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Abstract The sensitivity analysis of a Cellular Genetic Al-
gorithm (CGA) with local search is used to design a new
and faster heuristic for the problem of mapping indepen-
dent tasks to a distributed system (such as a computer cluster
or grid) in order to minimize makespan (the time when the
last task finishes). The proposed heuristic improves the pre-
viously known Min-Min heuristic. Moreover, the heuristic
finds mappings of similar quality to the original CGA but
in a significantly reduced runtime (1,000 faster). The pro-
posed heuristic is evaluated across twelve different classes
of scheduling instances. In addition, a proof of the energy-
efficiency of the algorithm is provided. This convergence
study suggests how additional energy reduction can be
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achieved by inserting low power computing nodes to the dis-
tributed computer system. Simulation results show that this
approach reduces both energy consumption and makespan.
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1 Introduction

The mapping of tasks to computing resources in a dis-
tributed computing system is a challenging problem. Indeed,
it is demonstrated to be NP-hard when more than two ma-
chines are considered [5]. There are many task mapping al-
gorithms proposed in the literature to address this problem.
However, because of the problem’s complexity, they provide
less than optimal solutions and are slow. New techniques
that try to find good solutions in short computation times
are needed for large scale computing systems such as Grids
or Clouds that run many tasks.

The task mapping problem is further complicated with
the introduction of energy minimization as an additional ob-
jective. The work presented in this paper contributes to solve
this problem by proposing a new fast heuristic for the assign-
ment of independent tasks that can be applied to the energy-
efficient task mapping on distributed systems.

This paper is an extension of [31], which introduced the
Two Phase Heuristic (2PH), a novel, fast and accurate al-
gorithm as an improvement of the well-known heuristic for
independent task mapping, Min-Min [16]. An interesting
feature of [31] is the path that lead to such a heuristic. In-
deed, the algorithm is derived from the Sensitivity Analysis
(SA) performed in [28], on an elaborate Cellular Genetic
Algorithm (CGA), called Parallel Asynchronous CGA (PA-
CGA) [30]. PA-CGA is designed to map independent tasks
on machines in a distributed system.
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SA can answer the following important question: given
uncertainty in system parameters, which ones affect (the
most and the least) the system output (also known as screen-
ing) [34].

SA is useful for parameter tuning, but also at design-time.
The work presented here is an example of how SA can help
the development of algorithms at the design step. The results
of the analysis are used to design a new heuristic to solve the
independent task mapping problem.

The contributions of this paper are three-fold: (a) We first
improve the study on the performance of 2PH, evaluating a
new version of the algorithm that runs for a higher number
of iterations and building a ranking of the algorithms ac-
cording to their performance using the Friedman statistical
test [14]. (b) We formally establish the convergence proper-
ties and the ability to reduce energy of the new 2PH heuris-
tic. (c) We promote the use of millicomputers (low power
but slow resources) to reduce energy in High Performance
Computing Systems (HPCS), and show how millicomputing
enables 2PH to reduce energy without increasing makespan
(when the last task finishes), unlike Min-Min.

The rest of the paper is organized as follows. We summa-
rize the existing related work in Sect. 2. Then, the consid-
ered problem is described in Sect. 3. Section 4 presents our
previous work on the sensitivity analysis of the PA-CGA.
Section 5 describes the new heuristic and provides a compar-
ison with the Min-Min heuristic and the PA-CGA. Section 6
demonstrates the energy-efficiency of the mapping found,
and uses the convergence study to develop a novel approach
for energy-efficiency. Finally, Sect. 7 draws the main con-
clusions, and provides perspectives to the presented work.

2 Related approaches

A large number of heuristics have been developed to address
the problem of task assignment on distributed heterogeneous
systems. We begin by describing some on-line mapping
heuristics. Opportunistic Load Balancing assigns each task,
in an arbitrary order, to the next available machine, regard-
less of the execution time for the task on that machine. This
greedy heuristic tries to balance the load on the machines,
however, because the assignment algorithm does not take
into consideration execution times it finds rather poor solu-
tions. Minimum Execution Time assigns each task in arbi-
trary order to the machine with the lower execution time for
that task, without considering machine’s availability. The as-
signment algorithm intends to find good task-machine pair-
ings, but since the heuristic does not consider the current
load, this can cause load imbalance across machines. The
Minimum Completion Time heuristic assigns each task, in
arbitrary order, to the machine with the minimum expected
completion time for the job. The heuristic tries to improve

the performance of the previously described heuristics. This
heuristic is a variant of Limited Best Assignment [13] and
can be used as an online mapping algorithm. More details
on these heuristics can be found in [4, 13].

One of the most widely used batch mode dynamic heuris-
tic for mapping independent tasks in the heterogeneous
computing system is the well-known Min-Min algorithm [4,
13, 16, 36]. Min-Min starts with a set of all unmapped tasks,
then works in two phases. In the first phase, the algorithm
establishes the minimum completion time for every unas-
signed task in the same way as Minimum Completion Time.
In the second phase, the task with the overall minimum ex-
pected completion time is selected and assigned to the cor-
responding machine. The task is then removed from the set
and the process is repeated until all tasks are mapped. The
run time of Min-Min is O(n2m), where n is the number of
tasks and m the number of machines [16]. Max-Min heuris-
tic follows the same working principle as in Min-Min. The
main difference is that, once the algorithm established the
machine with the earliest completion time for every task,
the task with the maximum earliest completion time is de-
termined. Then the algorithm allocates the task to the corre-
sponding machine [4]. In sufferage [23] the best task is the
one which will be the most penalized if not allocated on its
most favorable machine but on the task’s second most favor-
able machine. The sufferage value is computed as the differ-
ence between the best minimum completion time of the task
and the task’s second-best minimum completion time. The
method gives precedence to those tasks with high sufferage
value. Sufferage II and Sufferage X are refined version of
Sufferage heuristic. These heuristics no longer use as crite-
rion the second most favorable processor but consider the
first machine inducing a significant increase in the comple-
tion time [8]. High Standard Deviation First [26] considers
the standard deviation of the expected execution time of a
task as a selection criterion. The standard deviation of the
execution time of a task represents the amount variation in
task execution time on different machines. The task with the
highest standard deviation must be assigned first for map-
ping. Moreover, the second part of the sufferage heuristic
is applied. A set of 20 fast greedy heuristics are provided
in [22]. These heuristics are founded on the idea of defining
an order of task execution. For that purpose, the authors pro-
posed task priority graph, which is constructed based on a
Hasse diagram that defines a partial order between the tasks
based on their Expected Time to Compute (ETC) values.
The authors [12] reported three fast greedy heuristics. The
heuristics are based on the list scheduling principle. First, a
list of tasks is constructed based on a predefined priority. In
the mapping step, the tasks are assigned to the machine that
minimizes their completion time as well as their execution
time. A score function is used to balance these objectives.
The rational is to minimize the workload of machines.
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Multiple works explored the use of metaheuristics for the
task mapping problem in HPCS. In [37], a memetic algo-
rithm is proposed. The memetic algorithm is combined with
a list scheduling algorithm and several local search heuris-
tics to find high-quality solutions and reduce execution time.
A highly competitive CGA is presented in [38]. The CGA is
a kind of memetic algorithm with structured population to
simultaneously optimize completion time and flowtime (the
sum of the tasks’ finishing times). Authors in [27] report se-
quential and parallel evolutionary algorithms. The parallel
evolutionary algorithms improves the quality of results and
reduces the execution times therefore permitting to scale the
problem.

3 Mapping of independent tasks problem

The problem we are investigating arises quite frequently in
parameter sweep applications, such as the Monte-Carlo sim-
ulations [7]. In such a context, many tasks with almost no
interdependencies are generated and submitted to the com-
putational grid to be efficiently assigned. Efficiency means
to allocate tasks as fast as possible and to optimize some cri-
terion, such as the makespan or the flowtime. Makespan is
among the most important optimization criterion of a grid
system. Indeed, it is a measure of the grid system’s produc-
tivity (throughput).

Task mapping is often treated as a single objective opti-
mization problem, in which the makespan is minimized. We
consider a heterogeneous computing system composed of a
set M = {m1,m2, . . . ,mm} of m machines composing the
computing system. We consider a set T = {t1, t2, . . . , tn} of
n independent tasks to be executed onto the system. Each
task has to be processed completely on a single machine.
The computational model we consider is the ETC [4], in
which, it is assumed that we dispose of estimations or pre-
dictions of the computational load of each task, the com-
puting capacity of each resource, and an estimation of the
prior load of the resources. ETC allows to represent the het-
erogeneity among tasks and machines. We assume that the
ETC matrix of size n×m is known (assumption that is made
in the literature [4, 15, 18, 19]). Each position ETC[ti][mj ]
in the matrix indicates the expected time to compute task ti
on machine mj .

The scheduling problem is formulated as follows. For-
mally, given the heterogeneous computing systems com-
posed of the set of m machines, and the set of t tasks.
Any task is mapped without preemption from time σ(ti)

on machine mj , with an execution time ETC[ti][mj ].
The task ti completes at time CTi in schedule S equals
to σ(ti) + ETC[ti][mj ]. The objective is to minimize
the maximum completion time (Cmax = max(CTi)) or
makespan.

The instance definition of the problem is as follows:

– n: the number of independent (user/application) tasks to
be mapped.

– m: the number of heterogeneous machine candidates to
participate in the planning.

– The workload of each task (in millions of instructions).
– The computing capacity of each machine (in mips).
– readym: Ready time indicating when machine m will have

finished the previously assigned tasks.
– The Expected Time to Compute (ETC) matrix.

The two benchmark instances generated for this analy-
sis represent different classes of ETC matrices. The classifi-
cation is based on three parameters: (a) task heterogeneity,
(b) machine heterogeneity, and (c) consistency [2]. In this
work, instances are labelled as g_x_yyzz where:

g stands for Gamma distribution (used for generating the
matrix).

x stands for the type of consistency (c for consistent, i for
inconsistent, and s for semi-consistent). An ETC matrix
is considered consistent if a machine mi executes a task t

faster than machine mj , then mi executes all tasks faster
than mj . Inconsistency means that a machine is faster for
some tasks and slower for some others. An ETC matrix is
considered semi-consistent if it contains a consistent sub-
matrix.

yy indicates the heterogeneity of the tasks (hi means high,
and lo means low).

zz indicates the heterogeneity of the resources (hi means
high, and lo means low).

4 Sensitivity analysis of a cellular genetic algorithm

We performed, in a previous work [28], a SA on a parallel
asynchronous CGA designed to map independent tasks on
a distributed system, called PA-CGA [30], to look for the
parameters of the algorithm that influence the most its accu-
racy for the given problem. This section briefly presents the
results from these papers.

The chosen SA method is based on decomposing the vari-
ance of the output, as introduced by Saltelli et al. [34]. The
exact implementation used is an extension to the Fourier
Amplitude Sensitivity Test [35], called Fast99. Fast99 [35]
allows the computation of first order effects and interactions
for each parameter. Parameters interaction occurs when the
effect of the parameters on the output is not a sum of their
linear effects.

4.1 Parallel asynchronous cellular GA

The Genetic Algorithm (GA) analyzed is a parallel asyn-
chronous CGA [30], called PA-CGA. PA-CGA is based on
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the study reported in [29]. CGAs [1] are a kind of GA with
a structured population in which individuals are spread in
a two dimensional toroidal mesh and individuals are only
allowed to interact with their neighbors (the set of individu-
als located next to the current individual in the mesh, as per
some given metric). The algorithm iteratively considers as
current each individual in the mesh. Consequently, parents
are chosen among the neighbors with a given criterion. Fol-
lowing the crossover and mutation operations, the algorithm
computes the fitness value of the new offspring individual
(or individuals), and inserts the offspring (or one of them)
in place of the current individual in the population follow-
ing a given replacement policy. The cycle is repeated until
termination conditions are fulfilled.

The PA-CGA algorithm is designed for multi-core pro-
cessors, and therefore parallelized with threads. The popula-
tion is partitioned into a number of contiguous blocks with
a similar number of individuals (Fig. 1). Each block con-
tains pop_size/#threads individuals, where #threads repre-
sents the number of concurrent threads executed. To pre-
serve the exploration characteristics of the CGA, communi-
cation between individuals of different blocks is made possi-
ble. Therefore, neighborhoods may include individuals from
other population blocks. Overlapping blocks allow an indi-
vidual’s genetic information to cross block boundaries. The
different threads evolve their block independently and do not
wait for the other threads to complete their generation (the
evolution of all the individuals in the thread’s block) before
pursuing their own evolution. Therefore, if a breeding loop
takes longer for an individual of a given thread, the individ-
uals evolved by the other threads may go through more gen-
erations. The combination of a concurrent execution model
with the neighborhoods crossing block boundaries leads to
concurrent access to shared memory. To ensure safe concur-
rent memory access, we synchronize access to individuals
with a POSIX [17] read-write lock. This high-level mecha-
nism allows concurrent reads from different threads, but not

Fig. 1 Partition of an 8 × 8 population over 4 threads

concurrent reads with writes, nor concurrent writes. In the
two latter cases, the operations are serialized.

Algorithm 1 Pseudo-code for one generation of an individ-
ual with PA-CGA

1: while there is time left do
2: for all ind in a thread’s block do
3: neigh := get_neighborhood(ind);
4: parents := select(neigh);
5: offspring := crossover(p_crossover,parents);
6: mutate(p_mut, i_mut, off spring);
7: HighestToLowerLoaded(H2LL)

(p_ser, iter,offspring);
8: evaluate(offspring);
9: replace(ind,offspring);

10: end for
11: end while

The PA-CGA (Algorithm 1) introduces a local search op-
erator, H2LL (Algorithm 2). The operator is designed for the
scheduling problem considered in this paper. The H2LL op-
erator moves a randomly chosen task from the most loaded
machine (a machine’s load is the total of the tasks comple-
tion times assigned to it) to a selected candidate machine
among the N least loaded ones. A candidate machine is se-
lected if the new completion time, with the addition of the
task moved, is the smallest of all the candidate machines.
The move operation is performed several times (a parameter
of the local search).

Algorithm 2 Pseudo-code for H2LL
1: for all iterations do
2: sort machines on ascending completion time;
3: task := random task of the last machine in machines;
4: best_score := CT[last machines]; {makespan}
5: for all mac in N first machines do
6: new_score := CT[mac] + ETC[mac][task];
7: if new_score < best_score then
8: best_mac := mac;
9: best_score := new_score;

10: end if
11: end for
12: move task to best_mac, if any;
13: end for

The following parameters have been used in the anal-
ysis of PA-CGA. The population is initialized randomly,
except for one individual obtained with the Min-Min heuris-
tic [16]. The selection operator used is binary tourna-
ment. The crossover operator used is the one-point (opx)
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Fig. 2 Sensitivity analysis, g_c_hihi instance

crossover. The mutation operator moves one randomly cho-
sen task to a randomly chosen machine. The neighborhood
shape used is Linear 5 (L5), also called Von Neumann neigh-
borhood, which is composed of the four nearest individu-
als (measured in Manhattan distance), plus the individual
evolved. The replacement strategy is “replace if better”.

4.2 Results of the sensitivity analysis

In the present study, we identified the main parameters (fac-
tors) of the algorithm to quantify their actual influence on
the performance through the SA technique. Figure 2 depicts,
for each of these factors, the linear and non-linear effects
on the output (makespan), on problem instances with high
task and resource heterogeneity, that we consider represen-
tative. The quality of the solution is defined as the average
makespan over four independent runs. Performing a higher
number of independent runs is extremely costly because of
the high number of configurations the SA requires to test,
up to 8,000. The algorithm is run for 100 generations on
instances of high task and resource heterogeneity. These in-
stances are composed of 512 tasks and 16 machines. The
SA was performed for other problem instances too, and we
obtained similar results.

The SA clearly shows that the local search parameters
and notably the maximum number of iterations influence
the output most. The number of iterations plays a role twice
as big as the second most influential parameter: the local
search rate. The chosen SA method is quantitative, there-
fore it allows such comparisons, whereas qualitative meth-
ods can only indicate the order of importance. The result of
the analysis is consistent with related works in the literature
that acknowledge the importance of local search in meta-
heuristics [25].

The results also expose that the other parameters play a
limited role for the considered problem instances, i.e., pop-
ulation size, mutation rate and mutation iterations as well as

the number of threads. Such a finding is also beneficial be-
cause variables that have a positive impact on the other as-
pects of the algorithm, such as the algorithm’s runtime can
be selected without impacting the quality of the solutions.
Indeed, the proposed algorithm was designed to be run for
a limited period of time (wall clock); therefore choosing a
smaller population size and a higher number of threads will
allow the computation of more generations.

5 A two-phase heuristic

The previous section outlined the findings of the SA per-
formed in [28]. The SA clearly showed that the specifically
designed local search operator, H2LL, was very important
to the quality of the mappings found. More precisely, SA
also found that the number of iterations for which to per-
form this local search was of prime importance. The pro-
posed Two-phase heuristic is useful because it improves on
a well-known heuristic, Min-Min [16], which has been re-
cently applied to the problem of energy-efficient mapping
of tasks [20, 21, 32].

Energy efficiency is an important issue in modern-day
distributed computing platforms such as grid mainly due to
the required electrical power to run these systems and to
cool them. This results in extremely large electricity bills,
reduced system reliability and environmental issues due to
carbon emissions.

Definition 1 (Energy Consumption) The total energy, E,
spent by a schedule is defined by E = ∑machines

i (Pi · CTi),
where CTi is the completion time for machine i, and Pi is
the power of that machine.

Definition 1 shows the relation between the completion
time of machines and energy. This definition suggests that
less the time spent by the system to execute the tasks, less
the total energy used by the system if the power of machines
does not increase. The basic strategy is to attempt to map
the tasks into the fastest machines to shorten the comple-
tion time and thereby minimize energy usage. Therefore, im-
proving the performance of Min-Min algorithm should lead
to improvements in their derivative applications to energy
efficient mapping.

5.1 2PH Algorithm description

The algorithm proposed, called 2PH, is simply the execution
of Min-Min, followed by the local search operator H2LL,
originally designed for PA-CGA.

The number of iterations for the local search in H2LL is
increased from 5 to 30 and 100. The increase is motivated by
the SA results, which indicated that this parameter highly in-
fluences the quality of the mappings. Additionally, the local
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Table 1 Settings for the comparison with other algorithms in the lit-
erature

Parameter Value

Instance size 128 tasks × 16 machines

Instance classes 12

Instances per class 30

Runs per instance 10

PA-CGA runtime 3 seconds

PA-CGA population 8 × 8

PA-CGA threads 1

PA-CGA mutation probability 1.0

PA-CGA mutation iteration 1

PA-CGA crossover probability 1.0

PA-CGA search iterations 5

2PH search iterations 30, 100

search is performed only once for 2PH. In contrast, PA-CGA
executes H2LL for each individual in the population at each
generation. Therefore, a greater number of iterations can be
afforded by 2PH.

Although the 2PH algorithm is simple, there is a priori
evidence that it should perform well. The next section de-
scribes how 2PH compares to other algorithms.

5.2 Configuration for simulations

The 2PH algorithm is first compared to Min-Min, then to
PA-CGA. Wall-clock times for the 2PH and the PA-CGA
implementations are useful to measure the performance of
the algorithms. Moreover, mapping independent tasks is of-
ten a time-critical activity.

Our experiments were performed on an Intel Core 2 Duo
CPU P8800 processor at 2.66 GHz running under Linux op-
erating system.

Table 1 summarizes the different points of comparison
for the evaluation of 2PH. A total of 360 instances were used
in the comparison (30 instances of each class). PA-CGA was
run for 3 seconds, wall-clock time, using 1 thread. The other
parameters have identical values to those chosen for the SA.
In our previous work [31], the algorithm showed similar per-
formance for different run times ranging from 1 to 5 sec-
onds. These times are far from those used in other previous
works [30], where 90 seconds were used as time limit. How-
ever, PA-CGA with 1 thread completes over 100,000 evalu-
ations per second of runtime, which is sufficient for the algo-
rithm to converge to good solutions. It should be noted that
PA-CGA initializes its population randomly (uniform distri-
bution) except for one individual, which is the result of the
Min-Min heuristic. Moreover, the SA shows that the num-
ber of threads does not play the biggest role in the search for
good solutions.

As mentioned earlier, two versions of 2PH with 30 and
100 iterations were chosen instead of 5 for the PA-CGA.
2PH with 30 iterations only took 3 milliseconds to complete
for these instances.

5.3 Simulation results

This section presents the simulation results of the different
algorithms: (a) the Min-Min heuristic, (b) 2PH with 30 and
100 iterations, and (c) the PA-CGA. The results are shown
as box-and-whisker plots. The boxplots are generated with
the median of the makespan values obtained after the 10
independent runs for each of the 30 different instances of
every problem class. The boxplots show the minimum and
maximum values, as well as the first and third quartiles and
the median value. The boxes with overlapping notches mean
that there are not statistically significant differences (with
95 % confidence level) between the algorithms they repre-
sent.

Overall, the 2PH improves the quality of the resource al-
location significantly over Min-Min, and provides results of
similar quality to PA-CGA, requiring only 3 milliseconds to
achieve them.

The results for the consistent, semi-consistent, and incon-
sistent instances are shown in Figs. 3, 4, and 5, respectively.
The algorithms showed similar performance for all the prob-
lem classes. We see that there are not significant differences
between 2PH with 30 and 100 iterations for any of the four
problems considered with different resource and task het-
erogeneities. PA-CGA is the best algorithm for low task and
resources heterogeneities problems, and Min-Min is always
the worst one for every instance, with the exception of the
instances with low task and high resources heterogeneities,
for which all algorithms provide similar results. All the men-
tioned differences are statistically significant with 95 % con-
fidence.

To evaluate the overall performance of the compared al-
gorithms on all the problems, we used the Friedman statistic
test to perform a ranking of the algorithms according to the
solutions found. The Friedman test assigns small ranking
values to those algorithms providing the highest solutions.
Therefore, as the objective is minimization, those algorithms
with highest rank value are the best performing ones. We
computed a p-value of 1.955e–10 with the Friedman test,
so there are statistically significant differences with 95 %
confidence on the performance of the algorithms for all the
problems considered in this work.

The rank is shown in Table 2. We can see that the rank-
ing supports our conclusions on the results. PA-CGA is the
best performing algorithm, followed by the two 2PH ver-
sions (very close from each other). However, the 2PH algo-
rithms find the solution about 1,000 times faster than the
PA-CGA, because 2PH runs for a few milliseconds versus
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Fig. 3 Makespan for the consistent instances

Fig. 4 Makespan for the semi-consistent instances



428 Cluster Comput (2013) 16:421–433

Fig. 5 Makespan for the inconsistent instances

Table 2 Rank of the algorithms (higher rank is better)

Algorithm Rank

PA-CGA 3.99

2PH-100 2.725

2PH-30 2.21

Min-Min 1.079

the 3 seconds of the PA-CGA. This makes the 2PH algo-
rithm the best option for large scale systems. Finally, Min-
Min is clearly the worst algorithm of the compared ones.

6 Energy-efficiency

We demonstrate in this section that the 2PH heuristic finds
energy-efficient mappings, and we later introduce a novel
approach to save even more energy in large computing sys-
tems thanks to the use of millicomputers.

6.1 Energy-efficiency of the 2PH Heuristic

The main goal of 2PH algorithm is the minimization of
makespan. It finds solutions to a single objective optimiza-
tion problem. Although energy minimization is important,

it is not considered as an additional objective function in
the optimization process. The reason is that the problem
becomes more complex, requiring to find a diversified set
of non-dominated solutions. For this reason, multi-objective
problems are normally solved with population based heuris-
tics, that are able to generate enough diversity [10, 11]. Ad-
ditionally, a multi-objective formulation would need the in-
teraction of a decision maker to choose the most appropriate
solution among the provided ones.

The question is then: how energy-efficient are the map-
pings found by 2PH. Sections 1 and 5 mentioned that reduc-
ing makespan also reduces the total energy spent with the
mappings. This section aims to make this claim more pre-
cise.

The 2PH heuristic operates on an incremental state [33]
representation (Min-Min), followed a local search (H2LL)
that operates on a full state representation [33]. H2LL im-
proves the mapping found by Min-Min. The local search
can be run for an arbitrary number of iterations (depend-
ing on the runtime available to its execution). H2LL can
also improve any random schedule. Therefore, the energy-
efficiency of the mapping found depends on the behavior of
H2LL, and not only on Min-Min (although the quality of the
Min-Min mappings are well-known [4]).
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After the schedule’s execution, the machines are con-
sidered available to other jobs, and their energy utilization
(even if idle) is not attributed to the completed schedule.

Definition 2 (Successful Transition) A transition tr , is a
successful task move, such that C′

max < Cmax, where C′
max is

the actual makespan after the task movement or transition.

Theorem 1 (Completion time convergence under) H2LL
Let CTi be the completion time of the machine i before
a transition. Let Cmax = max(CTi), the makespan of map-
ping S. Let tr be a H2LL successful transition from one
mapping to another. Then ∀i, limtr→∞ CTi = Cmax.

Proof H2LL moves tasks from the most loaded machine to
one of N less loaded machines. Let CT ′

i its actual comple-
tion time after a transition. Let Cmax and C′

max. By Defi-
nition 2, C′

max < Cmax. ∀t,∀mi , either (a) CT ′
i > CTi , or

(b) CT ′
i = CTi , or (c) CT ′

i < CTi . In (a), the machine
mi received a task moved from the most loaded machine.
In (b), mi is unchanged. In (c), the machine mi was the
most loaded and lost a task. Also, ∀mi , CT ′

i ≤ C′
max, by

definition of makespan. Therefore, in (a) and (b), CT ′
i in-

creases or remains identical, but C′
max decreases, therefore

limtr→∞ CT ′
i = C′

max. In (c), although CT ′
i decreases, C′

max
also decreases, therefore ∀mi, limtr→∞ CT ′

i = C′
max. �

Lemma 1 (H2LL reduces the energy of a balanced sched-
ule Let S a balanced schedule (that tries to minimized
makespan), where each machine’s load is approximately
equal. Let E the energy of the schedule S before H2LL, and
E′ the energy of the schedule after H2LL. Then E′ ≤ E.

Proof Applying Theorem 1 to the total energy, Definition 1
gives limtr→∞ E = (

∑machines
i Pi) · Cmax. H2LL reduces

or maintains makespan, and Pi are constants, therefore
E′ ≤ E. �

Lemma 1 shows that minimizing makespan also reduces
the total energy. However, there can be multiple mappings
with identical makespan, for which a different assignment
of tasks to machines yields a lower total energy. This is due
to the heterogeneity of the power of the machines. In this
case, differences in total energy between such mappings are
low.

In practice, the possible gain in total energy between such
mappings is small, because of (a) the relationship between
power and performance of a machine, and (b) Theorem 1.
Indeed, as all CTi are of similar value, there is little avail-
able time between the completion time of a machine and
makespan (this quantity is sometimes called slack). Because
a machine with much lower power than another would also
perform much worse, a task could not be moved from the

high power machine to the low power machine without im-
pacting makespan (the optimization objective function).

Lemma 1 considers only fairly balanced mappings, as
found when minimizing makespan. In an heterogeneous
cluster, loading machines that are more energy-efficient
yields a low energy consumption. However, this is the oppo-
site of makespan minimization. Inversely, balancing the load
across all the machines in the cluster, including energy in-
efficient machines, reduces makespan but may increase en-
ergy. Using heterogeneity to lower energy is explored in the
following section.

6.2 Improving energy-efficiency with millicomputing

Lemma 1 suggests how to reduce the total energy with-
out increasing makespan. In order to reduce E, while pur-
suing the makespan objective, makespan must be reduced
more than

∑
i Pi increases. Indeed, reducing both power

and makespan is not realistic, as it means obtaining bet-
ter performance from lower power machines which solves
the problem of energy-efficiency altogether. Given the tran-
sitions H2LL makes on the mapping (load-balancing), one
approach is to increase the heterogeneity of the machines.

However, replacing an average machine (in terms of per-
formance and power) with a much lower or higher power
machine will not necessarily achieve the desired results. Re-
placing a machine with a much lower power machine may
make makespan worse. Replacing a machine with a much
higher power machine may worsen energy.

However, a solution is to add low power machines to the
initial cluster of machines. Symmetrically, another solution
is to add much higher power machines (with higher perfor-
mance), but that is not realistic, because such machines are
not available (the reason for parallel machines). The H2LL
step in the 2PH heuristic balances the load of machines in
the initial cluster with the new, low power, additional ma-
chines. This contributes to the makespan objective, and may
not increase the

∑
i Pi significantly, depending on the power

specifications of the added machines. It is not necessary to
add the low power machine at the Min-Min step of 2PH.
Because it would not take advantage of the additional low
power machines. Indeed, Min-Min incrementally builds the
mapping by repeatedly assigning the task to the machine
for which the completion time is minimum. The low per-
formance of the low power machines would prevent them
from being assigned any task by Min-Min.

Are such low power machines readily available? One
source for heterogeneity is the alternative computer called
millicomputer [9]. It originates from the rising energy costs
in the data center, and suggests to replace the components re-
sponsible for the majority of the energy costs with existing,
more energy-efficient and less heat producing equivalents.
More precisely, the proposal is to turn to the technology in



430 Cluster Comput (2013) 16:421–433

mobile phones, smart-phones and other mobile computing
devices, for solutions to the increasing cost of energy in data
centers.

Mobile computing devices are by definition required to
successfully address this issue, and it is fair to say they have
partly succeeded. The mobile device industry has designed
components, including processors, that can consume mil-
liwatts (hence the name millicomputer), in contrast to the
hundreds of watts of traditional servers. Furthermore, these
devices do not require cooling. The processors suitable for a
millicomputer cannot deliver a performance comparable to
that of a typical data center processor. Therefore, it is sug-
gested to assemble several of these energy efficient devices
into a small cluster: milliclusters [9].

As an example, a millicomputer based on the ARM A8
Cortex processor (TSMC 65GP) is estimated 15× slower
than a Intel 5400 series Xeon processor. This performance
factor is derived from the benchmark results for the WebKit
Sunspider Javascript test version 0.9.1 [24] for Intel dual
core machines and a smart-phones equipped with the ARM
A8 or equivalent. The Sunspider benchmark accounts for the
performance of the processor but also the operating system

and web browser. The performance ratio needs to be approx-
imated because exact Sunspider benchmark results are not
available for the 4 processor types used in the comparison
referenced. Therefore, this ratio must be derived from the
available benchmark data, where the frequency of the In-
tel processor is higher than the Intel 5400 series, which is
our reference for the power specifications. Also, the bench-

Table 3 Settings for the millicomputing simulations

Parameter Value

Instance class g_c_hilo

Instances per class 30

Runs per instance 30

Tasks per instance 128, 512

Cluster machines per instance 16

Power for cluster machine 200–245 W

Millicomputers per instance 0, 8, 16, 32

Power for millicomputer 5 W

Performance factor for millicomputer 15

2PH search iterations 100

Fig. 6 Millicomputing impact for the consistent instances
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mark results for the A8 processor is based on published re-
sults from devices equipped with similar processors, such
as Qualcomm’s Snapdragon [3], Iphone 3 GS (which under-
clocks the ARM A8) and HTC Desire [6]. The power val-
ues are taken from Intel and ARM specifications documents.
The ARM A8 processor consumes about 1 W, whereas the
Xeon quad-core processor consumes about 40 W, at nomi-
nal activity. More recent ARM A9 MP processors are also
available.

To illustrate the impact of millicomputers to a cluster,
simulations are used to evaluate the makespan and energy
when additional millicomputers are added to a cluster.

The settings for the simulations are presented in Table 3.
Two instance sizes are used, 128 and 512 tasks. The clus-
ter is composed of 16 machines. The cluster is considered
of low heterogeneity. The power ranges from 200 to 245 W,
linearly, where each increment is 3 W. The fastest machine
uses the most power. A total of 8, 16, 32 millicomputers are
added to the cluster. All millicomputers are considered iden-
tical. The millicomputers are considered 15 times slower
than the slowest machine. The power for a millicomputer
is 5 W.

Figure 6 presents the simulation results. The boxplots
show the makespan and energy for the mappings found by
2PH. The boxplots show the results for the 30 instances. For
each instance, the median values of the 30 independent runs
is used. The x-axis indicates the number of millicomputers
added. The first boxplot shows the original cluster results,
without any additional millicomputer.

Two sets of instances are used, 128 tasks and 512 tasks
are mapped to the cluster of 16 machines. Figures 6a, and 6b
present the simulation results for instance sizes of 128 tasks.
We can see very little impact of the millicomputers. This is
due to the small number of tasks and the low performance
of the millicomputers. If the completion time of a cluster
machine is relatively low, then moving a task to a millicom-
puter often increases makespan. Indeed, when increasing the
number of tasks, we can see a significant impact, Figs. 6c,
and 6d, on both makespan and energy.

In practice, these low power machines would not neces-
sarily be part of a cluster permanently, but placed on standby
and added to the cluster on-demand, to improve both the
makespan and the total energy consumption for the tasks ex-
ecution.

7 Conclusions

This paper exploits the results of the sensitivity analysis of
a parallel asynchronous CGA, with local search. The anal-
ysis led to the design of a simple two-phase heuristic for
the mapping of independent tasks. The new 2PH heuristic
was compared against two algorithms from the literature,

(a) the PA-CGA, and (b) the Min-Min heuristic. In most
problem instances, 2PH found equivalent mappings in much
less time (milliseconds versus seconds) than the CGA. The
proposed heuristic also significantly improves the mappings
found by the Min-Min heuristic, with little additional com-
putation cost. Moreover, this computational cost scales well
with the problem size.

The paper presented a proof that the new heuristic also
addresses the problem of energy-efficient mapping of in-
dependent tasks. Moreover, the convergence study for the
heuristic provided insight which lead to a new approach to
energy-efficiency in a cluster, with the introduction of milli-
computing.

Future work includes the extensive experimental valida-
tion and analysis of the millicomputing alternative. We also
will investigate on the performance of the algorithms for
bigger problem instances.

8 Acronyms

SA Sensitivity Analysis
CGA Cellular Genetic Algorithm
PA-CGA Parallel Asynchronous CGA
2PH Two Phase Heuristic
HPCS High Performance Computing Systems
ETC Expected Time to Compute
GA Genetic Algorithm
L5 Linear 5
H2LL Highest To Lower Loaded
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