
Cluster Comput (2012) 15:201–210
DOI 10.1007/s10586-011-0192-5

A new approach to the job scheduling problem in computational
grids

Javad Akbari Torkestani

Received: 25 July 2011 / Accepted: 16 November 2011 / Published online: 10 December 2011
© Springer Science+Business Media, LLC 2011

Abstract Job scheduling is one of the most challenging
issues in Grid resource management that strongly affects
the performance of the whole Grid environment. The ma-
jor drawback of the existing Grid scheduling algorithms is
that they are unable to adapt with the dynamicity of the re-
sources and the network conditions. Furthermore, the net-
work model that is used for resource information aggre-
gation in most scheduling methods is centralized or semi-
centralized. Therefore, these methods do not scale well as
Grid size grows and do not perform well as the environmen-
tal conditions change with time. This paper proposes a learn-
ing automata-based job scheduling algorithm for Grids. In
this method, the workload that is placed on each Grid node
is proportional to its computational capacity and varies with
time according to the Grid constraints. The performance
of the proposed algorithm is evaluated through conducting
several simulation experiments under different Grid scenar-
ios. The obtained results are compared with those of several
existing methods. Numerical results confirm the superior-
ity of the proposed algorithm over the others in terms of
makespan, flowtime, and load balancing.

Keywords Grid · Job scheduling problem · Resource
allocation · Learning automata

1 Introduction

Grids are large scale collections of heterogeneous and au-
tonomous systems from multiple administrative domains ge-
ographically distributed and interconnected by the wide area

J. Akbari Torkestani (�)
Young Researchers Club, Arak Branch, Islamic Azad University,
Arak, Iran
e-mail: j-akbari@iau-arak.ac.ir

network. Grid implies to an extensive concept that is often
referred to as the parallel system of the 1970s, the large-
scale cluster system of the 1980s, and the distributed system
of the 1990s. Grid technology is an emerging paradigm for
large scale distributed computing. Scientific problems are
becoming more and more complicated and hard to solve.
These complex problems need a huge amount of computing
resources that cannot be sufficiently provided in distributed
or parallel systems. The computational Grid is a promising
approach that exploits the synergy between a set of inter-
connected Grid nodes to reach a common goal to solve the
massive computational problems [23, 25]. Grid resources
can be freely added or withdrawn at any time according to
the owners’ discretion. Performance of the Grid nodes and
their load frequently change with time. Grids allow the se-
lection, aggregation, and sharing of the software and hard-
ware resources of different computers in a distributed fash-
ion. These systems provide pervasive, inexpensive, and re-
liable access to the high end computational capabilities. Al-
though the Grid technology is still in the early stage of the
research and development, due to the low cost of computing
resources and recent advances in computing and wide-area
networking, it has been extensively grown and moved from
an obscure research subject to a practical, highly popular
technology during the last decade [1–4].

Generally, the Grid job scheduling is defined as the pro-
cess of decomposition of a large problem into a number of
subtasks, and allocation of the subtasks to available com-
puting resources. The efficiency of a Grid environment is
strongly dependent on the job scheduling technique it fol-
lows. Different forms of the job scheduling problem are
computationally hard to solve. It has been shown that the
finding of an optimal solution to the job scheduling prob-
lem in heterogeneous Grid systems is known to be NP-hard
[26] in general. Due to the hardness of the job scheduling

mailto:j-akbari@iau-arak.ac.ir

202 Cluster Comput (2012) 15:201–210

problem and the dynamicity and extensiveness of the Grid
environments, there is an urgent need for an adaptive, effi-
cient and cost effective algorithm to schedule the Grid jobs.
A host of scheduling techniques have been already presented
and implemented in different types of Grid [13, 24].

Due to the NP-hardness of the Grid job scheduling prob-
lem, the exact solutions can not be applied to the large prob-
lems that often arise under real Grid scenarios. Therefore,
the approximation methods that suffice to find a near opti-
mal solution are more promising approaches. Heuristics and
meta-heuristics have shown to be useful approaches for solv-
ing a wide variety of hard-to-solve combinatorial and multi-
objective optimization problems. Xhafa and Abraham [5]
give a survey on computational models and heuristic meth-
ods for Grid scheduling problems. Population-based genetic
algorithms (GA) [9–12, 18], particle swarm optimization
(PSO) methods [7], ant colony optimization (ACO) tech-
niques [14–16], Tabu Search [17, 18], simulated annealing
(SA) algorithms [19, 20], Memetic Algorithms (MA) [21,
22] are several approaches that have been effectively used to
solve the Grid job scheduling problem.

From the literature it is known that the existing job
scheduling algorithms can not efficiently adapt to the dy-
namicity of the resources and environment conditions. Such
scheduling methods make a single schedule for the entire
workflow in advance, and then the tasks are conducted ac-
cording to this schedule. This significantly degrades the Grid
performance if the resource availability or the environmen-
tal conditions changes over time. In this paper, a learning
automata (LA)-based algorithm is proposed to solve the job
scheduling problem in Grid environments. In this method,
two LA are associated with each scheduler. One is for
scheduling the user submissions and another one for allocat-
ing the workload to the Grid computational resources. In the
proposed learning automata-based job scheduling algorithm
called LAJS, the workload that is assigned to each Grid node
is proportional to its computational capacity, and each user
client is permitted to submit its works whenever it needs.
The proposed method is expected to shorten the execution
time and to properly distribute the workload among the Grid
resources. As the proposed algorithm proceeds, each user is
assigned the portion of the Grid capacity as much as it needs.
To show the performance of the proposed scheduling algo-
rithm, several simulation experiments are conducted under
several Grid scenarios. The results of the proposed algorithm
are compared with those of FPSO [7] and GJS [10]. Simu-
lation results show that the proposed algorithm outperforms
the other methods in terms of makespan, flowtime, and load
balancing.

The rest of the paper is organized as follows. Literature
is reviewed in the next section. Section 3 gives an overview
of the learning automata. In Sect. 4, a learning automata-
based algorithm is proposed for job scheduling in Grid en-

vironments. In Sect. 5, the performance of the proposed al-
gorithm is evaluated through simulation experiments, and
Sect. 6 concludes the paper. List of acronyms used in this
paper is provided in Table 2 (Appendix).

2 Related work

Martino and Mililotti [9] proposed genetic algorithm for
finding a sub optimal solution to the job scheduling prob-
lem in Grid environments. In [10], Gao et al. presented two
genetic programming methods for scheduling the jobs in a
computational Grid, a single service method and a multi-
ple service method. The former one estimates the comple-
tion time of a job when Grid provides only one type of ser-
vice, and the latter one predicts the completion time of a
job in a multiple service Grid. The proposed methods are
developed at both system and application levels. At applica-
tion level, an adaptive genetic-based scheduling algorithm is
used to optimally assign the jobs to the Grid nodes in such a
way that the average completion time of all the jobs is min-
imized. Carretero and Xhafa [11] used genetic algorithms
for job scheduling on computational Grids to optimize the
makespan and the total flowtime. The aim of this work is to
show the power of genetic algorithm in the design of effec-
tive schedulers to assign a large number of jobs originated
from large scale applications to Grid resources.

De Mello et al. [12] presented an improved version of the
Route load balancing algorithm so called RouteGA (Route
with Genetic Algorithm support). RouteGA schedules the
tasks of the parallel applications considering computer
neighborhoods. Although the results show that RouteGA
performs well in large environments, there are several cases
where the neighbors have neither enough computational ca-
pacity nor communication capability. In such cases, Route
algorithm transmigrates the tasks until they become stabled
in a Grid area having enough resources. The migration tech-
nique is very time consuming, and so reduces the Grid per-
formance. To shorten the stabilization time, RouteGA [12]
records the historical information of the parallel applica-
tion behavior, computer capacities and load. Then, RouteGA
uses this information to setting the parameters of a genetic
algorithm that is responsible for optimizing the task allo-
cation. Xhafa et al. [22] proposed two implementations of
cellular MAs for job scheduling in Grid systems when both
makespan and flowtime are simultaneously minimized. MA
is a relatively new class of population-based heuristic meth-
ods in which the concepts of genetic algorithm (evolutionary
search) and local search are combined [5]. Contrary to ge-
netic and memteic algorithms that use unstructured popula-
tion, cellular memetic algorithms support a structured pop-
ulation. The authors argue that the proposed algorithms are
able to better control the tradeoff between the exploitation
and exploration of the search space.

Cluster Comput (2012) 15:201–210 203

Bandieramonte et al. [14] proposed an ant colony-based
job scheduling algorithm for computational Grids. The pro-
posed algorithm is based on a different interpretation of
pheromone trails. Chang et al. [15] designed a balanced
ACO-based (BACO) job scheduling algorithm to appropri-
ately assign the jobs to the Grid resources. BACO takes into
consideration the resource status and job size to find the op-
timal scheduling. In this method, each job is associated with
an ant, and ants are responsible for finding the available re-
sources. To balance the load on the Grid resources, the status
of the selected resource is modified by the local pheromone
update function after job assignment, and the status of each
resource for all jobs is modified by global pheromone up-
date function after the completion of a job. In [16], Kant
et al. presented an ant-based framework for job scheduling
in Grid environments. Combining the ACO theory and dy-
namic information technique, this method aims at optimiz-
ing the job scheduling strategy and improving the resource
utilization rate.

Cheng et al. [6] proposed the idea of applying the fuzzy
set to improve the security and fault tolerance of the job
scheduling process in Grid environments under failure-
prone and risky conditions. They presented a fuzzy logic-
based self adaptive replication scheduling algorithm to de-
cide on the replication number of a user job. The authors
claim that their method improves the performance of the
Grid in terms of makespan, Grid utilization, and average
waiting time. In [7], Liu et al. came up with the idea of com-
bining the fuzzy logic and particle swarm optimization to
find a near optimal solution of the job scheduling problem
in Grid environments. In this method, the fuzzy matrices are
used to represent the position and velocity of the particles in
PSO [8]. Extending the particle representation from the real
vectors to fuzzy matrices provides an efficient and dynamic
mapping between the job scheduling problem and the parti-
cle. By this, the proposed fuzzy-based PSO method is able
to dynamically generate an optimal schedule by which the
completion of the tasks within a minimum period of time
and efficient resource utilization are guaranteed.

3 Learning automata theory

A learning automaton [27, 28] is an adaptive decision-
making unit that improves its performance by learning how
to choose the optimal action from a finite set of allowed ac-
tions through repeated interactions with a random environ-
ment. The action is chosen at random based on a probabil-
ity distribution kept over the action-set and at each instant
the given action is served as the input to the random envi-
ronment. The environment responds the taken action in turn
with a reinforcement signal. The action probability vector is
updated based on the reinforcement feedback from the envi-
ronment. The objective of a learning automaton is to find the

optimal action from the action-set so that the average penalty
received from the environment is minimized. LA have been
found to be useful in systems where incomplete information
about the environment exists. LA are also proved to perform
well in complex, dynamic and random environments with a
large amount of uncertainties.

The environment can be described by a triple E =
{α,β, c}, where α = {α1, α2, . . . , αr} represents the finite
set of the inputs, β = {β1, β2, . . . , βm} denotes the set of
the values that can be taken by the reinforcement signal,
and c = {c1, c2, . . . , cr} denotes the set of the penalty prob-
abilities, where the element ci is associated with the given
action αi . If the penalty probabilities are constant, the ran-
dom environment is said to be a stationary random environ-
ment, and if they vary with time, the environment is called
a non stationary environment. The environments depending
on the nature of the reinforcement signal β can be classified
into P -model, Q-model and S-model. The environments in
which the reinforcement signal can only take two binary
values 0 and 1 are referred to as P -model environments.
Another class of the environment allows a finite number of
the values in the interval [0,1] can be taken by the reinforce-
ment signal. Such an environment is referred to as Q-model
environment. In S-model environments, the reinforcement
signal lies in the interval [a, b].

LA can be classified into two main families [27]: fixed
structure learning automata and variable structure learning
automata. Variable structure learning automata are repre-
sented by a triple 〈βα,L〉, where β is the set of inputs, α is
the set of actions, and L is learning algorithm. The learning
algorithm is a recurrence relation which is used to modify
the action probability vector. Let αi(k) ∈ α and p(k) denote
the action selected by learning automaton and the probabil-
ity vector defined over the action set at instant k, respec-
tively. Let a and b denote the reward and penalty parame-
ters and determine the amount of increases and decreases of
the action probabilities, respectively. Let r be the number
of actions that can be taken by learning automaton. At each
instant k, the action probability vector p(k) is updated by
the linear learning algorithm given in (1), if the selected ac-
tion αi(k) is rewarded by the random environment, and it is
updated as given in (2) if the taken action is penalized.

pj (k + 1) =
{

pj (k) + a[1 − pj (k)]; for j = i

(1 − a)pj (k); otherwise
(1)

pj (k + 1) =
{

(1 − b)pj (k); for j = i(
b

r−1

) + (1 − b)pj (k); otherwise
(2)

If a = b, the recurrence equations (1) and (2) are called
linear reward-penalty (LR−P) algorithm, if a � b the given
equations are called linear reward-εpenalty (LR−εP), and fi-
nally if b = 0 they are called linear reward-Inaction (LR−I).
In LR−I , the action probability vectors remain unchanged
when the taken action is penalized by the environment.

204 Cluster Comput (2012) 15:201–210

3.1 Variable action-set learning automata

A variable action-set learning automaton (VLA) is an au-
tomaton in which the number of actions available at each
instant changes with time. It has been shown in [28] that
a learning automaton with a changing number of actions is
absolutely expedient and also ε-optimal, when the reinforce-
ment scheme is LR−I . Such an automaton has a finite set of
n actions, α = {α1, α2, . . . , αr}. A = {A1,A2, . . . ,Am} de-
notes the set of action subsets and A(k) ⊆ α is the subset of
all the actions can be chosen by the learning automaton, at
each instant k. The selection of the particular action subsets
is randomly made by an external agency according to the
probability distribution �(k) = {�1(k),�2(k), . . . ,�m(k)}
defined over the possible subsets of the actions, where

�i(k) = prob[A(k) = Ai |Ai ∈ A,1 = i = 2n − 1].
Let

p̂i(k) = prob[α(k) = αi |A(k),αi ∈ A(k)]
denotes the probability of choosing action αi , conditioned
on the event that the action subset A(k) has already been
selected and αi ∈ A(k) too. The scaled probability p̂i(k) is
defined as

p̂i(k) = pi(k)

K(k)
(3)

where K(k) = ∑
αi∈A(k) pi(k) is the sum of the probabilities

of the actions in subset A(k), and pi(k) = prob[α(k) = αi].
The procedure of choosing an action and updating the

action probabilities in a VLA can be described as follows.
Let A(k) be the action subset selected at instant n. Before
choosing an action, the probabilities of all the actions in the
selected subset are scaled as defined in (3). The automaton
then randomly selects one of its possible actions according
to the scaled action probability vector p̂(k). Depending on
the response received from the environment, the learning au-
tomaton updates its scaled action probability vector. Note
that the probability of the available actions is only updated.
Finally, the probability vector of the actions of the chosen
subset is rescaled as

pi(k + 1) = p̂i(k + 1) · K(k),

for all αi ∈ A(k). The absolute expediency and ε-optimality
of the method described above have been proved in [28].

4 Job scheduling algorithm

In this section, an adaptive learning automata-based algo-
rithm is proposed for finding a near optimal solution to the
job scheduling problem in computational Grids. To provide
the sufficient background for understanding the proposed
job scheduling algorithm, some definitions and preliminar-
ies are presented first in Sect. 4.1. Then, in Sect. 4.2, the new
job scheduling algorithm is presented.

4.1 Job scheduling problem definition

A computational Grid G can be defined as a triple 〈G,P ,C〉,
where G = {Gi |1 ≤ i ≤ n} denotes the set of n heteroge-
neous candidates Grid nodes, machines or sites connected
by a wide area network, P = {pi |∀Gi ∈ G} denotes the set

of processors of the Grid nodes G (pj
i denotes the j th pro-

cessor of Grid node Gi), and C = {cj
i |∀p

j
i ∈ P } denotes the

capacities (e.g., processing power, memory size, network
bandwidth, soft ware availabilities, and etc.) of the set of
processors P . c

j
i is a vector specifying the capacities of pro-

cessor p
j
i . Let

∑n
i=1 pi denotes the total number of proces-

sors or the computational capacity of Grid G.
A job Ji can be modeled as a tuple 〈Ti ,Ri〉, where

Ti = {τ j
i |1 ≤ j ≤ k} denotes the set of tasks into which job

Ji is subdivided, and Ri = {rj
i |1 ≤ j ≤ k} denotes the set

of requirements (e.g., processing or resource requirements).
A job is considered as a set of indivisible tasks, each allo-
cated to execute on a Grid node in a non-preemptive mode.
Vector r

j
i specifies the requirement set of task τ

j
i . |Ti | de-

notes the size (required number of processors) of job Ji , and∑k
j=1 r

j
i denotes the cost of job Ji . An application is a piece

of a work which is defined as a job set.
Let n be the number of computational Grid nodes and m

denotes the number of jobs. The Grid job scheduling prob-
lem can be modeled as a triple 〈G, J ,�〉, where G〈G,P ,C〉
describes the Grid environment, J = {Ji〈Ti ,Ri〉|i = 1,2,

. . . ,m} denotes the set of m independent user jobs, and
� : J → G × σ defines a mapping for each job Ji ∈ J spec-
ifying the set of Grid nodes that are associated with that job
and schedule σ : Ti × G → P × T . Assume that Grid node

Gi′ is assigned to task τ
j
i ∈ Ti . Schedule σ(τ

j
i ,Gi′) spec-

ifies pair {pj ′
i′ , t

j ′
i′ } for all 1 ≤ j ′ ≤ k′ , where p

j ′
i′ ∈ P is

the processor of Grid node Gi′ allocated to task τ
j
i ∈ Ti ,

and t
j ′
i′ ∈ T denotes the time at which processor p

j ′
i′ fin-

ishes task τ
j
i . max∀τ

j
i ∈Ti

t
j ′
i′ denotes the completion time of

job Ji , and max∀p
j ′
i′ ∈Gi′

t
j ′
i′ denotes the time at which Grid

node Gi′ completes all its scheduled tasks. Let δ be the
set of all possible schedules of Grid job scheduling prob-
lem 〈G, J ,�〉. Scheduling σ ∗ ∈ δ is the optimal solution of
〈G, J ,�〉, if σ meets all the requirements of job set J , and
χ(σ ∗) = Minχσ∈δ{χ(σ)}, where χ(σ) denotes the cost of
scheduling σ .

4.2 The proposed algorithm

Due to the dynamicity of the Grid environment, heterogene-
ity and autonomy of the Grid nodes, and large scale and
complicated user jobs, the performance of the Grid systems

Cluster Comput (2012) 15:201–210 205

severely degrades, if there not exist an efficient job schedul-
ing method. Several job scheduling techniques have been
proposed in literature, however, the existing methods are
generally unable to adapt with the dynamicity of the re-
sources and the network conditions. In this paper, we aim
to propose an adaptive job scheduling algorithm to cope
with the dynamicity of the Grid environment, diversity of
the computational capacity of the processing nodes, and dif-
ferent and a priori unknown user workloads.

Let us assume that there exist m different users {U1,U2,

. . . ,Um}, n heterogeneous Grid nodes {G1,G2, . . . ,Gn},
and q schedulers {S1, S2, . . . , Sq}. Every user submits its
jobs to a scheduler. One or more users may submit their
works to one or more schedulers. Each scheduler can be in
connection with one or more Grid nodes. Therefore, there
is a many-to-many connection between the schedulers and
Grid nodes. For simplicity but without lose of generality, let
us assume that each user submits only one job at each stage.
Therefore, there exist m different jobs {J1, J2, . . . , Jm} that
must be scheduled on n different Grid nodes. As men-
tioned earlier, each job Ji might be subdivided into sev-
eral tasks τ

j
i , where 1 ≤ j ≤ k. Furthermore, there might

be multiple processors p
j ′
i′ available at each Grid node Gi′ ,

where 1 ≤ j ′ ≤ k′. Processor p
j ′
i′ is responsible for a non-

preemptive execution of task τ
j
i .

The proposed Grid job scheduling algorithm is indepen-
dently run at each scheduler Ss . In this method, each sched-
uler Ss is equipped with two learning automata AsU and
AsG, the former one is for scheduling the users to submit
their jobs proportional to their different and unknown work-
loads and the latter one for optimal allocation of the user
works to the processors depending on their computational
capacities. In the rest of this section, we present the detailed
description of the proposed algorithm running at scheduler
Ss to show the role of these two learning automata.

4.2.1 Scheduling the user submissions

Obviously, different users have different workloads and so
need different computational capacities. Allocation of the
same capacity of the computational Grid resources to dif-
ferent user clients leads to an undesirable condition un-
der which some users have serious resource insufficiency
(that lengthens the completion time of the jobs) while some
others only use a small portion of the allocated compu-
tational capacity. Moreover, the workload of a user client
may vary over time. To cope with the time-variable and dif-
ferent users’ workloads, a good job scheduler must assign
each user the Grid resources proportional to its need. The
proposed job scheduling algorithm uses learning automa-
ton AsU to optimally schedule the user clients connected to
scheduler Ss to submit their works.

Before stating the performance of scheduler Ss , we de-
scribe how to form the action-set of learning automaton
AsU . This automaton aims at scheduling the user clients
to submit their jobs. Each scheduler may receive the jobs
from one or more users. Let {U1,U2, . . . ,UNu} be the set of
users that must be scheduled by Ss . The action-set of au-
tomaton AsU has Nu actions, each for a user client. That is,
the action-set of AsU is defined as

αsU = {αi
sU |∀i ∈ {1,2, . . . ,Nu}}.

Selection of action αi
sU means that scheduler Ss per-

mits user Ui to submits its work. Let p
sU

= {pi
sU |∀i ∈

{1,2, . . . ,Nu}} be the action probability vector of the learn-
ing automaton AsU . Clearly, action αi

sU is selected with
probability pi

sU . All actions are initially chosen with the
same probability 1/Nu. This implies that all user clients ini-
tially have the same chance to submit their jobs to the sys-
tem.

Ss schedules the user clients using a polling technique.
It polls the users one-by-one to give them an opportunity to
submit their works. At each stage, automaton AsU chooses
one of its possible actions (say, action αi

sU) according to its
action probability vector at random. By the selection of ac-
tion αi

sU , user Ui is implicitly granted the permission to send
its work. Scheduler Ss checks the selected user clients to see
if it has a ready job to submit. If so, scheduler Ss let user
Ui send its work, queues the received works in the order of
their arrival times, and increases the choice probability of
(or rewards) the selected action αi

sU (i.e., pi
sU) by (1). Oth-

erwise (i.e., user Ui has no job to submit), scheduler Ss de-
creases the choice probability of (or penalizes) the selected
action by (2). By this, the workload placed on different user
clients can be effectively balanced. After updating the inter-
nal state of the learning automaton AsU , scheduler Ss initi-
ates another stage and repeats the same operations as it did
in the previous stage. As the scheduling algorithm proceeds,
scheduler polls each user client (more probably) only when
it has a job to submit, and this results in allocation of the
Grid resources to each user proportional to its need.

4.2.2 Scheduling the Grid resources

In a Grid system, resources are heterogeneous, autonomous
and dynamic in nature. Due to the dynamicity of the Grid
environments, the resource characteristics are temporal and
vary over time. For example, the resource availability is
severely affected by the dynamics of the network condition
such as link failure, collision, congestion, and etc. Under
such circumstances, finding an optimal job scheduling strat-
egy becomes incredibly hard. In the proposed job scheduling
algorithm, learning automaton AsG is responsible for find-
ing a near optimal solution to the problem of allocating the
users’ jobs to the Grid nodes according to their computa-
tional capacities.

206 Cluster Comput (2012) 15:201–210

Let {G1,G2, . . . ,GNg } denotes the set of Grid resources
that are scheduled by Ss . Each Grid resource Gi′ includes a

set of computational resources p
j ′
i′ (for 1 ≤ j ′ ≤ k′) having

different processing powers. Each processing element p
j ′
i′

might be scheduled by several schedulers simultaneously.
As mentioned earlier, a job Ji could be subdivided into sev-
eral tasks τ

j
i , where 1 ≤ j ≤ k. The aim of learning automa-

ton AsG is to find a scheduling strategy to assign a compu-

tational resource p
j ′
i′ to each task τ

j
i in such a way that the

average execution time of the submitted jobs is minimized.
The action-set of automaton AsG is defined as

α sG = {αi′j ′
sG |∀p

j ′
i′ ∈ Gi′ }.

Selection of action α
i′j ′
sG means that the processing ele-

ment p
j ′
i′ is chosen to assign to task τ

j
i . Let q

j ′
i′ be the queue

in which processing element p
j ′
i′ stores the assigned tasks.

Queue length is defined as the number of tasks waiting for
process. Automaton AsG schedules each task τ

j
i as follows:

As mentioned before, a vector r
j
i is associated with each

task τ
j
i specifying its requirements. On the other side, c

j ′
i′

is a vector specifying the capacities of processor p
j ′
i′ too.

Processor p
j ′
i′ can be assigned to task τ

j
i , if r

j
i ≤ c

j ′
i′ . Obvi-

ously, there may exist processing nodes for which condition

r
j
i ≤ c

j ′
i′ is not met. In this case, when scheduling task τ

j
i the

actions corresponding to these nodes must be removed from
the action-set of automaton AsG as described in Sect. 3.1 on
VLA. This increases the convergence rate and convergence
speed of the automaton. To do so, for each task τ

j
i , scheduler

Ss updates action-set αsG as

α sG ← α sG − {αi′j ′
sG |cj ′

i′ � r
j
i }.

The remaining actions are candidates that can be assigned
to task τ

j
i . Automaton AsG then randomly chooses one of

its possible actions based on its updated action probabil-

ity vector. Let us assume that action α
i′j ′
sG (corresponding to

processing node p
j ′
i′) is selected by the learning automaton.

Scheduler Ss checks queue q
j ′
i′ to see if its length is shorter

than or equal to dynamic average length Ls . If so, scheduler

increases the choice probability of the selected action α
i′j ′
sG

by (1). Otherwise, scheduler decreases it by (2). Regardless
of rewarding or penalizing the selected action, scheduler as-

signs task τ
j
i to processing node p

j ′
i′ . This method places the

load on each Grid node proportional to its computational ca-
pacity. At the end of each assignment, all removed actions
must be enabled again as described in Sect. 3.1. For each
scheduler Ss , dynamic average length Ls is defined as

Ng∑
i′=1

k∑
j ′=1

length(q
j ′
i′).

That is, Ls represents the average length of the queues
of the processing elements of all Grid nodes associated with
scheduler Ss , i.e., {G1,G2, . . . ,GNg }. For each processing

node p
j ′
i′ , length(q

j ′
i′) is updated as soon as α

i′j ′
sG is selected

by the learning automaton. Automaton AsG impartially dis-
tributes the submitted workloads on different Grid nodes,
each proportional to its computational capacity.

5 Experimental results

To study the performance of the proposed Grid job schedul-
ing algorithm, we have conducted several simulation exper-
iments under three Grid sizes: A small scale Grid system
including 16 Grid nodes and 128 processing elements, a
medium size Grid environment comprising 32 Grid nodes
and 256 processing elements, and finally a Large scale Grid
with 128 Grid nodes and 1024 processing elements. (A real
large scale Grid system might be composed of several thou-
sands nodes.) In conducted experiments, it is assumed that
all the jobs only require the computational resources. There-
fore, the job requirement and Grid capacity vectors only
include the computational features of the job set and Grid
nodes. For each Grid size, it is assumed that all Grid nodes
have the same number of processing elements. The compu-
tational capacity of the processing elements is generated by
a Gaussian probability distribution function with mean 1000
MIPS (million instruction per second) and variance 150. The
nominal bandwidth of the network connecting every two
Grid nodes is assumed to be 100 Mbps. The number of users
is fixed at 50, 100, and 400 for small scale, medium scale,
and large scale Grids, respectively. The total number of jobs
that are submitted by all the Grid users is fixed at 1000,
2000, and 8000 for small, medium, and large scale Grids, re-
spectively. The execution time of the jobs generated by each
user is normally distributed with mean 500 million instruc-
tions (MI) and variance 100 million. Each job is composed
of a number of tasks. Jobs are subdivided into k tasks, where
k is randomly and uniformly selected from set {1,2,3,4}. At
each user client, the generation rate of the new jobs is Pois-
son distributed with rate (mean) {5,10,15,20}. This rate is
evenly drawn from set {5,10,15,20} at random for each ex-
periment. To improve the precision of the reported results,
each experiment is independently repeated 50 times and the
obtained results are averaged over these runs. Table 1 sum-
marizes the simulation parameters.

To show the outperformance of the proposed job schedul-
ing algorithm, the obtained results are compared with those
of FPSO (a fuzzy logic-based particle swarm optimization
algorithm for job scheduling problem proposed by Liu et al.
[7]), and GJS (an adaptive genetic programming-based Grid
job scheduling algorithm proposed by Gao et al. [10]). In
simulation experiments, the efficiency of the proposed job

Cluster Comput (2012) 15:201–210 207

Table 1 Simulation experiment
setup Simulation parameter Description Value

Number of tasks per job (k) Uniform distribution U [1,2,3,4]
Job generation rate Poisson distribution P [5,10,15,20]
Total number of jobs Small scale 1000

Medium scale 2000

Large scale 8000

Number of users Small scale 50

Medium scale 100

Large scale 400

Nominal bandwidth 100 Mbps

Execution time Normal distribution N(500,100) MI

Processor computational capacity Normal distribution N(1000,150) MIPS

Number of Grid nodes Small scale 16

Medium scale 32

Large scale 128

Number of processors Small scale 128

Medium scale 256

Large scale 1024

scheduling method is compared with the above mentioned
algorithms in terms of makespan, flowtime, and load bal-
ancing.

5.1 Makespan

This metric is defined as the maximum execution time of all
submitted jobs. In other words, makespan is the completion
time of the latest task. Minimization of this metric implies
that no job takes a long time to execute. Makespan is com-
puted as

max
∀Gi′ ∈G

{
max

∀p
j ′
i′ ∈Gi′

{tj ′
i′ }

}

or as

max
∀Ti∈J

{
max

∀τ
j
i ∈Ti

{tj ′
i′ }

}

in ms.
Figure 1 shows the average makespan of different al-

gorithms under different Grid scales. As it can be seen,
the proposed Grid job scheduling algorithm, LAJS, signifi-
cantly outperforms FPSO and GJS specifically in large Grid
scales. This is because LAJS dynamically schedules both
the user submissions at a higher level and the Grid resources
at a lower level. In LAJS, the Grid resources that are as-
signed to each user client are proportional to its workload.
User submission rate changes over time and LAJS adap-
tively tunes the user portion. This avoids misspending the
Grid resources. Furthermore, the load that is places on each
Grid resource is directly proportional to its computational

capacity. This avoids the grid resource being too busy or
idle.

For small and medium scale Grids, the results of FPSO
are very close to those of GJS. However, for large scale
Grids, FPSO significantly surpasses GJS. Comparing the re-
sults shown in Fig. 1, it can be seen that the gap between
the proposed scheduling algorithm and the other two meth-
ods (FPSO and GJS) becomes more significant as the sys-
tem scale grows. Numerical results show that the makespan
of GJS is nearly two times longer than that of the proposed
scheduler. Overall, FPSO is ranked far below the proposed
scheduler and GJS lags behind FPSO.

5.2 Flowtime

Flowtime is another Grid performance metric that is defined
as the sum of the completion time of all the jobs. An op-
timal scheduling method is expected to minimize the flow-
time. This metric refers to the total time that the allocated
processors are occupied with the execution of the assigned
jobs. Flowtime is calculated as∑
∀Gi′ ∈G

{
max

∀p
j ′
i′ ∈Gi′

{tj ′
i′ }

}

in ms.
This experiment is devoted to compare the average flow-

time of the proposed job scheduling algorithm with that of
FPSO and GJS under different Grid scale scenarios. The ob-
tained results are depicted in Fig. 2. As shown in this figure,
the obtained results confirm the superiority of the proposed

208 Cluster Comput (2012) 15:201–210

Fig. 1 Average makespan
under different Grid scale

Fig. 2 Average flowtime under
different Grid scale

algorithm over the other methods in terms of the flowtime,
specifically in medium and large scale Grids. This could be
due to the fact that LAJS is a time variable job scheduling
technique in which the workload that is assigned to each
Grid resource varies over time according to its available
computational capacity. LAJS balances the arrival work-
loads on the Grid nodes. Contrary to the proposed algorithm,
GJS and FPSO initially make a schedule for all the sub-
mitted jobs. Then, the tasks are executed according to the
preplanned schedule. That is why GJS and FPSO fail un-
der resource and network dynamics that LAJS can tolerate
them.

As the number of submitted jobs increases, LAJS learns
how to efficiently assign the jobs to the Grid nodes. That is,
as the proposed algorithm proceeds, the learning automata
associated with the scheduler converge to the optimal con-

figurations by which the resource that is assigned to each
user is proportional to its need and the workload that is
placed on each Grid node is proportional to its capacity. This
reduces the average completion time of the jobs, and so de-
creases the flowtime. From the results shown in Fig. 2, it
can be seen that the flowtime of FPSO is slightly smaller
than that of GJS in small and medium size Grids, and the
gap between these two algorithms becomes more significant
in large scale systems.

5.3 Load balancing

Figure 3 shows the load balancing of different job schedul-
ing algorithms under different Grid scale scenarios. Load
balancing represents the distribution of the workload allo-
cated to the Grid nodes. A uniform workload distribution

Cluster Comput (2012) 15:201–210 209

Fig. 3 Load balancing under
different Grid scale

shows the load balancing only when all the Grid nodes have
the same computational capacities. However, in case of dif-
ferent computational capacities, the workload which is sub-
mitted to each Grid node must be proportional to its capac-
ity. In this case, the standard deviation of the completion
time (i.e., the time at which a Grid node completes the ex-
ecution of its last work) of the Grid nodes stands for the
load balancing. This metric shows the difference between
the completion times of different Grid nodes. Makespan and
flowtime are minimized, if the workload placed on the Grid
nodes is balanced. Load balancing increases as the standard
deviation of the completion time decreases. Let T denotes
the completion time of all the Grid nodes. Load balancing is
computed as

T − σT

T
× 100.

where T and σT denote the mean and standard deviation of
completion time T, respectively.

From the results shown in Fig. 3, it can be seen that
the proposed scheduling procedure distributes the submit-
ted workloads among the Grid nodes considerably more bal-
anced than FPSO and GJS for all Grid scales. This is due to
the fact that LAJS takes into consideration the queue length
of the processing elements to evenly distribute the workload
within the Grid system. In LAJS, the queue length of each
processing element (of a given scheduler Ss) is adjusted by a
dynamic threshold (i.e., Ls) in such a way that all processing
elements have the queues of the same length and no length-
ier than the dynamic average length Ls . Furthermore, work-
load allocation proportional to the computational capacity
avoids very busy or idle processors and balances the work-
load within the Grid. From the results depicted in Fig. 3,
it is observed that the load balancing slightly decreases as

the Grid size grows. This can be due to the fact that mak-
ing a balanced schedule becomes harder as the number of
user submissions and Grid nodes increases. As expected,
the schedules made by FPSO are more balanced than those
made by GJS. That is why the flowtime and makespan of
FPSO are shorter than those of GJS.

6 Conclusion

In this paper, a learning automata-based job scheduling algo-
rithm was proposed for Grid environments. In the proposed
algorithm, two learning automata are associated with each
scheduler. The first automaton is responsible for schedul-
ing the user submissions and the second one for optimal as-
signment of the tasks to the Grid resources in such a way
that each user is assigned the portion of the Grid compu-
tational capacity proportional to its need. To show the ef-
ficiency of the proposed job scheduling algorithm, several
simulation experiments were conducted for different Grid
scales. The results of the proposed method were compared
with those of a fuzzy logic-based particle swarm optimiza-
tion job scheduling algorithm called FPSO and an adaptive
genetic programming-based Grid job scheduling algorithm
called GJS. Numerical results showed that the proposed al-
gorithm significantly outperforms FPSO and GJS in terms
of makespan, flowtime, and load balancing, specifically in
large scale Grid environments. The obtained results also re-
vealed that FPSO lags far behind the proposed scheduler and
GJS is ranked below FPSO. Experiments showed that the
makespan and flowtime of GJS are two times longer that
those of LAJS.

210 Cluster Comput (2012) 15:201–210

Appendix

Table 2 List of acronyms

Acronym Full term

ACO Ant Colony Optimization

BACO Balanced Ant Colony Optimization

FPSO Fuzzy logic-based Particle Swarm Optimization

GA Genetic Algorithm

GJS Genetic programming-based grid Job Scheduling

LA Learning Automata

LAJS Learning Automata-based Job Scheduling

MA Memetic Algorithm

PSO Particle Swarm Optimization

RouteGA Route with Genetic Algorithm support

SA Simulated Annealing

VLA Variable action-set Learning Automata

References

1. Tang, M., Lee, B.-S., Tang, X., Yeo, C.-K.: The impact of data
replication on job scheduling performance in the Data Grid. Future
Gener. Comput. Syst. 22, 254–268 (2006)

2. Nakajima, Y., Sato, M., Aida, Y., Boku, T., Cappello, F.: Integrat-
ing computing resources on multiple Grid-enabled job scheduling
systems through a Grid RPC system. J. Grid Comput. 6(2), 141–
157 (2008)

3. Tchernykh, A., Schwiegelshohn, U., Yahyapour, R., Kuzjurin, N.:
On-line hierarchical job scheduling on Grids with admissible Al-
location. J. Sched. 13(5), 545–552 (2010)

4. Boyar, J., Favrholdt, L.M.: Scheduling jobs on Grid processors.
Algorithmica 57(4), 819–847 (2010)

5. Xhafa, F., Abraham, A.: Computational models and heuristic
methods for Grid scheduling problems. Future Gener. Comput.
Syst. 26, 608–621 (2010)

6. Cheng, W., Congfeng, J., Xiaohu, L.: Fuzzy logic-based secure
and fault tolerant job scheduling in Grid. Tsinghua Sci. Technol.
12(S1), 45–50 (2007)

7. Liu, H., Abraham, A., Hassanien, A.E.: Scheduling jobs on com-
putational Grids using a fuzzy particle swarm optimization algo-
rithm. Future Gener. Comput. Syst. 26, 1336–1343 (2010)

8. Liu, H., Abraham, A.: A hybrid fuzzy variable neighborhood
particle swarm optimization algorithm for solving quadratic as-
signment problems. J. Univers. Comput. Sci. 13(7), 1032–1054
(2007)

9. Di Martino, V., Mililotti, M.: Sub optimal scheduling in a Grid
using genetic algorithms. Parallel Comput. 30, 553–565 (2004)

10. Gao, Y., Rong, H., Zhexue Huang, J.: Adaptive Grid job schedul-
ing with genetic algorithms. Future Gener. Comput. Syst. 21, 151–
161 (2005)

11. Carretero, J., Xhafa, F.: Using genetic algorithms for scheduling
jobs in large scale Grid applications. J. Technol. Econ. Dev. 12(1),
11–17 (2006)

12. de Mello, R.F., Andrade Filho, J.A., Senger, L.J., Yang, L.T.:
Grid job scheduling using Route with genetic algorithm support.
Telecommun. Syst. 38(3–4), 147–160 (2008)

13. de Mello, R.F., Senger, L.J., Yang, L.T.: A routing load balanc-
ing policy for Grid computing environments. In: Proceedings of
the 20th International Conference on Advanced Information Net-
working and Applications (AINA 2006), pp. 1–6 (2006)

14. Bandieramonte, M., Di Stefano, A., Morana, G.: An ACO inspired
strategy to improve jobs scheduling in a Grid environment. In:
Lecture Notes in Computer Science, vol. 5022, pp. 30–41 (2008)

15. Chang, R.-S., Changa, J.-S., Lina, P.-S.: An ant algorithm for bal-
anced job scheduling in Grids. Future Gener. Comput. Syst. 25,
20–27 (2009)

16. Kant, A., Sharma, A., Agarwal, S., Chandra, S.: An ACO approach
to job scheduling in Grid environment. In: Lecture Notes in Com-
puter Science, vol. 6466, pp. 286–295 (2010)

17. Xhafa, F., Carretero, J., Dorronsoro, B., Alba, E.: Tabu Search al-
gorithm for scheduling independent jobs in computational Grids.
Comput. Inform. J. 28(2), 237–249 (2009)

18. Xhafa, F., Gonzalez, J.A., Dahal, K.P., Abraham, A.: A GA(TS)
hybrid algorithm for scheduling in computational grids. In: Hybrid
Artificial Intelligent Systems, Lecture Notes in Computer Science,
vol. 5572, pp. 285–292 (2009)

19. Abraham, A., Buyya, R., Nath, B.: Nature’s heuristics for schedul-
ing jobs on computational Grids. In: Proceedings of the 8th IEEE
International Conference on Advanced Computing and Commu-
nications, India (2000)

20. YarKhan, A., Dongarra, J.: Experiments with scheduling using
simulated annealing in a Grid environment. In: Proceedings of
GRID2002, pp. 232–242 (2002)

21. Xhafa, F.: A hybrid evolutionary heuristic for job scheduling in
computational Grids. In: Studies in Computational Intelligence,
vol. 75. Springer, Berlin (2007) (Chap. 10)

22. Xhafa, F., Alba, E., Dorronsoro, B., Duran, B.: Efficient batch job
scheduling in Grids using cellular memetic algorithms. J. Math.
Model. Algorithms 7(2), 217–236 (2008)

23. Wu, J., Xu, X., Zhang, P., Liu, C.: A novel multi-agent reinforce-
ment learning approach for job scheduling in Grid computing. Fu-
ture Gener. Comput. Syst. 27, 430–439 (2011)

24. Ramírez-Alcaraz, J.M., Tchernykh, A., Yahyapour, R.,
Schwiegelshohn, U., Quezada-Pina, A., González-García,
J.L., Hirales-Carbajal, A.: Job allocation strategies with user run
time estimates for online scheduling in hierarchical Grids. J. Grid
Comput. 9(1), 95–116 (2011). doi:10.1007/s10723-011-9179-y

25. Ghosh, P., Das, S.K.: Mobility-aware cost-efficient job scheduling
for single-class Grid jobs in a generic mobile Grid architecture.
Future Gener. Comput. Syst. 26, 1356–1367 (2010)

26. Garey, M.R., Johnson, D.S.: Computers and Intractability: A
Guide to the Theory of NP-completeness. Freeman, New York
(1979)

27. Narendra, K.S., Thathachar, K.S.: Learning Automata: An Intro-
duction. Prentice-Hall, New York (1989)

28. Thathachar, M.A.L., Harita, B.R.: Learning automata with chang-
ing number of actions. IEEE Trans. Syst. Man Cybern. SMG17,
1095–1100 (1987)

Javad Akbari Torkestani received
the B.S. and M.S. degrees in Com-
puter Engineering in Iran, in 2001
and 2004, respectively. He also re-
ceived the Ph.D. degree in Com-
puter Engineering from Science and
Research University, Iran, in 2009.
Currently, he is an assistant profes-
sor in Computer Engineering De-
partment at Arak Azad University,
Arak, Iran. Prior to the current po-
sition, he joined the faculty of the
Computer Engineering Department
at Arak Azad University as a lec-
turer. His research interests include

wireless networks, multi-hop networks, fault tolerant systems, grid
computing, learning systems, parallel algorithms, and soft computing.

http://dx.doi.org/10.1007/s10723-011-9179-y

	A new approach to the job scheduling problem in computational grids
	Abstract
	Introduction
	Related work
	Learning automata theory
	Variable action-set learning automata

	Job scheduling algorithm
	Job scheduling problem definition
	The proposed algorithm
	Scheduling the user submissions
	Scheduling the Grid resources

	Experimental results
	Makespan
	Flowtime
	Load balancing

	Conclusion
	Appendix
	References

