To ensure this
genericity, we proposed to use BPMN to model ETL pro-
cess including the ten operators defined in the state of art.
This model is then connected to the ontology model, which
is a part of the warehouse components. As a consequence, all
ETL operations are defined at ontological level which gives
a high abstraction of designers and developers and hide the
implementation aspects. Another contribution of this paper
is the proposition of service for storing the ontology and its
associated instances into the warehouse repository. This is
due to the diversity of storage layouts and architectures of
the target DMBS. A case study is conducted using LUBM
benchmark schema as a global ontology, and using its in-
stances to populate four Oracle SDBs. The application of
the ETL algorithm generates the target DW schema popu-
lated with instances loaded from SDB. An operational tool
is also developed supporting our proposal.

References

1. Halevy, A.Y., Ashish, N., Bitton, D., Carey, M.J., Draper, D., Pol-
lock, J., Rosenthal, A., Sikka, V.: Enterprise information integra-
tion: successes, challenges and controversies. In: Proceedings of
the ACM SIGMOD International Conference on Management of
Data, pp. 778–787 (2005)

930 Cluster Comput (2013) 16:915–931

2. Jarke, M., Jeusfeld, M.A., Quix, C., Vassiliadis, P.: Architecture
and quality in data warehouses: an extended repository approach.
Inf. Syst. 24(3), 229–253 (1999)

3. Liu, X., Thomsen, C., Pedersen, T.B.: Mapreduce-based dimen-
sional ETL made easy. J. Proc. VLDB Endow. 5(12), 1882–1885
(2012)

4. Calvanese, D., Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.:
Data integration in data warehousing. Int. J. Coop. Inf. Syst. 10(3),
237–271 (2001)

5. Agrawal, D., Das, S., El Abbadi, A.: Big data and cloud comput-
ing: new wine or just new bottles? J. Proc. VLDB Endow. 3(2),
1647–1648 (2010)

6. Agrawal, D., El Abbadi, A., Wang, S.: Secure and privacy-
preserving data services in the cloud: a data centric view. J. Proc.
VLDB Endow. 5(12), 2028–2029 (2012)

7. Haase, P., Motik, B.: A mapping system for the integration of owl-
dl ontologies. In: IHIS, pp. 9–16 (2005)

8. Gruber, T.R.: A translation approach to portable ontology specifi-
cations. In: Knowledge Acquisition, vol. 5, pp. 199–220 (1993)

9. Bellatreche, L., Nguyen Xuan, D., Pierra, G., Dehainsala, H.: Con-
tribution of ontology-based data modeling to automatic integration
of electronic catalogues within engineering databases. Comput.
Ind. 57(8–9), 711–724 (2006)

10. Fankam, C.: Ontodb2: un systme flexible et efficient de base de
donnes base ontologique pour le web smantique et les donnes
techniques. Poitiers University, Ph.D. Thesis (2009)

11. Lu, J., Ma, L., Zhang, L., Brunner, J.S., Wang, C., Pan, Y., Yu, Y.:
Sor: a practical system for ontology storage, reasoning and search.
In: VLDB, pp. 1402–1405 (2007)

12. Wu, Z., Eadon, G., Das, S., Chong, E., Kolovski, V., Annamalai,
M., Srinivasan, J.: Implementing an inference engine for rdfs/owl
constructs and user-defined rules in oracle. In: ICDE, pp. 1239–
1248 (2008)

13. Beneventano, D., Bergamaschi, S., Castano, S., Corni, A.,
Guidetti, R., Malvezzi, G., Melchiori, M., Vincini, M.: Informa-
tion integration: the momis project demonstration. In: VLDB Jour-
nal, pp. 611–614 (2000)

14. Mena, E., Illarramendi, A., Kashyap, V., Sheth, A.P.: Observer:
an approach for query processing in global information systems
based on interoperation across pre-existing ontologies. Distrib.
Parallel Databases 8(2), 223–271 (2000)

15. Wache, H., et al.: Ontology-based integration of information—a
survey of existing approaches. In: OIS, pp. 108–117 (2001)

16. Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: Conceptual model-
ing for ETL processes. In: DOLAP, pp. 14–21 (2002)

17. Trujillo, J., Luján-Mora, S.: A uml based approach for modeling
ETL processes in data warehouses. In: ER, pp. 307–320 (2003)

18. Mazón, J.-N., Trujillo, J.: An mda approach for the development
of data warehouses. In: JISBD, p. 208 (2009)

19. Wilkinson, K., Simitsis, A., Castellanos, M., Dayal, U.: Leverag-
ing business process models for ETL design. In: ER, pp. 15–30
(2010)

20. Akkaoui, Z., Mazón, J., Vaisman, A., Zimányi, A.: Bpmn-based
conceptual modeling of ETL processes. In: DaWaK, pp. 1–14
(2012)

21. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati,
R.: A principled approach to data integration and reconciliation in
data warehousing. In: DMDW, p. 16 (1999)

22. Calvanese, D., Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.:
Data integration in data warehousing. Int. J. Coop. Inf. Syst. 10(3),
237–271 (2001)

23. Luján-Mora, S., Vassiliadis, P., Trujillo, J.: Data mapping dia-
grams for data warehouse design with uml. In: ER, pp. 191–204
(2004)

24. Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: Modeling ETL ac-
tivities as graphs. In: DMDW, pp. 52–61 (2002)

25. Vassiliadis, P., Simitsis, A., Georgantas, P., Terrovitis, M., Ski-
adopoulos, S.: A generic and customizable framework for the de-
sign of ETL scenarios. Inf. Syst. 30(7), 492–525 (2005)

26. Shmueli, O., Tsur, S.: Logical diagnosis of ldl programs. New
Gener. Comput. 9(3/4), 277–304 (1991)

27. Luján-Mora, S., Trujillo, J.: Physical modeling of data warehouses
using uml component and deployment diagrams: design and im-
plementation issues. J. Database Manag. 17(2), 12–42 (2006)

28. Tziovara, P., Vassiliadis, P., Simitsis, A.: Deciding the physical
implementation of ETL workflows. In: DOLAP, pp. 49–56 (2007)

29. Simitsis, A., Vassiliadis, P., Sellis, T.-K.: Optimizing ETL pro-
cesses in data warehouses. In: ICDE, pp. 564–575 (2005)

30. Simitsis, A., Wilkinson, K., Dayal, U., Castellanos, M.: Optimiz-
ing ETL workflows for fault-tolerance. In: ICDE, pp. 385–396
(2010)

31. Microsoft: Sql server integration services (2008). Available on-
line: http://technet.microsoft.com/fr-fr/library/ms141026.aspx

32. Oracle: Oracle warehouse builder 11g release 2.1 (2009). Avail-
able online: http://www.oracle.com/technetwork/developer-tools/
warehouse/documentation/library/index.html

33. IBM: IBM infosphere datastage (2008). Available online: http://
www-01.ibm.com/software/data/infosphere/datastage/

34. Informatica: Informatica powercenter (2008). Available on-
line: http://www.informatica.com/us/products/enterprise-data-
integration/powercenter/

35. Skoutas, D., Simitsis, A.: Ontology-based conceptual design of
ETL processes for both structured and semi-structured data. Int. J.
Semantic Web Inf. Syst. 3(4), 1–24 (2007)

36. Romero, O., Simitsis, A., Abelló, A.: Gem: requirement-driven
generation of ETL and multidimensional conceptual designs. In:
DaWaK, pp. 80–95 (2011)

37. Nebot, V., Berlanga, R.: Building data warehouses with semantic
web data. Decis. Support Syst. 52(4), 853–868 (2012)

38. Calvanese, D., Lenzerini, M., Nardi, D.: Description logics for
conceptual data modeling. In: Logics for Databases and Informa-
tion Systems, pp. 229–263 (1998)

39. Brockmans, S., Haase, P., Serafini, L., Stuckenschmidt, H.: Formal
and conceptual comparison of ontology mapping languages. In:
Modular Ontologies, pp. 267–291 (2009)

40. Guo, Y., Pan, Z., Heflin, J.: Lubm: a benchmark for owl knowledge
base systems. J. Web Semant. 3(2–3), 158–182 (2005)

41. Mayr, C., Zdun, U., Dustdar, S.: Model-driven integration and
management of data access objects in process-driven soas. In: Ser-
viceWave, pp. 62–73 (2008)

Nabila Berkani received her En-
gineer degree in Computer Sci-
ence from National High School
for Computer Science (ESI), Al-
giers, Algeria in 2005. After that,
she spent seven years working as
Project Manager at ATM Mobilis
Telecom Operator, Algiers, Alge-
ria. She received her Master de-
gree in Computer science from the
same school in April 2013. She is
a Ph.D. student at National High
School for Computer Science (ESI),
Algiers. Her current research inter-
ests include Data Integration Sys-

tems, Data Warehouse Design, Ontology-based Modeling.

http://technet.microsoft.com/fr-fr/library/ms141026.aspx
http://www.oracle.com/technetwork/developer-tools/warehouse/documentation/library/index.html
http://www.oracle.com/technetwork/developer-tools/warehouse/documentation/library/index.html
http://www-01.ibm.com/software/data/infosphere/datastage/
http://www-01.ibm.com/software/data/infosphere/datastage/
http://www.informatica.com/us/products/enterprise-data-integration/powercenter/
http://www.informatica.com/us/products/enterprise-data-integration/powercenter/

Cluster Comput (2013) 16:915–931 931

Ladjel Bellatreche is a Profes-
sor at National Engineering School
for Mechanics and Aerotechnics
(ISAE-ENSMA), Poitiers, France,
where he joined it as a faculty mem-
ber since Sept 2010. He leads the
Data and Model Engineering Team
of Laboratory of Computer Science
and Automatic Control for Systems
(LIAS). Prior to that, he spent eight
years as Assistant and then Asso-
ciate Professor at Poitiers Univer-
sity, France. He was a Visiting Pro-
fessor of the Québec en Outaouais,
Canada, a Visiting Researcher at

Department of Computer Science, Purdue University, USA and De-
partment of Computer Science of Hong Kong University of Science
and Technology, China. He is also involved in Research Postgraduate
Programs in Computer Science of several Universities and Schools in
Africa. His research interests include data integration systems, data
warehousing, physical design of VLDB, ontologies, personalization
and recommendation. Prof. Ladjel Bellatreche has been actively in-
volved in the research community by serving as reviewer for techni-
cal journals (IEEE TKDE, DKE, Distributed and Parallel Database
Journal, etc.) and Editorial Board Member, International Journal of
Reasoning-based Intelligent Systems, Inderscience, subject area editor
of the Scalable Computing Journal, Springer and as an organizer/co-
organizer of numerous international and National Conferences and

Workshops (DAWAK, DASFAA, MEDI, WISE, EDA, JFO). Some
recent conferences in which he is playing or has played major roles in-
clude DAWAK, MEDI, WISE Workshops. In addition, he served as a
program committee member for over twenty international conferences
and Workshops.

Selma Khouri received her En-
gineer degree in Computer Sci-
ence from National High School for
Computer Science (ESI), Algiers,
Algeria in June 2007, and the Mas-
ter degree in Computer science in
September 2009. She is currently a
lecturer at National High School for
Computer Science, Algiers, Alge-
ria. She is a Ph.D. student in a joint
Ph.D. between Laboratory of Com-
munication in Computer Science
Systems (LCSI) at National High
School for Computer Science (ESI),
Algiers, Algeria and Laboratory of

Computer Science and Automatic Control for Systems (LIAS) at Na-
tional Engineering School for Mechanics and Aerotechnics (ISAE-
ENSMA), Poitiers, France. Her current research interests include Data
Warehouse Design, Data Integration Systems, Ontology-based Mod-
elling and Requirements Engineering.

	Towards a conceptualization of ETL and physical storage of semantic data warehouses as a service
	Abstract
	Introduction
	Related work
	Background
	Generic framework for constructing SDW
	The global schema <G,S,M>
	The information sources <G,S,M>
	The mappings DIS: <G, S, M>

	ETL process
	BPMN for ETL process
	ETL on ontological level

	Case study
	Creating SDB from LUBM ontology
	Simple mappings
	Complex mappings

	Instantiation of the generic integration framework
	ETL process

	ETL as service
	Experimental study
	Data sets and environment
	SDB source creation
	Obtained results

	Conclusion
	References

