
Cluster Comput (2013) 16:979–988
DOI 10.1007/s10586-012-0239-2

Quorum-based synchronization protocols for multimedia replicas

Tadateru Ohkawara · Ailixier Aikebaier ·
Tomoya Enokido · Makoto Takizawa

Received: 8 July 2012 / Accepted: 19 November 2012 / Published online: 9 January 2013
© Springer Science+Business Media New York 2013

Abstract Multiple replicas of multimedia objects are dis-
tributed to peers in overlay networks. In quorum-based (QB)
protocols, every replica may not be up-to-date and the up-
to-date replica can be found in the version counter. Multi-
media objects are characterized in terms of not only data
structure but also quality of service (QoS) parameters like
frame rate. A transaction reads a parameter of a replica while
there is a type of read operation to read a whole state of a
replica. Each parameter of a replica is changed through a
write operation. Thus, the data structure and QoS parame-
ters of a replica are independently manipulated. In the mul-
timedia quorum-based (MQB) protocol, multiple replicas of
a multimedia object are synchronized based on the newness
precedent relation. An object is an encapsulation of data and
abstract operations for manipulating the data. There are en-
riching and impoverishing types of write operations. Some
data is added to a replica in an enriching operation. On the
other hand, some data in a replica is removed in an impov-
erishing operation. In order to reduce the overhead to write
every replica in a quorum, we take an approach that the state
of each replica is not always updated. If a transaction issues

T. Ohkawara (�) · M. Takizawa
Department of Computer and Information Science,
Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi,
Tokyo 180-8633, Japan
e-mail: tadateru.ohkawara@gmail.com

M. Takizawa
e-mail: makoto.takizawa@computer.org

A. Aikebaier
National Institute of Information and Communications
Technology, Tokyo, Japan

T. Enokido
Department of Faculty of Business Administration,
Rissho University, Tokyo, Japan

an enriching write operation, every replica in the write quo-
rum is updated in the same way as the QB protocol. On the
other hand, if an impoverishing write operation is issued,
every replica is not updated in the quorum. Impoverishing
operations are just recorded in replicas. On receipt of a read
operation to read a whole state, impoverishing operations
recorded are performed on a replica. The MQB protocol is
evaluated in terms of the processing overhead of replicas.
We show that the processing overhead of each replica can
be reduced in the MQB protocol.

Keywords Quorum · Multimedia object · Replication ·
Impoverishing operation · Enriching operation ·
Multimedia quorum

1 Introduction

In scalable distributed systems like cloud computing sys-
tems [1, 5, 10, 11] and peer-to-peer (P2P) overlay networks
[12, 15, 16, 19, 20], resource objects like files and databases
are replicated in multiple computers in order to increase
the performance, reliability, and availability. Multimedia ob-
jects in addition to simple objects like files are distributed in
networks. Especially, multimedia objects are in nature au-
tonomously distributed to computers through peer-to-peer
communication like downloading in P2P overlay networks.
There are many discussions on how to maintain the mutual
consistency of multiple replicas of a simple object like a file
[7]. There is at least one up-to-date replica in a quorum and
a pair of a read quorum and a write quorum include at least
one common replica in the QB protocols [2, 6, 9, 17, 18].
Up-to-date replicas in a quorum can be found in version
counters [3]. Every replica in a write quorum is updated to
be the newest one each time a write operation is issued. For a

mailto:tadateru.ohkawara@gmail.com
mailto:makoto.takizawa@computer.org


980 Cluster Comput (2013) 16:979–988

read operation, a newest replica oi in a read quorum is read.
Then, every replica which is older than the newest replica oi

is changed with the same state as the replica oi .
Multimedia objects are characterized in terms of quality

of service (QoS) in addition to data structure. Hence, each
replica oi of a multimedia object o is characterized in terms
of parameters p0,p1, . . . , pl (l ≥ 1) where the first parame-
ter p0 shows the data structure, i.e. subobjects and another
parameter pk indicates a QoS parameter like frame rate
(k = 1, . . . , l). Compared with simple objects like files, a
larger volume of data is transmitted in networks and manip-
ulated in a multimedia object. Computation resource is spent
to manipulate multimedia replicas in computers. Hence, it
is critical to discuss how to reduce the overhead, espe-
cially processing overhead of each replica. The multimedia
quorum-based (MQB) protocol is discussed to reduce the
overhead in the papers [13, 14]. Here, replicas are partially
ordered in the version vector 〈vc0, vc1, . . . , vcl〉 of version
counters. Each version counter vck is used for each param-
eter pk (k = 0,1, . . . , l). Each version counter vck is incre-
mented so as to be larger than the maximum value in a write
quorum each time the parameter pk is updated. A replica
with the maximum version vector is newest, i.e. up-to-date
in each quorum.

In order to increase the performance of the MQB proto-
col, we propose a novel synchronization mechanism where
the state of a replica is not always changed while the pa-
rameters are changed. Each parameter pk in a replica oi is
read and written in a read operation rk and write operation
wk(x), respectively.

There are enriching and impoverishing types of write op-
erations [14]. Some new data not in a replica is added in an
enriching operation. For example, a subobject is added to a
replica. On the other hand, some data in a replica is deleted
in an impoverishing operation. For example, a QoS parame-
ter, say the number of colours is reduced. The newer state of
a replica shown by the parameters can be obtained by reduc-
ing data in the physical state. Hence, we take the following
approach:

1. In an enriching type of write operation wk(x), every
replica is updated in a write quorum Qkw .

2. In an impoverishing type of write operation wk(x), the
new value x of the parameter pk is just recorded but each
replica oi is not updated in a write quorum Qkw .

The replica oi is materialized, i.e. physically updated to be
up-to-date by changing the state with one shown by the pa-
rameters. If a read operation rk is issued to read the kth pa-
rameter pk of a replica, the parameter pk of an up-to-date
replica in a read quorum Qkr is read. In a read operation r0

to read the data structure parameter p0, a replica oi is mate-
rialized and a whole physical state of the replica oi is read.

We also discuss an MQB-RM (read materialization) proto-
col where every replica is updated after a transaction reads
a newest replica in a read quorum.

In the MQB and MQB-RM protocols, the processing
overhead of each replica oi can be reduced since every
replica may not be written in a write quorum, just parameters
are changed. In this paper, we evaluate the MQB and MQB-
RM protocols compared with the QB protocol in terms of
the processing overhead. We show the processing overhead
of each replica can be reduced in the MQB protocol com-
pared with the QB protocol.

In Sect. 2, we discuss enriching and impoverishing types
of operations of multimedia objects. In Sect. 3, we present
procedures for read and write operations in the MQB and
MQB-RM protocols. In Sect. 4, we evaluate the MQB and
MQB-RM protocols compared with the QB protocol.

2 Multimedia objects

2.1 Parameters

An object o is an encapsulation of data structure and op-
erations for manipulating the data structure. A multimedia
object o is characterized in terms of not only data structure
parameter but also quality of service (QoS) parameters. An
object is characterized in a tuple 〈p0,p1, . . . , pl〉 of logical
parameters. The first logical parameter p0 stands for the data
structure scheme which shows the part_of structure of sub-
objects. For example, an object o is composed of subobjects
a, b, and c. Here, the logical parameter p0 of the object o

is 〈a, b, c〉. The other logical parameters p1, . . . , pl indicate
QoS parameters (l ≥ 1). For example, the second logical pa-
rameter p1 shows the frame rate. If the frame rate of an ob-
ject o is 40 fps, the logical parameter p1 of the object o is
40. Here, the object o is shown in a tuple 〈〈a, b, c〉,40〉 of
the logical parameters p0 and p1. In this paper, we assume
every subobject of an object o has the same QoS parameters
for simplicity.

Let x and y be a pair of values to be taken by a logical
parameter pk . If pk is a QoS parameter (k ≥ 1), the value x

is poorer than y (x ≺ y) if x < y. For example, the frame rate
20 fps is poorer than 40 fps (20 ≺ 40). For a data structure
parameter p0 (k = 0), x is poorer than y (x ≺ y) iff every
subobject of x is included in y (x ⊂ y). For example, an
object is composed of three subobjects 〈a, b, c〉 and another
object is composed of two subobjects 〈a, b〉. Here, 〈a, b〉 is
poorer than 〈a, b, c〉. x � y iff x ≺ y or x = y. x is richer
than y iff x � y. If x � y, y includes additional data which
is not in x.

An object o is replicated in multiple computers. Let oi be
a replica of the object o (i = 1, . . . , n). Each replica oi sup-
ports the same operations and parameters as the object o.



Cluster Comput (2013) 16:979–988 981

Each replica oi is also composed of the same logical param-
eters 〈p0,p1, . . . , pl〉 as the object o. Let oi.pk indicate a
logical parameter pk of a replica oi .

2.2 Types of operations

Each operation opk is performed to manipulate a logical pa-
rameter pk of a replica oi . There are two types of opera-
tions, read (rk) and write (wk) on a logical parameter pk ,
i.e. op ∈ {r,w}. A transaction reads a logical parameter pk

of a replica oi in a read operation rk (k ≥ 1). A read opera-
tion r0 is used to read the whole state of a replica oi denoted
by the logical parameters 〈p0,p1, . . . , pl〉.

In the write operation wk(x), the value x is overwritten
to the logical parameter pk of the replica oi . For example,
suppose a logical parameter pk shows the frame rate of a
replica oi . In a write operation wk(20), the frame rate pa-
rameter pk of the replica oi is changed with 20 fps. Here,
the physical state of the replica oi is changed so that the
frame rate is 20 fps in a traditional write operation.

We consider two types of write operations wk(x) on a
parameter pk of a replica oi in this paper:

1. Materialization type of write.
2. Unmaterialization type of write.

In one type of write operation wk(x), not only the logical
parameter pk but also the physical state of the replica oi

are changed. This type of write operation is referred to as
materialization write which is a traditional write operation.
In another type of write operation wk(x), only the logical
parameter pk is changed although the physical state is not
changed in the replica oi . This type of write operation is
referred to as unmaterialization write. We here introduce a
physical parameter sk which shows the value of the kth pa-
rameter of the physical state of a replica oi . A physical state
of a replica oi means a state which is physically stored in a
computer. Thus, a tuple 〈s0, s1, . . . , sl〉 of the physical pa-
rameters shows the physical state of a replica oi . On the
other hand, a tuple 〈p0,p1, . . . , pl〉 of the logical parame-
ters denotes a logical state of a replica oi which shows a
current state but may be different from the physical state.
If a materialization write operation wk(x) is performed on a
replica oi , both the logical parameter pk and the physical pa-
rameter sk of the replica oi are changed with a new value x.
That is, pk = sk in the replica oi . On the other hand, if an
unmaterialization write wk(x) is performed on a replica oi ,
only the logical parameter pk is changed with a new value x

but the physical parameter sk is not changed. The change of
the physical parameter sk means that the physical state of a
replica oi is changed.

A replica oi where pk = sk for every logical parame-
ter pk is referred to as materialized. In an unmaterialized
replica oi , pk 
= sk for some logical parameter pk . Here, an

unmaterialized replica oi is referred to as materializable iff
the logical parameter pk is equal to or poorer than the phys-
ical parameter sk (pk � sk) for every logical parameter pk .
Suppose a replica oi is not materialized, i.e. pk 
= sk for
some logical parameter pk which shows the frame rate. Sup-
pose the logical parameter pk of a frame rate is 20 fps and
the physical parameter sk is 40 fps. That is, the physical pa-
rameter sk is richer than the logical parameter pk (pk � sk).
Here, we can obtain the current physical state of the replica
oi just by decreasing the frame rate without obtaining ad-
ditional data not in the physical state. That is, the replica
oi is materializeable. On the other hand, if pk = 40 fps and
sk = 20 fps, i.e. the logical parameter pk is poorer than the
physical parameter sk (pk � sk), the current physical state of
the replica oi cannot be obtained without additional frame
data which is not in the physical state of the replica oi .

For a pair of different logical QoS parameters pk and ph

(k 
= h), a read operation rk is compatible with a write op-
eration wh and a write operation wk is also compatible with
a write operation wh. A read operation r0 conflicts with a
write operation wk of every logical parameter pk (k ≥ 0)
since the whole state of the replica oi is read in a read oper-
ation r0. Let O be a set of replicas of an object o in a sys-
tem S. Let Qk,op(⊆ O) shows a quorum of replicas where
an operation opk on a parameter pk is performed. For every
pair of operations opk

1 and opk
2, if oph

1 and opk
2 conflict with

one another, Qk,op1 ∩Qh,op2 
= φ and Qk,op1 ∪Qh,op2 = O .
Write operations are further classified into the following

types [13, 14] with respect to whether some data is added or
removed on a replica oi :

1. Enriching type of write.
2. Impoverishing type of write.

In an enriching type of write operation wk(x), some data not
in a replica oi is required to be added to the replica oi . For
example, colour data has to be added to a monochromatic
replica to change with a coloured replica. That is, the value
x is richer than the physical parameter sk of a replica oi

(x � sk). On the other hand, a replica oi can be updated just
by removing data in the replica oi in an impoverishing type
of write operation wk(x). That is, x � sk . For example, a
coloured replica can be changed with a monochromatic one
just by removing the colour data.

3 Multimedia quorum-based (MQB) protocol

3.1 Parameters

Let O be a set {o1, . . . , on} of replicas of a multimedia ob-
ject o in a system S. Each replica oi is characterized in terms
of logical parameters 〈p0,p1, . . . , pl〉 (l ≥ 1). The first log-
ical parameter p0 stands for the data structure of the replica



982 Cluster Comput (2013) 16:979–988

oi which shows a part_of relation of subobjects. For ex-
ample, a replica oi is composed of three subobjects a, b,
and c. Here, the logical parameter p0 is a tuple 〈a, b, c〉 of
the subobjects in the replica oi . The other logical parame-
ters p1, . . . , pl show QoS parameters. For each logical pa-
rameter pk , there are a pair of operations rk and wk to read
and write the parameter pk of a replica oi , respectively (k =
0,1, . . . , l). For example, the colour parameter p1 takes one
of values; f c (fully coloured), gs (gray-scaled), and mc

(monochromatic). The parameter p2 is a QoS parameter
which shows the frame rate, e.g. 40 fps. Here, suppose a
replica oi is composed of fully coloured movie subobjects a,
b, and c with frame rate 40 fps. A logical state of the replica
oi is given in a tuple 〈〈a, b, c〉, f c,40〉 of logical parameters,
where p0 = 〈a, b, c〉, p1 = f c, and p2 = 40. In the write
operation w0(x), a subobject x is deleted, added, or mod-
ified. For example, suppose the subobject c in the replica
oi is deleted in a delete operation w0(c). The replica oi is
changed with a new state 〈〈a, b〉, f c,40〉. A delete is an im-
poverishing type of write operation and add is an enriching
type of write operation. Suppose a QoS parameter p2 stands
for frame rate. In the write operation w2(20), the frame rate
parameter p2 of a replica oi is changed with 20 fps. This is
an impoverishing write operation since 40 � 20. The replica
oi is changed with a new state 〈〈a, b〉, f c,20〉.

Each replica oi is characterized in a tuple 〈s0, s1, . . . , sl〉
of physical parameters in addition to the logical parameters
〈p0,p1, . . . , pl〉. Initially, sk = pk for each parameter pk in a
replica oi . A tuple 〈s0, s1, . . . , sl〉 of the physical parameters
shows a physical state of a replica oi which is really stored
in a computer. Hence, each parameter sk is referred to as
physical parameter of a replica oi .

On receipt of a write operation wk(x), the logical param-
eter pk of a replica oi is updated with a new value x. How-
ever, the physical state of the replica oi is not changed if wk

is an impoverishing type of write operation in our approach
to reducing the processing overhead. On the other hand, the
physical state of the replica oi is changed in an enriching
type of write operation, i.e. not only the logical parameter pk

but also the physical parameter sk are updated. In an impov-
erishing type of write operation wk(x), the logical parame-
ter pk and the version counter vck are updated in a replica
oi while the physical parameter sk is not updated. Thus, a
tuple 〈p0,p1, . . . , pl〉 of the logical parameters shows a cur-
rent logical state of a replica oi . On the other hand, a tuple
〈s0, s1, . . . , sl〉 of the physical parameters denotes a current
physical state of the replica oi which is really stored in a
computer.

If a physical parameter sk is the same as the logical pa-
rameter pk , the logical parameter pk is referred to as mate-
rialized. A tuple 〈p0,p1, . . . , pl〉 of the logical parameters
shows a newest state of a replica oi . The logical parameter
pk is materialized in an enriching write operation wk while

not materialized in an impoverishing type of write opera-
tion wk . If every logical parameter pk of a replica oi is ma-
terialized, the replica oi is referred to as materialized, where
pk = sk for every logical parameter pk . It is noted the logical
parameter pk is equal to or richer than the physical param-
eter sk in a replica oi (oi.pk � oi.sk) since the replica oi is
materialized each time an enriching write operation wk is
performed but is not materialized, just the logical parameter
pk is changed in an impoverishing write operation.

Next, suppose a read operation r0 is issued to a replica
oi to read the logical data structure parameter p0. A newest
replica oi is first selected in a read quorum Q0r and then is
materialized. The whole state of the replica oi is read in the
read operation r0.

Let us consider a replica oi = 〈〈a, b, c〉, f l,40〉 of a
movie object o which is composed of three subobjects a,
b, and c which are fully coloured with 40 fps. Here, the
logical parameters 〈p0,p1,p2〉 are the same as the physi-
cal parameters 〈s0, s1, s2〉 in the replica oi . First, the frame
rate parameter p2 is changed with 20 fps. Then, the subob-
ject c is deleted in a write operation w0(c) which is also an
impoverishing type. Here, the logical parameter p0 of data
structure is changed with 〈a, b〉. The physical parameters
〈s0, s1, s2〉 are still 〈〈a, b, c〉, f l,40〉 while the logical pa-
rameters 〈p0,p1,p2〉 are changed with 〈〈a, b〉, f l,20〉. The
physical data structure parameter s0 = 〈a, b.c〉 is richer than
the logical parameter p0 = 〈a, b〉 (s0 � p0) and the QoS pa-
rameters p2 = 40 fps is richer than s2 = 20 fps (s2 � p2).
A tuple 〈〈a, b, c〉, f l,40〉 of the physical parameters in-
dicates a current physical state of the replica oi . A tuple
〈〈a, b〉, f l,20〉 of the logical parameters denotes a current
logical state of the replica oi to be changed. Here, the replica
oi is not materialized. The physical state of a replica oi

shown by the physical parameters 〈s0, s1, . . . , sl〉 is older
than the logical state denoted by the logical parameters
〈p0,p1, . . . , pl〉 if 〈s0, s1, . . . , sl〉 
= 〈p0,p1, . . . , pl〉.

Suppose a replica oi is not materialized but each logi-
cal parameter pk can be richer than a physical parameter sk .
There is a materialization procedure mat(oi) by which the
physical state of a replica oi is changed from 〈s0, s1, . . . , sl〉
to the new state 〈p0,p1, . . . , pl〉, i.e. the replica oi is ma-
terialized. Here, the physical state of the replica oi is re-
ally changed. Computation resources are spent to change the
physical state of the replica oi , i.e. materialize the replica oi .
For example, data in the replica oi is decoded and en-
coded. Hence, we try to reduce the number of materializa-
tions to be done in replicas in this paper. Then, the phys-
ical state 〈s0, s1, . . . , sl〉 of the replica oi is changed with
〈p0,p1, . . . , pl〉. For example, the physical state of a replica
oi is 〈〈a, b, c〉, f c,40〉 which is composed of three subob-
jects a, b and c with QoS parameters p1 = f l and p2 =
40 fps. A tuple of the logical parameters 〈p0,p1,p2〉 of the
replica oi is 〈〈b, c〉, f c,20〉. Here, the replica oi can be ma-
terialized to the physical state 〈〈a, b〉, f c,20〉 by removing



Cluster Comput (2013) 16:979–988 983

Fig. 1 Read procedure rk

the subobject c and decreasing the frame rate to 20 fps.
Here, the physical parameters 〈s0, s1, s2〉 get the same as the
logical parameters 〈p0,p1,p2〉 = (〈〈b, c〉, f c,20〉), i.e. the
replica oi is materialized.

3.2 Version vector

For each logical parameter pk , there is a version counter
vck [14]. Initially, the version counter vck of each logical
parameter pk is 0 in each replica oi . Let oi.vck stand for
the version counter vck of a replica oi , respectively. oi.V

shows a vector 〈vc0, vc1, . . . , vcl〉 of the version counters
in a replica oi . Suppose a transaction T issues an operation
opk to manipulate the parameter pk in a quorum Qk,op . If a
write operation wk(x) is performed on a replica oi , the ver-
sion counter oi.vck is incremented by one. Here, a replica
oi is newer than a replica oj iff oi.V > oj .V . In a quorum
Qk,op , a replica oi whose version counter vck is maximum
has the newest parameter pk . If a read operation rk is is-
sued, the logical parameter pk of a newest replica in a read
quorum Qkr is read.

3.3 Read and write procedures of QoS parameters

We discuss how to manipulate replicas in a quorum. We first
consider a read operation rk and a write operation wk(x) for
a logical QoS parameter pk (k = 1, . . . , l). Here, the trans-
action T obtains the newest value of the logical parameter
pk by the following procedure (refer to Fig. 1).

[Read procedure of rk]

1. Find a newest replica oi in a read quorum Qkr whose ver-
sion counter oi.vck is maximum, i.e. oi.vck =
max(oj .vck | oj ∈ Qkr). vc = oi.vck .

2. Read the logical parameter oi.pk in the replica oi .
3. For every replica oj (j 
= i) in the quorum Qkr , oj .pk =

oi.pk and oj .vck = vc.

Fig. 2 Write procedure wk(x)

The transaction T finds a replica oi which has the newest
value of the logical parameter pk in the read quorum Qkr .
That is, the replica oi has the largest version counter vck in
the quorum Qkr . Then, the transaction T reads the logical
parameter pk of the replica oi .

Next, a transaction T issues a write operation wk(x) to
write a value x in a QoS parameter pk of replicas in a write
quorum Qkw (refer to Fig. 2).

[Write procedure of wk(x)]

1. Find a replica oi in a write quorum Qkw whose version
counter oi.vck is maximum, i.e. newest replica oi . vc =
oi.vck + 1.

2. For every replica oj ( 
= oi ) in the quorum Qkw , the value
x is written to the logical parameter pk of the replica oj

and the version vector vck is changed with the maximum
value vc, i.e. oj .pk = x and oj .vck = vc.

3. If wk(x) is an enriching type of write operation, i.e. the
logical parameter pk is richer than the physical param-
eter sk (pk � sk), every replica oj in the quorum Qkw

is materialized by the materialization procedure mat(oj ).
The physical state of the replica oi is changed with a new
state shown by a tuple 〈p0,p1, . . . , pl〉 of the logical pa-
rameters. Now, the physical state of the replica oi is up-
to-date.

It is noted that the new parameter value x is written to
the logical parameter pk of a replica oi in a write operation
wk(x). If wk(x) is an enriching write operation, the value
x is written to the physical parameter sk of the replica oi

in addition to the logical parameter pk , i.e. the state of the
replica oi is materialized.

3.4 Read and write procedures of a data structure
parameter

Next, we consider a read operation r0 and a write operation
w0(x) for the data structure parameter p0. First, a transac-



984 Cluster Comput (2013) 16:979–988

tion T issues a write operation w0(x) to write a value x in
the data structure parameter p0 in a write quorum Q0w . In
fact, wk(x) means an add or delete operation of a subobject
x in a replica oi . A transaction T writes a value x to the data
structure parameter p0 of a replica as follows.

[Write procedure of w0(x)]

1. Find a newest replica oi whose version counter vc0 is
maximum in a write quorum Q0w . vc = oi.vc0 + 1.
oi.p0 = x and oi.vc0 = vc.

2. For every replica oj in the quorum Q0w , oj .p0 = x and
oj .vc0 = vc.

3. If w0(x) is an enriching write operation, every replica oi

is materialized by the materialization procedure mat(oi)

in the quorum Q0w .

If a write operation w0(x) is an impoverishing type of
write operation like delete of a subobject, the value x is just
recorded in the logical parameter p0 but the physical param-
eter s0 of the replica oi is not updated. On the other hand,
each replica oi is materialized in an enriching type of write
operation w0. The version counter v0 in every replica oi is
increased to the maximum value vc.

Next, a transaction T issues a read operation r0 to a read
quorum Q0r . Here, it is noted the transaction T has to read
a whole state of a newest replica in the read quorum Q0r

while only a logical parameter pk is read in another read op-
eration rk (k > 0). The transaction T reads the data structure
parameter p0 of a replica in the read quorum Q0r as follows.

[Read procedure of r0]

1. Find a newest replica oi such that oi.vck ≥ oj .vck for ev-
ery parameter pk and for every replica oj in a read quo-
rum Q0r . If found, vc = oi.vc0 which is the maximum
value of the version counter vc0 in the quorum Q0r . The
transaction T reads the whole state of the replica oi and
go to step 4.

2. If not found, find a replica oi whose version counter vc0

is maximum in the read quorum Q0r . If the replica oi

is found, vc = oi.vc0. For each logical parameter pk

(k 
= 0), find a replica oj whose version counter vck is
maximum, i.e. oj has the newest value of the logical pa-
rameter pk . oi.sk = oj .sk and oi.vck = oj .vck .

3. The replica oi is materialized by the materialization pro-
cedure mat(oi). The transaction T reads the whole state
of the replica oi .

4. For every replica oj ( 
= oi ) in Q0r , oj .pk = oi .pk and
oj .vck = oi.vck for every logical parameter pk .

In a read operation r0, a newest materialized replica oi is
first found in the read quorum Q0r . If not found, a replica oi

whose version counter vc0 is maximum in the read quorum
Q0r is found. If some logical parameter pk of the replica oi

is not newest, a replica oj with a newest value x of the log-
ical parameter pk is found in the quorum Q0r . The logical
parameter oi .pk is changed with the newest value x. Then,
the replica oi is materialized. The transaction T reads the
materialized, newest replica oi in the quorum Q0r . The log-
ical parameter pk and version counter vck in every replica oj

are updated with the same values after step 4 as the newest
replica oi in the quorum Q0r after step 4.

Here, there are two ways to do for the other replicas than
the newest replica oi after step 4.

1. Read-materialization (RM).
2. Just-read (R).

In one way, every replica oj in the quorum Q0r is materi-
alized by the materialization procedure mat(oj ). This means
the physical state of every replica in the quorum Q0r gets
the newest after the transaction T reads the replica oi . This
strategy is referred to as read-materialization (RM). MQB-
RM stands for the MQB protocol with RM strategy.

In another way, only the replica oi is materialized. Here,
only one replica oi is materialized in a read operation while
the logical parameters p0,p1, . . . , pl of every other replica
are newest values in a read quorum Q0r . This strategy is
referred to as just-read (R) one. In the MQB protocol, the
R strategy is taken. Since only a newest replica oi which a
transaction reads is materialized, the processing overhead of
replicas can be reduced.

4 Evaluation

4.1 Environment

We evaluate the MQB and MQB-RM protocols compared
with the QB protocol in terms of processing overhead of
each replica. In the evaluation, we assume there is a set O

(= {o1, . . . , on}) of n (≥ 1) replicas o1, . . . , on. Each replica
oi has logical parameters 〈p0,p1, . . . , pl〉 where p0 shows
a data structure parameter and each pk is a QoS parame-
ter (k = 1, . . . , l). In the QB protocol, every replica is up-
dated, i.e. materialized in a write quorum Qkw each time a
write operation wk is performed on a logical parameter pk

(k = 0,1, . . . , l). That is, every write operation is a material-
ization type. In a read operation rk , the logical parameter pk

in the newest replica oi is first read in a read quorum Qkr .
Then, every other replica oj is updated to be the newest one
in the read quorum Qkr . On the other hand, a replica is not
materialized in an impoverishing write operation wk with
the MQB protocol. In a read operation r0, a newest replica
oi is first found. Then, the replica oi has to has materialized
if oi is not materialized.

Let γ (≤ 1) show the read ratio, i.e. the ratio of the num-
ber of read operations to the total number of operations is-
sued by transactions. Here, (1 − γ ) indicates the write ratio.



Cluster Comput (2013) 16:979–988 985

Fig. 3 Average number of materializations for one operation (n = 10,
l = 5)

In this paper, we assume the sizes |Qkr | and |Qkw| of the
quorums Qkr and Qkw are in inverse proportion to the read
ratio γ and write ratio (1 − γ ). That is, if a read operation
rk is more frequently issued than a write operation wk , the
size of the read quorum Qkr is smaller than the write quo-
rum Qkw . We assume |Qkr ∩ Qkw| = 2 in this evaluation.
Each time an operation opk on the logical parameter pk is
issued, the number of replicas are randomly selected to be
included in a quorum Qk,op . In this evaluation, we assume
the number l of QoS parameters is five, i.e. l = 5.

In the simulation, we assume one transaction issues one
operation opk . The totally 2,000 transactions are serially is-
sued. A logical parameter pk to be manipulated in an oper-
ation opk is randomly selected (k ∈ {0,1, . . . , l}). A type of
operation op ∈ {r,w} is also randomly selected so that the
read ratio γ is satisfied. Then, replicas to be in a quorum
Qk.op are randomly selected in the replica set O for each
operation opk . In each write operation wk(x), a value x is
written to the logical parameter pk of a replica oi . Here, the
value x is randomly selected as x ∈ {0, . . . ,99}. If wk(x) is
an enriching type, the value x is also written to the physical
parameter sk in the MQB protocol. If the value x is smaller
than the physical parameter sk , i.e. current physical value of
the kth parameter in the replica oi , the write operation wk(x)

is considered to be an impoverishing type. Otherwise, wk(x)

is an enriching type of write operation. Here, the value x is
written to the logical parameter pk as well as the physical
parameter sk . In a read operation rk , a transaction reads a
newest replica oi in a read quorum Qkr . If a newest replica
oi is not materialized, the replica oi is materialized and then
is read by the transaction.

4.2 Evaluation results

Figures 3, 4, and 5 show the average numbers of materi-
alizations of replicas done for each operation in the MQB

Fig. 4 Average number of materializations for read (n = 10, l = 5)

Fig. 5 Average number of materializations for write (n = 10, l = 5)

protocol, MQB-RM, and QB protocols. Figure 3 shows the
average number of materializations of replicas for each op-
eration in the MQB, MQB-RM, and QB protocols for the
read ratio γ with n = 10 and l = 5. The number of materi-
alizations of replicas in the MQB and MQB-RM protocols
can be reduced to about 30 % and 50 %, respectively, of the
QB protocol for γ = 0.5 as shown in Fig. 3. This means,
the MQB and MQB-RM protocols imply the smaller pro-
cessing overhead in each replica than the QB protocol. The
processing overhead in the MQB protocol is the smallest.

Figures 4 and 5 show the average numbers of material-
izations for one read operation and one write operation, re-
spectively, for read ratio γ in the MQB, MQB-RM, and QB
protocols. Here, n = 10 and l = 4. In the MQB protocol,
the average number of materializations for a read operation
can be drastically reduced. For example, the average number
of materializations in the MQB protocol is almost 10 % of
the QB protocol for γ = 0.8. On the other hand, the average
number of materializations for a write operation in the MQB



986 Cluster Comput (2013) 16:979–988

Fig. 6 Average number of materializations (l = 5, γ = 0.5)

protocol is the same as the MQB-RM and can be reduced by
55 % compared with the QB protocol.

Figure 6 shows the number of materializations in the
MQB, MQB-RM, and QB protocols for the total number
n of replicas where l = 5 and γ = 0.5. As the number n of
replicas increases, the number of materializations of replicas
linearly increases in every protocol. For example, the num-
bers of materializations in the MQB and MQB-RM proto-
cols are 20 % and 50 % of the QB protocol for n = 100,
respectively. The processing overheads of the MQB and
MQB-RM protocols are smaller than the QB protocol. The
MQB protocol supports the smallest processing overhead in
the protocols.

In the MQB protocol, there is a newest replica oi but the
replica oi may not be materialized in a read quorum Q0r

when a read operation r0 is issued. Let MR be the read ma-
terialization ratio, i.e. the ratio of read operations in which
a newest, materialized replica is found to the total number
of read operations issued (0 ≤ MR ≤ 1). Here, it is noted
MR = 1 for every read ratio γ in the QB protocol. That
is, a transaction can necessarily find a newest, materialized
replica in a read quorum with the QB protocol. In the MQB
protocol, MR is smaller than the QB protocol since replicas
are not necessarily materialized in a quorum. For example,
MR = 0.65 for γ = 0.7 are MR = 0.83 for γ = 0.4 in the
MQB protocol. That is, if 70 % (γ = 0.7) of operations are
read ones, there is probability 0.35 that a replica which is
read is not materialized in the MQB protocol. MR = 0.93
and MR = 0.98 for γ = 0.4 and γ = 0.7, respectively, in the
MQB-RM protocol. It takes time to materialize a replica.
For example, for γ = 0.5, if one hundred read operations are
issued, we have to materialize a replica to perform 35 read
operations in the MQB protocol while 5 read operations in
the MQB-RM protocol. Hence, it takes a longer time to read
a replica in the MQB protocol than the MQB-RM and QB
protocols. One idea is that the MQB protocol is taken if the

Fig. 7 Materialization-ratio (n = 10, l = 5)

Fig. 8 Average number of materialization for r0 (n = 10, l = 5,
γ = 0.6)

read ratio γ is smaller, e.g. γ ≤ 0.4 and the MQB-RM pro-
tocol is taken for γ > 0.4.

Next, we assume a read operation r0 for the data struc-
ture parameter p0 is randomly issued with probability δ

while every write operation wk is randomly issued as dis-
cussed here. Another read operation rk (1 ≤ k ≤ l) is ran-
domly issued to read the logical parameter pk with probably
(1 − δ)/ l. Here, δ = 1/(l + 1) means that every read oper-
ation rk (k = 0,1, . . . , l) is randomly issued as evaluated in
Figs. 4–7. The larger the ratio δ is, the more often the whole
state of a replica oi is read. In order to read the whole state
of a replica oi , the replica oi has to be materialized. Fig-
ure 8 shows the average number of materializations in the
MQB, MQB-RM, and QB protocols for the data structure
read operation ratio δ where n = 10, l = 5, and γ = 0.6.
The average number of materializations can be reduced in
the MQB are MQB-RM protocols than the QB protocol. In



Cluster Comput (2013) 16:979–988 987

the MQB protocol, the average number of materializations
is almost independent of the data structure read ratio δ.

5 Concluding remarks

In this paper, we discussed how to reduce the processing
overhead of each replica of a multimedia object in the mul-
timedia quorum-based (MQB) protocol. A multimedia ob-
ject is characterized in terms of not only data structure pa-
rameter p0 but also QoS parameters p1, . . . , pl . There are
read and write operations rk and wk for each parameter
pk (k = 0,1, . . . , l). There are enriching and impoverish-
ing types of write operations. Some data has to be added
to a replica in an enriching write operation like add. On the
other hand, just data in a replica is removed in an impov-
erishing write operation like delete. In order to increase the
performance of the MQB protocol, impoverishing write op-
erations are just recorded in every replica while enriching
operations are performed on every replica in a quorum. In a
read operation to read a whole state of a replica, if a newest
replica oi is not materialized in a read quorum, the replica oi

is read after materialized. In the MQB-RM protocol, repli-
cas in a read quorum are updated after a transaction reads
the newest replica. We evaluated the MQB protocol and the
MQB-RM protocol compared with the traditional QB pro-
tocol in terms of processing overhead of each replica. We
showed the number of materializations of replicas can be re-
duced in the MQB and MQB-RM protocols compared with
the QB protocol. The MQB protocol implies the minimum
average number of materializations, i.e. smallest processing
overhead.

In scalable systems, we have to more reduce the process-
ing overhead of each replica. We are now discussing an ex-
tended MQB protocol where only some number, not all of
replicas in a wrote quorum are materialized in a enriching
type of write operation. We are also evaluating the commu-
nication overhead in addition to the processing overhead in
a scalable system.

References

1. Chuang, C., Kao, S.: Adjustable flooding-based discovery with
multiple QoSs for cloud services acquisition. Int. J. Web Grid
Serv. 7(2), 208–224 (2011)

2. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lak-
shman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels,
W.: Dynamo: Amazon’s Highly Available Key-value Store. ACM
SIGOPS Oper. Syst. Rev. 14(6), 205–220 (2007)

3. Enokido, T., Higaki, H., Takizawa, M.: Group protocol for dis-
tributed replicated objects. In: Proc. of the 27th International Con-
ference on Parallel Processing (ICPP-98), pp. 570–577 (1998)

4. Enokido, T., Hori, K., Takizawa, M., Raynal, M.: Quorum-based
multi-invocation model for replicated objects. J. Concurr. Eng.
Res. Appl. 12(3), 185–194 (2004)

5. Flahive, A., Taniar, D., Rahayu, W.: Ontology as a service (OaaS):
a case for sub-ontology merging on the cloud. J. Supercomput.
(2012, to appear). doi:10.1007/s11227-011-0711-4

6. Gifford, D.K.: Weighted voting for replicated data. In: Proc. of the
7th Symposium on Operation Systems Principles (SOSP ’79), pp.
150–162 (1979)

7. Gray, J.: Notes on database operating systems. In: Lecture Notes
in Computer Science, vol. 60. Springer, Berlin (1978)

8. Helal, A., Bhargava, B.: Performance evaluation of the quorum
consensus replication method. In: Proc. of Computer Performance
and Dependability Symposium on Computer Performance and De-
pendability Symposium, pp. 165–172 (1995)

9. Herlihy, M.: A quorum-consensus replica method for abstract data
types. ACM Trans. Comput. Syst. 4(1), 32–53 (1986)

10. Hofmann, P., Woods, D.: Cloud computing: the limits of public
clouds for business applications. IEEE Internet Comput. 14, 90–
93 (2010). ISBN 1089-7801

11. Kim, W.: Could computing adoption. Int. J. Web Grid Serv. 7(3),
225–245 (2011)

12. Nghiem, T.P., Waluyo, A.B., Tanier, D.: A pure peer-to-
peer approach for kNN query processing in mobile ad
hoc networks. Pers. Ubiquitous Comput. (2012, to appear).
doi:10.1007/s00779-012-0545-y

13. Ohkawara, T., Aikebaier, A., Enokido, T., Takizawa, M.:
Quorums-based replication of multimedia objects in distributed
systems. In: Proc. of the International Conference on Network-
Based Information Systems (NBiS-2011), pp. 333–340 (2011)

14. Ohkawara, T., Aikebaier, A., Enokido, T., Takizawa, M.: Com-
pletable quorums of multimedia objects. In: Proc. of IEEE the 26th
International Conference on Advanced Information Networking
and Applications (AINA-2012), pp. 597–604 (2012)

15. Schollmeier, R.: A definition of peer-to-peer networking for the
classification of peer-to-peer architectures and applications. In:
Proc. of the First International Conference on Peer-to-Peer Com-
puting (P2P-2001), pp. 101–102 (2001)

16. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan,
H.: Chord: a scalable peer-to-peer lookup service for Internet ap-
plications. In: Proc. of ACM the 2001 Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM ’01), pp. 149–160 (2001)

17. Tanaka, K., Hasegawa, K., Takizawa, M.: Quorum-based repli-
cation in object-based systems. J. Inf. Sci. Eng. 6(7), 317–331
(2000)

18. Tanaka, K., Takizawa, M.: Quorum-based locking protocol for
replicas in object-based systems. In: Proc. of IEEE the 5th In-
ternational Symposium or Autonomous Decentralized Systems
(ISORC-2001), pp. 196–203 (2001)

19. Waluyo, A.B., Taniar, D., Rahayu, W., Aikebaier, A., Tak-
izawa, M., Srinivasan, B.: Trustworthy-based efficient data broad-
cast model for P2P interaction in resource-constrained wire-
less environments. J. Comput. Syst. Sci. (2012, to appear).
doi:10.1016/j.jcss.2011.10.019

20. Waluyo, A.B., Taniar, D., Rahayu, W., Aikebaier, A., Tak-
izawa, M., Srinivasan, B.: Mobile peer-to-peer data dissemina-
tion in wireless ad-hoc networks. J. Inf. Sci. (2012, to appear).
doi:10.1016/j.ins.2012.07.035

http://dx.doi.org/10.1007/s11227-011-0711-4
http://dx.doi.org/10.1007/s00779-012-0545-y
http://dx.doi.org/10.1016/j.jcss.2011.10.019
http://dx.doi.org/10.1016/j.ins.2012.07.035


988 Cluster Comput (2013) 16:979–988

Tadateru Ohkawara received his
B.E. Degree in computer science
from Seikei University, Tokyo, Japan,
in 2011. He is graduate student
in Seikei University, Tokyo, Japan,
from 2011. His research embarks on
replication of multimedia object and
focused on how to maintain mutu-
ally consistency of replicas in P2P
overlay networks.

Ailixier Aikebaier received his
B.E. Degree in Computers and Sys-
tems Engineering from XinJiang
University, China, in 2000, and
M.E. Degree in Computers and
Systems Engineering from Tokyo
Denki University, Japan in 2009.
He got his Ph.D. in Computer Sci-
ence at Seikei University, 2011. He
is currently working for National
Institute of Information and Com-
munications Technology (NICT),
Japan. He won the best paper award
at CISIS2008 and CISIS2010. His
research interests include distributed

systems, P2P networks, trust and reputation problems in wireless sen-
sor networks, and fault-tolerant systems.

Tomoya Enokido (M’02) received
B.E. and M.E. Degrees in Comput-
ers and Systems Engineering from
Tokyo Denki University, Japan in
1997 and 1999, respectively. After
that he worked for NTT Data Cor-
poration, he joined Tokyo Denki
University in 2002. He received
his D.E. Degree in Computer Sci-
ence from Tokyo Denki Univer-
sity in 2003. After that he worked
for Computers and Systems Engi-
neering as a research associate, he
joined Faculty of Business Admin-
istration of Rissho University in
2005. He is an associate professor

in the Faculty of Business Administration, Rissho University. His re-
search interests include distributed systems. He is a member of IEEE.

Makoto Takizawa (M’87) received
the D.E. Degree in computer sci-
ence from Tohoku University,
Sendai, Japan. He is a Professor
with the Department of Computer
and Information Science, Seikei
University, Tokyo, Japan. He was a
Professor and the Dean of the Grad-
uate School of Science and Engi-
neering, Tokyo Denki University,
Saitama, Japan. He was a Visiting
Professor at Gesellschaft für Math-
ematik und Datenverarbeitung-In-
tegrated Publication and Informa-
tion Systems Institute (GMD-IPSI),

Keele University, Keele, UK, and at Xidian University, Xi’an, China.
His research interests include distributed systems and computer net-
works. Dr. Takizawa was on the Board of Governors and is a Golden
Core Member of the IEEE CS. He is a Fellow of Information Pro-
cessing Society of Japan (IPSJ). He chaired many international con-
ferences such as the IEEE International Conference on Distributed
Computing Systems (ICDCS), International Conference on Parallel
and Distributed Systems (ICPADS), and International Conference on
Database and Expert Systems Applications (DEXA). He founded IEEE
International Conference on Advanced Information Networking and
Applications (AINA).


	Quorum-based synchronization protocols for multimedia replicas
	Abstract
	Introduction
	Multimedia objects
	Parameters
	Types of operations

	Multimedia quorum-based (MQB) protocol
	Parameters
	Version vector
	Read and write procedures of QoS parameters
	Read and write procedures of a data structure parameter

	Evaluation
	Environment
	Evaluation results

	Concluding remarks
	References


