
Cluster Comput (2013) 16:787–796
DOI 10.1007/s10586-013-0252-0

Outsourcing computation of modular exponentiations in cloud
computing

Xu Ma · Jin Li · Fangguo Zhang

Received: 12 December 2012 / Accepted: 14 March 2013 / Published online: 10 April 2013
© Springer Science+Business Media New York 2013

Abstract Cloud computing is an emerging computing
paradigm in which IT resources and capacities are pro-
vided as services over the Internet. Promising as it is, this
paradigm also brings forth new challenges for security when
users want to securely outsource the computation of cryp-
tographic operations to the untrusted cloud servers. As we
know, modular exponentiation is one of the basic opera-
tions among most of current cryptosystems. In this paper,
we present the generic secure outsourcing schemes enabling
users to securely outsource the computations of exponenti-
ations to the untrusted cloud servers. With our techniques,
a batch of exponentiations (e.g. t exponentiations) can be
efficiently computed by the user with only O(n + t) mul-
tiplications, where n is the number of bits of the exponent.
Compared with the state-of-the-art algorithm, the proposed
schemes are superior in both efficiency and verifiability. Fur-
thermore, there are not any complicated pre-computations
on the user side. Finally, the schemes are proved to be se-
cure under the Subset Sum Problem.

Keywords Modular exponentiation · Outsourcing
computation · Security and privacy · Cloud computing

X. Ma · F. Zhang (�)
School of Information Science and Technology, Sun Yat-sen
University, Guangzhou 510006, P.R. China
e-mail: isszhfg@mail.sysu.edu.cn

X. Ma
e-mail: xumasysu@gmail.com

J. Li
Department of Computer Science, Guangzhou University,
Guangzhou 510006, P.R. China
e-mail: lijin@gzhu.edu.cn

1 Introduction

Cloud computing [2, 3, 10] is a promising next-generation
computing paradigm which primarily relies on technolo-
gies such as virtualization, utility computing, Service Ori-
ented Architecture, and so forth. Cloud computing is capa-
ble to provide seemly unlimited “virtualized” resources to
users as services across the Internet while hiding platform
and implementation details from users. The services are in-
voked by users in a pay-per-use manner. With this paradigm
computation/storage intensive tasks can be performed even
by resource-constrained users through being outsourced to
resource-abundant cloud servers. As compared to setting up
their own infrastructures, cloud users can tremendously save
their capital expenditures via the usage of cloud computing,
not to mention other benefits such as reliability and high
scalability of the system.

Promising as it is, this paradigm also brings forth new
challenges and security concerns when users want to se-
curely outsource the computation of cryptographic oper-
ations to the untrusted cloud servers. Firstly, the servers
are not fully trusted and sometimes the computations out-
sourced to the cloud are so critical that it is imperative to
rule out accidental errors during the outsourcing compu-
tation process. Therefore, the basic security requirements
of outsourcing computation are verifiability and efficiency,
which require that the client should be able to verify the cor-
rectness of the values returned by the worker, and the verifi-
cation process should require substantially less computation
efforts than doing the computation from scratch. Sometimes
the input and output of the computation task contain sensi-
tive information of the client, such as the client’s private key
or medical records, therefore, it is desirable to protect the
secrecy of the client’s input and output, which implies the
security requirement of privacy of outsourcing computation.

mailto:isszhfg@mail.sysu.edu.cn
mailto:xumasysu@gmail.com
mailto:lijin@gzhu.edu.cn

788 Cluster Comput (2013) 16:787–796

The problem of secure outsourcing expensive computa-
tions has been well studied in the cryptography commu-
nity. Matsumoto [26] firstly introduced the idea of speed-
ing up secret computations using insecure auxiliary devices.
Chaum and Pedersen [11] presented “wallets with ob-
servers” that allows a piece of hardware installed on the
client’s device to carry out some computation for each trans-
action. Golle and Mironov [19] introduced the concept of
ringers to elegantly solved the problem of verifying com-
putation completion for the “inversion of one-way func-
tion” class of outsourcing computation. In recent years, the
outsourcing computation becomes the hot topic of research
in the computer theory community and cryptography com-
munity due to the advancement of cloud computing, and
many beautiful works have been done in this area, such
as [6, 7, 13, 15].

As we know, modular exponentiation is one of the basic
operations among most of current cryptosystems, such as
DSS, RSA, and ElGmal et al. For an n-bit exponent a, the
traditional square-and-multiply method requires 1.5n mod-
ular multiplications on average. Thus, it is a very time-
consuming operation for limited computation resources. The
applications of fast exponentiation include speeding up sig-
nature verification of the above mentioned schemes. For
these scheme, the online generation of message signature
can be done quickly because the part of the signature that
requires exponentiation can be precomputed. However, the
verification of the signature needs online exponentiation be-
cause the message signature is used in the exponentiation.

In this paper, we mainly focus on how to efficiently and
securely outsource modular exponentiation computation to
cloud servers.

Contributions Our contributions on outsourcing computa-
tion of modular exponentiation is multi-fold.

Firstly, we propose two secure modular exponentiation
outsourcing schemes without any complicated computa-
tions utilizing two untrusted servers. One is fixed base-
variable exponent exponentiation outsourcing and the other
is fixed exponent-variable base exponentiation outsourcing.
The variable exponent or variable base means that the ex-
ponent or the base is kept privacy against the cloud sever
in the respective schemes. With the help of cloud servers,
t exponentiations can be computed by the user within only
O(n + t) multiplications, where n is the number of bits of
the exponent. Compared with [12, 21, 23], our schemes are
more efficient. And the computational savings will increase
when the batch size grows bigger.

Secondly, the first two schemes are provable secure and
the security can be reduced to the Subset Sum Problem,
which has been proven to be NP-complete problem. In addi-
tion, the schemes achieve approximately 3/4 error detection
probability, which means that if the cloud server returns a

sequence of values that contains wrong ones, the client can
detect it with probability at least 3/4, which is greater than
previous secure outsourcing computation schemes of modu-
lar exponentiations.

Finally but more importantly, in the third scheme, we
present a new method to achieve the verifiability so that the
scheme only needs one server. The model of the scheme is
more practical and the security analysis shows that the error
detection probability can reach approximately 1.

Related works In [15], Gennaro et al. showed how to dele-
gate arbitrary computations by increasing the client’s offline
complexity and public-key size based on fully homomor-
phic encryption [16] an Yao’s garbled circuit. In [13], Chung
et al. proposed an improved generic outsourcing computa-
tion protocol without utilizing garbled circuit, whereas the
client needs to pre-compute some values to verify the result.
In [6], Barbosa and Farshim gave a modular construction
of delegatable homomorphic encryption from fully homo-
morphic encryption, functional encryption and MAC, and
showed how one can build a secure outsouring computation
scheme generically from delegatable homomorphic encryp-
tion. However, the use of fully homomorphic encryption re-
sulting in protocols of limited practical relevance.

In theoretical community, researchers have devoted con-
siderable attention to the outsourcing computation of arbi-
trary functions. Indeed, after computing the delegated func-
tion f on input x and sending the result y, the server can
use various types of proof systems to convince the client
the correctness of the result. These works contain interactive
proofs [5, 17], efficient arguments based on probabilistically
checkable proofs [24, 25], CS proofs [27] and the muggles
proofs [18]. However, utilizing proofs systems in outsourc-
ing computation protocols can merely realize the security
requirement of verifiability. The security requirement of in-
put and output privacy cannot be satisfied solely by the proof
systems.

For the outsourcing computation of specific functions,
plenty of research works have been proposed. Benjamin and
Atallah [4, 8] addressed the problem of secure outsourcing
for widely applicable linear algebra computations. However,
the proposed protocols required the expensive operations of
homomorphic encryptions. Atallah and Frikken [1] further
studied this problem and gave improved protocols based on
the so-called weak secret hiding assumption. Benabbas et
al. [7] presented the first practical outsourcing computation
scheme for high degree polynomial functions based on the
approach of [15]. Papamanthou et al. [28] further studied
the problem and proposed a publicly verifiable outsourc-
ing computation scheme. In 2011, Green et al. [20] pro-
posed new methods for efficiently and securely outsourcing
decryption of attribute-based encryption (ABE) ciphertexts.
Based on this work, Parno et al. [29] showed a construc-
tion of a multi-function computation delegation scheme. In

Cluster Comput (2013) 16:787–796 789

2012, Waters [30] proposed an outsourcing computation for
attribute-based encryption where the ciphertext update can
be efficiently securely outsourced to the server.

Many works have been done towards speeding up the
modular exponentiation computation by utilizing untrusted
servers. In [23], Jakobsson showed how to generate secure
server-aided signature by outsourcing the exponentiation
computation task to the untrusted servers who may all be
controlled by one and the same adversary. To blind the ex-
ponent and ensure the verifiability of the result. The proto-
col in [23] includes the algorithm of problem transformation
which consists of replication, dependency, blinding and per-
mutation. However, the user has to precompute a set of mod-
ular exponentiations in order to recover the result and check
its correctness, which is what we want to perform at first
place. And parameters have to be chosen to balance the effi-
ciency and security requirements. Therefore, [23] is efficient
for small batch size. Hohenberger and Lysyanskaya [21]
presented the outsource-secure algorithm for modular expo-
nentiation by utilizing two untrusted servers. In [12], Chen
et al. gave a new algorithm for outsourcing computation
of modular exponentiation, and the algorithm is superior
in both efficiency and verifiability compared with [21]. Al-
though both [21] and [12] ensure the exponent privacy and
base privacy simultaneously, the protocols still require com-
plicated precomputations (modular exponentiations) and the
probabilities that the malicious server is detected are only 1

2
and 2

3 , respectively.

Organization The rest of the paper is organized as follows:
In Sect. 2, we present the system model and security defini-
tions of our schemes. In Sect. 3, three schemes of secure
outsourcing computation schemes of modular exponentia-
tions are proposed. The security and complexity analysis in
specified in Sect. 4. And Sect. 5 concludes the paper.

2 System model and security definitions

The system model and security definitions of our schemes
are formally specified in this section.

2.1 System model

An outsourcing computation scheme is a two-party protocol
between a client C a server S. The client chooses a function
and an input which he provides to the server. Note that the
input is always blinded into x′ before sending it to the sever
considering abut the input privacy. The server is expected
to evaluate the function on the input and respond with the
output together with a proof that the result is correct. The
client then verifies that the output provided by the server is
indeed the output of the function computed on the input pro-
vided. In the following description, the computation task is

denoted as given f and an input x to compute f (x). Unlike
the previous outsourcing computation protocols [13, 15],
since no public key operations are needed in our schemes,
the KenGen(·) algorithm is excluded in our scheme, and
the random numbers used in our scheme are generated on
the fly. Formally, our scheme consists of three algorithms,
which are described as follows.

– σx ← ProbGen(x, τ, f). The problem generation algo-
rithm uses the secret input τ to encode the input x as a
public value σx , and sends σx to the server S.

– σy ← Compute(f,σx). Given σx and the outsourcing
function f , the server works out an encoded output σy

and returns it to the client.
– y ∪ ⊥ ← Verify(σy, τ). Using the secret input τ , the ver-

ification algorithm converts the server’s encoded output
into the output of the function, e.g. y = f (x) or outputs
⊥ indicating that σy does not represent the valid output of
f on x.

2.2 Security definitions

An outsourcing computation scheme should be correct, veri-
fiable and private. In the following description, we will give
the formal definition of these security definitions, respec-
tively. Intuitively, an outsourcing scheme is correct if the
problem generation algorithm produces values that allow an
honest cloud server to compute values that will verify suc-
cessfully and correspond to the function f (·) on those in-
puts.

Definition 1 (Correctness) An outsourcing computation
scheme is correct if for the outsourcing function f and
input x, satisfy that if σx ← ProbGen(x, τ) and σy ←
Compute(f,σx), then y ← Verify(σy, τ).

An outsourcing computation scheme is secure if it satis-
fies the security definition of verifiability, which means that
a malicious sever can not persuade the client to accept an
incorrect output. We formalize this intuition with the fol-
lowing experiment.
Experiment Expverif

A [f,κ]
Query and response:

– For i = 1, . . . , l = poly(κ), xi ← A(x1, σx1 , β1, . . . , xi−1,

σxi−1 , βi−1).
– σxi

← ProbGen(xi, τi).
– σyi

← A(x1, σx1 , β1, . . . , xi−1, σxi−1 , βxi−1 , σxi
).

– βi = Verify(τi, σyi
).

Challenge:

– x ← A(x1, σx1, β1, . . . , xl, σxl
, βl).

– σx ← ProbGen(x, τ).

790 Cluster Comput (2013) 16:787–796

– σy ← A(x1, σx1, β1, . . . , xl, σxl
, βl, σx).

– ŷ ← Verify(τ, σy).
– if ŷ �= f (x) and ŷ �= ⊥, output 1, else 0.

In the query phase, the malicious servers are given or-
acle access to generate the encoding of multiple problem
instances, and also oracle access to the result of the verifi-
cation algorithm on arbitrary strings on those instances. The
adversary succeeds if he convince the client to output wrong
result for a given input value. Our goal is to make the adver-
sary succeed only with negligible probability.

Definition 2 (Verifiability) For an outsourcing computation
scheme, we define the advantage of an adversary A in the
experiment above as:

Advverif
A [f,κ] = Prob

[
Expverif

A [f,κ] = 1
]
.

An outsourcing computation scheme satisfies the security of
verifiability if for any adversary A running in probabilistic
polynomial time

Advverif
A [f,κ] < neg(κ)

where neg(κ) is a negligible function of the input.
The security definition of privacy contains input privacy

and output privacy. Below, we define the input privacy based
on a typical indistinguishability argument that guarantees no
information about the inputs is leaked. The security defini-
tion of output privacy can be described similarly, however,
we omit the definition owning to that the output results are
public values in our scheme. For more information, please
refer to [15].

Intuitively, an outsourcing computation scheme is input
private when the outputs of the problem generation algo-
rithm ProbGen over two different inputs are indistinguish-
able. Formally, we define the input privacy with the follow-
ing experiment.
Experiment ExpIpriv

A [f,κ]
Query and response:

– For i = 1, . . . , l = poly(κ), xi ← A(x1, σx1 , . . . , xi−1,

σxi−1).
– σxi

← ProbGen(xi, τi).

Challenge:

– (xc0, xc1) ← A(x1, σx1, . . . , xl, σxl
).

– The client randomly selects a bit b ←R {0,1} and sends
σxcb

← ProbGen(xcb, τ) to the adversary.
– b̂ ← A(x1, σx1, . . . , xl, σxl

, xc, σxc).
– If b̂ = b, output1, else 0.

In the above experiment, the adversary is given the oracle
access of the problem generation algorithm in the query and
challenge phase, the adversary succeeds if he can distinguish
the output of the problem generation algorithm in the chal-
lenge phase.

Definition 3 (Input privacy) For an outsourcing computa-
tion scheme, we define the advantage of an adversary in the
above experiment as

AdvIpriv
A [f,κ] = Prob

[
ExpIpriv

A [f,κ] = 1
] − 1

2
.

An outsourcing computation scheme is input private if for
any adversary A running in probabilistic polynomial time

AdvIpriv
A [f,κ] < neg(·)

where neg(·) is a negligible function of its input.

In this paper, we use a weak input privacy definition con-
sidering the applications of our schemes. As we know, in the
cryptosystem, the exponents are always the private keys of
the user. Thus, the adversary is not able to query the problem
generation algorithm arbitrarily in the real world. Therefore,
the security definition of input privacy can be formalized as
follows.

Definition 4 (Weak input privacy) Let T be a computational
task and l(·) an arbitrary function. We say that the outsourc-
ing of T is ε-private with respect to l if the adversary has
only negligible advantage ε in computing l(i) for some pri-
vate input i if performing the outsourcing work and seeing
the public input and output of the user, compared to a set-
ting where he only sees the public input and output of the
user. In some papers, the privacy security requirement also
expressed as input privacy.

3 Construction

In this paper, we propose three generic constructions for se-
cure outsourcing of exponentiations. The first two protocols
needs two non-collusion servers, while the third only re-
quires one server. All the computations are executed within
the cyclic group Gp , where p is a secure prime, and g is the
generator of Gp . The schemes consist of three subprotocols:
ProbGen, Compute, and Verify.

3.1 Protocol 1. Fixed base-variable exponent
exponentiation secure outsource

As described in Fig. 1, the fixed base-variable exponent
scheme works as follows:

– σx ←ProbGen(x, τ, f). Given (g, x1), (g, x2), . . . , (g, xt)

as input that corresponding to an implicit request to com-
pute (gx1 , gx2 , . . . , gxt), where xi ∈ Zp , i ∈ [1, t], U first
blinds the exponent vector (x1, x2, . . . , xt) by generating
a set of n pseudo-random numbers A = {a1, a2, . . . , an}
in a manner that m of which can be summed to xi , for

Cluster Comput (2013) 16:787–796 791

Fig. 1 Secure fixed
base-variable exponent
exponentiation outsourcing

each i ∈ [1, t]. The set can be constructed as randomly
selecting m − 1 numbers b1, b2, . . . , bm−1 from Zp ,
and then set ck = xk − ∑m−1

j=1 bj , 1 ≤ k ≤ t . Let B =
{b1, b2, . . . , bm−1}. Then rest m − 1 redundant num-
bers r1, r2, . . . , rm−1 are randomly selected from Zp . Fi-
nally, U re-randomizes the set of these numbers A′ =
(b1, b2, . . . , bm−1, c1, c2, . . . , ct , r1, r2, . . . , rm−1) using a
pseudo-random permutation function π : [1, n] → [1, n]
to a permutated set A = (a1, a2, . . . , an), where n =
2(m − 1) + t . Then, U sends σx = (A,g,p) to two in-
dependent cloud servers CS1 and CS2.

– σy ← Compute(f,σx). CS1 and CS2 return the corre-
sponding exponentiation pair σy = (vi1, vi2) = (gai , gai),
i ∈ [1, n] to U one by one. v1 = v2 will not hold with
overwhelming probability if either of them is dishonest.

– y ∪ ⊥ ← Verify(σy, τ). Upon receiving the value pair
σy = (vi1, vi2), U first checks whether they are equal or
not. If vi1 �= vi2, U concludes that the cloud servers are
dishonest and aborts the protocol. Otherwise, U does the
computation as follows, for 1 ≤ i ≤ n, and k ∈ [1, t]:
– Sbase = Sbase · vi1, if aπ−1(i) ∈ B

– Sj = Sj · vi1, if aπ−1(i) = cj , j ∈ [1, t].
At the end of the protocol, U completes the exponen-

tiations as:

gxi = Si · Sbase, for all 1 ≤ i ≤ t.

3.2 Protocol 2. Fixed exponent-variable base
exponentiation secure outsource

As described in Fig. 2, the fixed exponent-variable base
scheme works almost the same as fixed base-variable ex-
ponent scheme.

– σx ←ProbGen(x, τ, f) Given (g1, x), (g2, x), . . . , (gt , x)

as input that corresponding to an implicit request to com-
pute (gx

1 , gx
2 , . . . , gx

t), where x ∈ Zp , g1, g2, . . . , gt ∈ Gp ,

U first blinds the base vector (g1, g2, . . . , gt) by gener-
ating a set of n pseudo-random numbers A = {h1, h2,

. . . , hn} in a manner that m of which can be multiplied
to gi , for each i ∈ [1, t]. The set can be constructed as
choosing m − 1 numbers hb1 , hb2 , . . . , hbm−1 randomly

from Gp , and then set hck
= gk/

∏m−1
j=1 hbj

, for 1 ≤ k ≤ t .
Let HB = {hb1 , hb2 , . . . , hbm−1}. The rest m − 1 elements
hr1 , hr2, . . . , hrm−1 can be randomly selected from Gp .
Finally, U re-randomizes the set of these numbers A′ =
(hb1 , hb2 , . . . , hbm−1 , hc1, hc2 , . . . , hct , hr1, hr2, . . . , hrm−1)

using a pseudo-random permutation π : [1, n] → [1, n] to
the set A = (h1, h2, . . . , hn), where n = 2(m − 1) + t .
Then, U sends σx = (A,x,p) to the cloud servers CS1

and CS2.
– σy ← Compute(f,σx). CS1 and CS2 return the corre-

sponding values (vi1, vi2) = (hx
i , h

x
i) to U one by one.

v1 = v2 will not hold if either of them is dishonest.
– y ∪ ⊥ ← Verify(σy, τ). Upon receiving the value pair

(vi1, vi2) from the cloud servers, U first checks whether
they are equal or not. If vi1 �= vi2, U concludes that the
cloud servers are dishonest and aborts the protocol. Oth-
erwise, U does the computations as follows, for 1 ≤ i ≤ n

and:
– Mbase = Mbase · vi1 if aπ−1(i) ∈ B

– Mj = Mj · vi1, if aπ−1(i) = cj , j ∈ [1, t].
At the end of the protocol, U completes the exponentia-
tions as:

gx
i = Mi · Mbase, for all 1 ≤ i ≤ t.

3.3 Protocol 3. Outsourcing computation of exponentiation
with one server

In this subsection, we present a new outsourcing compu-
tation protocol in one sever model. The protocol is supe-
rior in both the verifiability and security compared with the

792 Cluster Comput (2013) 16:787–796

Fig. 2 Secure fixed
exponent-variable base
exponentiation outsourcing

above schemes. In the previous constructions, verifiability
of the result is realized through the comparison of the val-
ues returned by the two cloud servers. Although verification
process is quite efficient, we can not distinguish the honest
server from the malicious server when there are inequali-
ties. Below, we present the protocol for fixed base-variable
exponent computations, and the protocol for fixed exponent-
variable base computations can be constructed similarly.

– σx ←ProbGen(x, τ, f). Given (g, x1), (g, x2), . . . , (g, xt)

as input that corresponding to an implicit request to
compute (gx1 , gx2, . . . , gxt), where xi ∈ Zp , i ∈ [1, t],
U first blinds the exponent vector (x1, x2, . . . , xt) by
generating a set of n pseudo-random numbers A =
{a1, a2, . . . , an}. The set can be constructed as randomly
selecting m−1 numbers b1, b2, . . . , bm−1 and m−1 num-
bers b′

1, b
′
2, . . . , b

′
m−1from Zp , and then set ck = xk −

∑m−1
j=1 bj , 1 ≤ k ≤ t and c′

k = xk − ∑m−1
j=1 b′

j , 1 ≤ k ≤ t .
Let B = {b1, b2, . . . , bm−1}, B ′ = {b′

1, b
′
2, . . . , b

′
m−1}. Fi-

nally, U re-randomizes the set of these numbers us-
ing a pseudo-random permutation function π : [1, n] →
[1, n] to a permutated set A = {a1, a2, . . . , an}, where
n = 2(m + t − 1). Then, U sends σx = (A,g,p) to the
server S.

– σy ← Compute(f,σx). S returns the corresponding ex-
ponentiation pair σy = (v1, . . . , v2n) = (gai), for all i ∈
[1,2n] to U .

– y ∪ ⊥ ← Verify(σy, τ). Upon receiving σy , U does the
following verification to verify the validity of the values.
– Sbase = Sbase · vi if aπ−1(i) ∈ B

– Sk = Sk · vi if aπ−1(i) = cj , j ∈ [1, t].
– S′

base = S′
base · vi if aπ−1(i) ∈ B ′

– S′
j = S′

j · vi if aπ−1(i) = c′
j , j ∈ [1, t].

– Then U verifies Si · Sbase
?= S′

i · S′
base , for all i ∈ [1, t].

If all the values are correct, U outputs the result as gxi =
Si · Sbase , for all 1 ≤ i ≤ t .

4 Security and complexity analysis

4.1 Security analysis

Unlike previous cryptographic protocols of which the secu-
rity is based on hard problem assumptions, such as factor-
ing, DLP. We capture the security of our schemes through
a reduction to Subset Sum Problem (SSP), which is an im-
portant problem in complexity theory and cryptography. The
Subset Sum Problem is a NP-complete problem and can be
defined as follows:

Definition 5 (Subset Sum Problem) Given a weight set
of integers (a1, a2, . . . , an) and sum s, find a subset of
which the elements sum to s, ie., determine the variables
x1, x2, . . . , xN ∈ {0,1}, such that s = ∑N

1 xiai .

SSP is a special case of the knapsack problem [22]. We
have to mention that not all of the SSP problems are diffi-
cult. The difficulty of SSP depends on the density of the set
(a1, a2, . . . , an), which is defined as

d = n

log2 max1≤i≤n ai

.

In our schemes, we set the density of the set to be

d = n

log2 max1≤i≤n ai

≈ 1.

Modular Subset Sum Problem (MSSP) is a transfor-
mation of traditional SSP, in which M,a1, a2, . . . , aN , b ∈
{0,1}l and find x1, x2, . . . , xN ∈ {0,1}, such that b =∑N

1 xiai modM . It has been proved that MSSP is equiva-
lent to the traditional SSP in [9].

The most powerful method known to date to solve the
Subset Sum Problem is lattice-based [14] method, which re-
duces the problem to the problem of finding a shortest vector

Cluster Comput (2013) 16:787–796 793

in a lattice. In practice, lattice basis reduction methods such
as LLL algorithm or the Block-Korkine-Zolotarev (BKZ) re-
duction algorithm [14, 31] provide suitable approximations
to the shortest lattice vector. They perform well for a small
number of weights but breaks down for N > 200. For an
increasing number of weights the quality of the approxima-
tion becomes insufficient for proving a solution to the Subset
Sum Problem.

Theorem 1 The protocols satisfy the security requirement
of input privacy.

Proof Semantically, for the fixed base-variable exponent
exponential outsource scheme, the security requirement of
input privacy means that the malicious adversary (server)
knows nothing about the exponent. This security require-
ment is very important because the exponent is always the
secret key of the user. In the following specification, we give
a formal proof for Protocol 1. The security proof of input
privacy for Protocols 2 and 3 can be constructed similarly,
so we omit the details.

– Firstly, the malicious adversary obtains the set A =
{a1, a2, . . . , an}. Later, the user may publish an exponen-
tiation gxi as public parameter of the signature schemes or
encryption scheme. Assume that there exist an adversary
A can successfully break the input privacy of our scheme,
which means that A finds out the subset S that satisfies
gxi = g

∑
a, a ∈ S. It is obvious that this is also a solution

to the SSP with respect to A and sum xi .
– For security analysis, we have to take the following attack

into account. After the outsourcing computation, U ob-
tains the exponentiations gx1 , gx2 , . . . , gxt . Later, U may
publish all of these exponentiations. Therefore, on in-
puts (Gp,p,a1, a2, . . . , an, g

x1 , gx2 , . . . , gxt), the adver-

sary A can compute g
xj

gai
, for 1 ≤ i ≤ n and 1 ≤ j ≤ t .

In our scheme, there exist a base value Sbase = g
∑m−1

i=1 bi

(or Mbase) and gxk = Sbaseg
aj for k ∈ [1, t], aj ∈ A

and aj /∈ B . Therefore, among t sets { gxi

ga1 ,
gxi

ga2 , . . . ,
gxi

gan },
1 ≤ i ≤ t , there must exist the same value v = Sbase =
g

∑m−1
i=1 bi . Suppose that A has detected v = gxk

gal
, then A

can conclude that al /∈ B . Similarly, A can detect the
rest t − 1 numbers aj /∈ B . Therefore, the problem that
the adversary A has to settle now is transformed to an-
other SSP, that is, given a set of n − t elements A′ =
{a′

1, a
′
2, . . . , a

′
n−t }, determine which subset B of A′, sat-

isfies Sbase = g
∑

ai , ai ∈ B , which is also a modular SSP
problem. For security, we set n − t > 200 in our scheme,
and all the known attacks break down in this case.

In the end, we have proved that for any PPT adversary A,
the probability

Pr
{

A
(
g,Gp,gx1, gx2 , . . . , gxt , a1, a2, . . . , an

) = xi

}

is negligible in k. Similarly, we can prove the security re-
quirement for Protocols 2 and 3. And we can conclude that
for any PPT adversary A, the probability

Pr
{

A
(
Gp,x,gx

1 , gx
2 , . . . , gx

t , g′
1, g

′
2, . . . , g

′
n

) = gi

}

is negligible in k. �

So far, the best algorithm for discrete logarithm prob-
lem (DLP) y = gx is O(

√
q), where q is the order of g.

To achieve an approximately equal computation complexity
of DLP we have to carefully set the parameters n, m, and t .
The formula that n, m and t have to satisfy is based on the
above attack game. In our scheme, we set 2(m − 1) > 200.
In this case, the successful probability of the adversary is
less than 1

280 .

Theorem 2 The protocols satisfy the security requirement
of verifiability.

Proof The security requirement of soundness means that
whenever the untrusted cloud servers return wrong values,
the user can detect its dishonesty with high probability.

In Protocols 1 and 2, two non-collusion untrusted cloud
servers are incorporated into the system, which can be re-
alized in the real world easily. The technique used in our
scheme greatly reduces the redundancies that have to be
inserted into the input (x1, x2, . . . , xn) and thus saves the
bandwidth for interactive communication. The error detec-
tion is simplified as a equality verification of the return val-
ues rather than complicated computations. As long as the
cloud servers return the same values, the user concludes that
they are honest and vice versa.

In both of our schemes, we assume that the cloud servers
do not collude with each other, which is a practical assump-
tion in the real world. In the security definition of verifia-
bility, we defined a query and response phase. However, for
each problem generation of our scheme, a new random set
s1, . . . , sm−1 is generated. Thus, nothing useful information
is leaked to A for the challenge phase.

For each cloud server, the probability that each returned
value is computed correctly or wrongly is 1/2. In both of
our schemes, the probability that the user can detect the
malicious cloud server’s dishonesty is P = 3

4 . The prob-
ability is obtained from the analysis of three independent
cases. Specifically, the inconsistency occurs when both of
the cloud servers are dishonest or either of them is dishon-
est.

For Protocol 3, a malicious adversary can pass the verifi-
cation with wrong values only if he is able to find the solu-
tions for the two distinct SSPs. Whereas, given a randomly
permuted sequence {a1, . . . , an}, the probability that a ma-
licious adversary A can find the solutions of the SSPs for

794 Cluster Comput (2013) 16:787–796

any exponent xi is less than 1
(n
m−1)

1
(n−m+1

m−1)
. In our scheme,

the parameters are set to satisfy n > 200, m ≈ n/2. Thus,
the success probability of the adversary is negligible. �

Theorem 3 The protocols satisfy the security requirement
of correctness.

Proof If all the values returned by the cloud servers are
correct, then at the Compute stage, U gets the correct
value gx1 , gx2, . . . , gxt in Scheme 1 and gx

1 , gx
2 , . . . , gx

3 in
Scheme 2. The procedure can be verified as:

Sbase =
m−1∏

i=1

gbi = g
∑m−1

i=1 bi , Mbase =
m−1∏

i=1

hx
bi

,

Sk = Sk · Sbase = gckg
∑m−1

i=1 bi = gck+∑m−1
i=1 bi

= gck−∑m−1
i=1 bi+∑m−1

i=1 bi = gxk , k ∈ [1, t],

Mk = Mk · Mbase = hx
ck

m−1∏

i=1

hx
bi

=
(

gk
∏m−1

i=1 hbi

)x m−1∏

i=1

hx
bi

= gx
k , k ∈ [1, t].

�

4.2 Complexity analysis

We have to emphasize that our schemes are more efficient
compared with any previous server-aided fast exponentia-
tion scheme in both the storage complexity and computation
complexity. First of all, our schemes do not require any com-
plicated precomputations, which is a great progress com-
pared with the previous fast exponentiation schemes [12,
21]. Below, we will formalize the efficiency analysis in com-
putational, communication and communication complexity.

Computation complexity We split our schemes into offline
and phase. In the offline phase, the user generates the set A.
For Protocol 1, the generation of the set A requires t mod-
ular additions, which are so efficient so that we can omit
them. For Protocol 2, the generation of the set A requires 1
inversion and t modular multiplications. In the online phase,
the overall computation costs result from the Verify stage of
the protocol. Moreover, a batch of t (1 ≤ t ≤ n − m) ex-
ponentiations can be computed in just one implementation
of our scheme. In our schemes, there are base values, Sbase

and Mbase , that used for batch exponentiation computations.
m − 2 modular multiplications are needed to compute the
base value. Then the base value can be used repeatedly to
compute as many as t exponentiations. In Protocols 1 and 2,
for one more exponentiation, just one more modular mul-
tiplication is need. Therefore, for t exponentiations, all the
computations that U has to do are m + t − 2 modular mul-
tiplications, which is very efficient. For Protocol 3, due to

Table 1 Efficiency comparison

t Exps [21] [12] Protocol 1 Protocol 3

MM 9t 7t m + t − 2 2(m + t − 2)

MInv 5t 3t 0 0

Verifiability 1
2

2
3

3
4 ≈1

the verification algorithm, the computation cost of the user
is double that of Protocols 1 and 2, but still very efficient.

We have to mention that for small batches, for example
just one modular exponentiation is outsourced, our schemes
are still efficient for long exponent, such as the exponent d

of RSA signature is about 1024 bits. As we know, for τ -bit
long exponent, 1.5τ multiplications are needed to complete
the computation if the user does it by himself. Whereas, only
approximately 100 multiplications are needed if the user uti-
lizes our outsourcing scheme.

Communication complexity In our schemes, the user has
to send the set A to the servers. For Protocol 1, A consists of
n elements from Zp . As there are two servers, thus the over-
all communication complexity is 2n elements from Zp . For
Protocol 2, the communication complexity is 2n elements
from Gp . And the communication complexity of Protocol 3
is n elements from Zp . For the security of our schemes, n is
usually set to be greater than 200.

Storage complexity In Protocols 1 and 2, the user just needs
to store the temporary value Sbase(Mbase), and Sk(Mk),
k = 1, . . . , t . And for Protocol 3, the storage complexity
is double that of the previous schemes. And for all the
schemes, the user has to store the permutation π to correctly
compute the final modular exponentiations.

Table 1 presents the efficiency comparison between our
scheme and [12, 21]. We denote by MM a modular multi-
plication, by MInv a modular inverse. Note that Protocol 2
is eliminated from the table, because Protocol 2 is designed
form variable base exponentiations. Therefore, our schemes
are practical and very efficient, and can be widely used in
the resource limited application scenarios.

5 Conclusion

In this paper, we presented secure outsourcing schemes en-
abling users to securely outsource the computations of ex-
ponentiations to servers. The first two schemes require two
non-collusion servers, while the third scheme only needs
one server. In our schemes, a batch of exponentiations (e.g.
t exponentiations) can be efficiently computed by the user
with only O(n + t) multiplications, where n is the number
of bits of the exponent. Furthermore, there is not any com-
plicated pre-computations on the user side. We also showed

Cluster Comput (2013) 16:787–796 795

that the proposed schemes are provably secure under the
Subset Sum Problem.

Acknowledgements This work is supported by the National Nat-
ural Science Foundation of China (Nos. 61070168, 61100224 and
U1135001), the National Basic Research Program of China (973 Pro-
gram, No. 2012CB316100), and the Specialized Research Fund for the
Doctoral Program of Higher Education, and the Foundation for Dis-
tinguished Young Talents in Higher Education of Guangdong Province
(No. LYM10106).

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to sound-
ness: efficient verification via secure computation. In: ICALP
2010, pp. 152–163 (2010)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwin-
ski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.:
Above the cloud: a Berkeley view of cloud computing. Berkeley
University (2009)

3. Assuncao, M.D., Costanzo, A., Buyya, R.: A cost-benefit analysis
of using cloud computing to extend the capacity of clusters. Clust.
Comput. 13(3), 335–347 (2010)

4. Atallah, M.J., Frikken, K.B.: Securely outsourcing linear algebra
computations. In: AISACCS 2010, pp. 48–59 (2010)

5. Babai, L.: Trading group theory for randomness. In: Proceeding of
ACM Symposium on Theory of Computing (STOC), pp. 421–429
(1985)

6. Barbosa, M., Farshim, P.: Delegatable homomorphic encryption
with applicatoins to secure outsourcing of computation. In: CT-
RSA 2012. LNCS, vol. 7178, pp. 296–312. Springer, Heidelberg
(2012)

7. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of
computation over large datasets. In: CRYPTO 2011. LNCS, vol.
6841, pp. 111–131. Springer, Heidelberg (2011)

8. Benjamin, D., Atallah, M.J.: Private and cheating-free outsourcing
of algebraic computations. In: PST 2008, pp. 240–245 (2008)

9. Boyko, V., Peinado, M.: Speeding up discrete log and factoring
based schemes via precomputation. In: EUROCRRYPTO 1998.
LNCS, vol. 1403, pp. 221–232. Springer, Heidelberg (1998)

10. Chapman, C., Emmerich, W., Marquez, F.G., Clayman, S.,
Galis, A.: Software architecture definition for on-demand cloud
provisioning. Clust. Comput. 15(2), 79–100 (2012)

11. Chaum, D., Pedersen, T.P.: Wallet database with observers. In:
CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidel-
berg (1993)

12. Chen, X., Li, J., Ma, J., Tang, Q., Lou, W.: New algorithms for se-
cure outsourcing of modular exponentiations. In: ESORICS 2012.
LNCS, vol. 7459, pp. 541–556. Springer, Heidelberg (2012)

13. Chung, K.M., Kalai, Y., Vadhan, S.P.: Improved delegation of
computation using fully homomorphic encryption. In: CRYPTO
2010. LNCS, vol. 6223, pp. 483–501. Springer, Heidelberg (2010)

14. Coster, M.J., LaMacchia, B.A., Odlyzko, A.M., Schnorr, C.P.,
Stern, J.: Improved low-density subset sum algorithms. Comput.
Complex. 2(2), 111–128 (1992)

15. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable
computing: outsourcing computation to untrusted workers. In:
CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidel-
berg (2010)

16. Gentry, C.: Fully homomorphic encryption using ideal lattices.
In: Proceeding of ACM Symposium on Theory of Computing
(STOC), pp. 169–178 (2009)

17. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complex-
ity of interactive proof systems. SIAM J. Comput. 18(1), 186–208
(1989)

18. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computa-
tion: interactive proofs for muggles. In: Proceeding of ACM Sym-
posium on Theory of Computing (STOC), pp. 113–122 (2008)

19. Golle, P., Mironov, I.: Uncheatable distributed computation. In:
CT-RSA 2001. LNCS, vol. 2020, pp. 425–550. Springer, Heidel-
berg (2001)

20. Green, M., Hohenberger, S., Waters, B.: Outsourcing the decryp-
tion of ABE ciphertexts. In: Proceeding of the USENIX Security
Symposium (2011)

21. Hohenbergera, S., Lysyanskaya, A.: How to securely outsource
cryptographic computations. In: TCC 2005. LNCS, vol. 3378, pp.
264–282. Springer, Heidelberg (2005)

22. Horowitz, E., Sahni, S.: Computing partitions with applications to
the knapsack problem. J. ACM 21(2), 277–292 (1974)

23. Jakobsson, M., Wetzel, S.: Secure server-aided signature gener-
ation. In: PKC 2001. LNCS, vol. 1992, pp. 383–401. Springer,
Heidelberg (2001)

24. Kilian, J.: A note on efficient zero-knowledge proofs and argu-
ments. In: Proceeding of ACM Symposium on Theory of Com-
puting (STOC), pp. 723–732 (1992)

25. Kilian, J.: Improved efficient arguments. In: CRYPTO 1995.
LNCS, vol. 963, pp. 311–324. Springer, Heidelberg (1995)

26. Matsumoto, T., Kato, K., Iami, H.: Speeding up secret computa-
tions with insecure auxiliary devices. In: CRYPTO 1990. LNCS,
vol. 403, pp. 497–506. Springer, Heidelberg (1990)

27. Micali, S.: CS proofs (extended abstract). In: Proceeding of the
35th IEEE Symposium on Foundations of Computer Science, pp.
436–453 (1994)

28. Papamanthou, C., Shi, E., Tamassia, R.: Publicly verifiable dele-
gation of computation. http://eprint.iacr.org/2011/587

29. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and
verify in public: verifiable computation from attribute-based en-
cryption. In: TCC 2012. LNCS, vol. 7194, pp. 422–439 (2012)

30. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ci-
phertext delegation for attribute-based encryption. In: CRYPTO
2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012)

31. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved
practical algorithms and solving subset sum problems. Math. Pro-
gram. 66(1–3), 181–199 (1994)

Xu Ma is a Ph.D. candidate of
School of Information Science and
Technology, Sun Yat-sen university,
China. His research mainly focuses
on cryptography and its applica-
tions, especially on secure outsourc-
ing computation.

http://eprint.iacr.org/2011/587

796 Cluster Comput (2013) 16:787–796

Jin Li received his B.S. (2002) and
M.S. (2004) from Southwest Uni-
versity and Sun Yat-sen Univer-
sity, both in Mathematics. He got
his Ph.D. degree in information se-
curity from Sun Yat-sen Univer-
sity at 2007. Currently, he works at
Guangzhou University. His research
interests include Applied Cryptog-
raphy and Security in Cloud Com-
puting (secure outsourcing compu-
tation and cloud storage).

Fangguo Zhang received his Ph.D.
from the School of Communication
Engineering, Xidian University in
2001. He is currently a Professor
at the School of Information Sci-
ence and Technology of Sun Yat-
sen University, China. He is the co-
director of Guangdong Key Labora-
tory of Information Security Tech-
nology. His research mainly focuses
on cryptography and its applica-
tions. Specific interests are elliptic
curve cryptography, secure multi-
party computation, anonymity and
privacy.

	Outsourcing computation of modular exponentiations in cloud computing
	Abstract
	Introduction
	Contributions
	Related works
	Organization

	System model and security definitions
	System model
	Security definitions

	Construction
	Protocol 1. Fixed base-variable exponent exponentiation secure outsource
	Protocol 2. Fixed exponent-variable base exponentiation secure outsource
	Protocol 3. Outsourcing computation of exponentiation with one server

	Security and complexity analysis
	Security analysis
	Complexity analysis
	Computation complexity
	Communication complexity
	Storage complexity

	Conclusion
	Acknowledgements
	References

