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Abstract The MapReduce model uses a barrier between the
Map and Reduce stages. This provides simplicity in both
programming and implementation. However, in many situ-
ations, this barrier hurts performance because it is overly
restrictive. Hence, we develop a method to break the bar-
rier in MapReduce in a way that improves efficiency. Care-
ful design of our barrier-less MapReduce framework results
in equivalent generality and retains ease of programming.
We motivate our case with, and experimentally study our
barrier-less techniques in, a wide variety of MapReduce ap-
plications divided into seven classes. Our experiments show
that our approach can achieve better job completion times
than a traditional MapReduce framework. This is due pri-
marily to the interleaving of I/O and computation, and for-
going disk-intensive work. We achieve a reduction in job
completion times that is 25% on average and 87% in the
best case.
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1 Introduction

Inspired by the map and reduce primitives present in func-
tional languages, Google proposed MapReduce [7]. The
MapReduce framework simplifies the development of large-
scale distributed applications on clusters of commodity ma-
chines. It has become widely popular, e.g., Google uses it
internally to process more than 20 PB per day [7]. Yahoo!,
Facebook and others use Hadoop, an open-source imple-
mentation of MapReduce [1].

The MapReduce model has become popular because a
programmer can harness the processing power of large data
centers for very large parallel tasks in a simple way. The
programmer only needs to write the logic of a Map function
and a Reduce function. This eliminates the need to imple-
ment fault-tolerance and low-level memory management in
the program; the MapReduce framework takes care of these
concerns for general programs.

The MapReduce framework divides the program execu-
tion into a Map and a Reduce stage. In the first stage, each
machine in the cluster executes a Map function on a dis-
tinct portion of the input data. The Map execution produces
records that consist of a key and value. Map output is trans-
ferred to Reducers according to key. For each key, the com-
plete set of records produced across multiple machines in
the Map stage are transferred to the Reducer assigned to that
key. In current implementations of MapReduce, a barrier
exists that prevents the Reduce stage from starting until all
records from the Map stage have been transferred to their
respective Reducers. The barrier ensures that all relevant
records are available when computing the Reduce function.

In this paper, we break the barrier between stages in
MapReduce. The result is a barrier-less version of MapRe-
duce, which can have significantly improved performance.
At the same time, we take special care to maintain the sim-
plicity and generality of the MapReduce framework. To this
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end, we investigate a broad set of categories of MapReduce
programs, differing in the structure and the memory usage
of the Reduce function. Based on these observations, we de-
velop memory management techniques that are general and
yet require minimal additional effort by the MapReduce pro-
grammer.

Our main contributions are as follows:

1. We present techniques for supporting general purpose ap-
plications in a barrier-less MapReduce framework.

2. For seven different categories of MapReduce algorithms,
we show how they can be converted to their barrier-less
forms.

3. We identify and address the memory management con-
cerns that arise from removing the barrier.

4. Our experience with implementing various barrier-less
algorithms shows there is minimal additional program-
mer effort.

5. We experimentally evaluate the benefit of converting al-
gorithms to their barrier-less version. Our results show an
average improvement of 25% (and 87% in the best case)
in job completion times.

6. By reviewing the job execution, we observe that the im-
provement is due to interleaving of I/O and computation,
as well as forgoing disk-intensive work.

In this paper, we focus on the Hadoop framework because
of its open source nature. However, our contributions are not
limited to this particular instance. The technique of using
write-local read-remote data transfer with a stage barrier is
also used in Google’s MapReduce, as well as related paral-
lel processing frameworks such as Dryad [16]. Barrier-less
implementations of these frameworks will also benefit from
the techniques described in our paper.

The rest of the paper is structured as follows. We first
examine the role of the MapReduce barrier in Sect. 2. In
Sect. 3, we then discuss the new design of Hadoop MapRe-
duce framework after breaking the barrier. We observe that
this improves performance in many cases, but can present
a memory management problem. In Sect. 4, we investigate
the memory usage patterns of MapReduce applications, and
produce a categorization based on the structure of the Re-
duce function. Based on these observations, in Sect. 5 we
develop new techniques that are able to manage memory for
general applications while breaking the barrier. In Sect. 6,
we present experimental results that show a significant im-
provement in Hadoop performance when these techniques
are applied. We then discuss related work in Sect. 7 and fi-
nally conclude in Sect. 8.

2 Motivation: MapReduce barrier

The execution of a MapReduce program is divided into a
Map stage and a Reduce stage. The MapReduce framework

writes the Map output locally at each machine and then ag-
gregates the relevant records at each Reducer by remotely
reading from the Mappers. This process of transferring data
is called the Shuffle stage. In current open source MapRe-
duce implementations (e.g., Hadoop), the Shuffle stage con-
tains a distributed barrier.

The Reducer reads the relevant records from many Map
nodes. These entries are not in a sorted order, and are
buffered at the Reducer. The barrier is reached when the Re-
ducer has received all Map output. The Reducer then sorts
the buffered entries, effectively grouping them together by
key. Finally, the Reduce function is applied to each group of
entries with the same key, one by one.

The barrier is useful for several reasons, most prominent
being to provide simplicity and efficiency by allowing the
Reduce function to atomically operate on all records for a
particular key. This in turn means that once a key is pro-
cessed all partial results for that key can be disposed of and
the output may be written.

However, despite these apparent advantages, we argue
that removing the barrier is, in many practical cases, much
more efficient. When we remove the barrier, execution of
our Reduce function no longer needs to wait for all records
to be remotely read and grouped by key. Instead, the Reduce
function can be immediately invoked on each input entry, as
it becomes available. This relaxation can significantly im-
prove the efficiency of the Reduce task execution.

More concretely, by removing the barrier, we are able to
perform work at Reducers during two waiting intervals be-
fore the Reduce operations are executed: (1) the time inter-
val between remote read of the first and last records, and
(2) the time taken for sorting the records. Instead of waiting
for remote reads to finish, our framework interleaves the net-
work I/O with the computation of the Reduce function. Our
framework forgoes the disk-intensive operation of sorting
records altogether for most algorithms. Both of these wait-
ing intervals are sensitive to heterogeneity that is inherent in
clusters. Clusters with commodity hardware often show dif-
ferences in performance between machines, and they have
oversubscribed links between machines. The time it takes
to read all records depends on the relative speed between
the Mapper nodes and the speed of data transfer from the
Mapper nodes to Reducer nodes. This can further extend
the first interval of waiting. The time consumed by disk-
intensive operations in the second interval is sensitive to the
relative disk speeds across each node. The barrier-less model
removes these intervals, thus improving performance.

As a consequence of removing both waiting intervals, the
records in the barrier-less model are no longer sorted in key
order. Our investigation of seven classes of MapReduce ap-
plications summarized in Table 1 (detailed in Sect. 4) re-
veals that, in practice, a significant number of applications
do not require the full key sorting provided by the MapRe-
duce framework. The main role of sorting by key is to group
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Table 1 Sort and Memory requirements of MapReduce Jobs. Records
and keys denote the total number of records and keys (executed at a
single Reducer)

Application
(Reduce Classification)

Key sort
required

Size of
partial results

Distributed Grep
(Identity)

No O(1)

Sort
(Sorting)

Yes O(records)

Word Count
(Aggregation)

No O(keys)

k-Nearest Neighbors
(Selection)

No O(k ∗ keys)

Last.fm unique listens
(Post-reduction processing)

No O(records)

Genetic Algorithms
(Cross-key operations)

No O(window_size)

Black Scholes (Single
Reducer Aggregation)

No O(1)

records with the same key together. Grouping is necessary
in traditional MapReduce, because it requires all records for
a key to be present when the Reduce function is executed.
The barrier-less approach removes this requirement, and the
Reduce function is run on records one by one. This approach
raises an important problem: partial results for each key
must be maintained.

Our investigation shows that the number of partial re-
sults that must be maintained differs widely across MapRe-
duce applications (see column “Size of partial results” in Ta-
ble 1). Thus, for the barrier-less model to work with general
MapReduce applications, we require techniques for main-
taining and updating these partial results. Before we develop
these techniques in detail (see Sect. 5), we first describe the
structure and usage of our basic framework for barrier-less
MapReduce.

3 Breaking the barrier

In this section, we describe our implementation of barrier-
less MapReduce, and illustrate how to modify an existing
MapReduce application to be used in this framework.

3.1 Barrier-less Hadoop implementation

We implemented barrier-less MapReduce by modifying the
open-source Hadoop implementation. The original Hadoop
implementation employs a barrier as described in the previ-
ous section. In order to break the barrier, we had to incor-
porate two primary design decisions: (1) bypass the batched
sorting mechanism, and (2) modify the invocation of the Re-
duce function so that it can be called with a single record
(instead of a key and all values corresponding to it).

Hadoop’s Shuffle stage is implemented by transferring
batches of records from Mappers to Reducers. Each Mapper
buffers its processed records. When all local processing is
finished the Mapper sorts the records by key, a step that par-
titions the records to be transferred to each Reducer. If the
buffer grows larger than the memory available, it is spilled
to disk and later merge-sorted. Each Reducer retrieves the
batch of records from each Mapper only after it has com-
pleted. When all records from every Mapper are received by
the Reducer it merge-sorts them. This step of sorting groups
all records together.

For barrier-less MapReduce, we pipeline the record
transfer and Reduce execution at the single record level, in-
stead of batching. There are two potential benefits to pipelin-
ing. First, we make it possible to interleave network I/O of
the record transfer with CPU computation. Second, we avoid
the need to spill the intermediate data to disk when the size
of batched records grows beyond memory.

In our implementation, the Reducer uses one asyn-
chronous thread per Mapper to retrieve records, as soon as
they are available. These records are stored into a single
buffer, and a separate thread executes the Reduce function
on the records in the buffer in a first-in first-out manner.
The Reduce function called in this manner is only passed
a single key/value record, as opposed to a key and all its
corresponding values in the original Hadoop. This subtle
difference in the framework compared to original Hadoop
slightly changes the way applications are implemented, as
we show with an example in Sect. 3.2.

However, these changes do not affect other aspects of the
execution of Hadoop. In other words, assignment of tasks,
fault-tolerance, scheduling, etc., are handled in the same
way as original Hadoop.

3.2 Barrier-less WordCount

As previously mentioned, when executed with barrier-less
Hadoop, the Reduce function does not have the guarantee
of atomically receiving all records for a given key. There-
fore, the application must be modified to handle records one
by one. To do this, a programmer must code, in addition to
the Map and Reduce function, a custom run function that
makes calls to the Reduce function. In the original Hadoop,
the run function invokes the Reduce function once per key.
For barrier-less Hadoop, the run function invokes the Re-
duce function once per entry, and the programmer addition-
ally specifies in this function how partial results are stored
and reused across Reduce invocations.

In the rest of this section, we present a concrete example
of the difference between an application coded for the orig-
inal and barrier-less MapReduce frameworks. For this, we
use the WordCount application provided with the Hadoop
distribution. The original program is shown in pseudo-code
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Algorithm 1 Original WordCount
function map(key, value):
// key: document name
// value: document contents
for each word in value do

Emit intermediate (word, 1)
end for
function reduce(key, values, context):
// key: a word
// values: a list of counts
result ← 0
for each v in values do

result ← result + v
end for
Write (key, result) to context

function run():
while context has more keys do

key ← current key from context
values ← current values from context
reduce(key, values, context)

end while

form in Algorithm 1. In the Map function, each output entry
is simply a word and a count of 1. In the Reduce function,
the number of output entries with the same key is counted.
The run function, which is part of the Hadoop framework,
ensures that the Reduce function is called once for each key,
with all the values as input.

To run WordCount without a barrier, the programmer has
to modify the Reduce and run functions as presented in Al-
gorithm 2. The run function calls Reduce on each entry that
is received. In other words, the Reduce function no longer
assumes that all values for a key are passed in at once.
This implies that the Reducer must maintain partial results
for every key it has received. For our purposes, we use the
TreeMap data structure from java.util, which is inter-
nally implemented as Red-Black trees [13]. A TreeMap can
quickly access partial results while maintaining key order-
ing. As a record (which is a key/value pair) arrives, the run
function reads the previous partial result, and passes it to the
Reduce function. The Reduce function performs the com-
putation, and stores the new result back into place. Once
there are no more records and all the Reduce invocations
have completed, the output is generated by the run function.

Figure 1 shows the system-wide progress of the Word-
Count program with and without a barrier on the same
cluster. (Details of the experimental setup are provided in
Sect. 6.) The y-axis represents the number of CPU cores ex-
ecuting at each stage. In the original MapReduce, we can see
the barrier in the delay between the Map tasks finishing at
155 seconds and the Reduce function invocations beginning
at 170 seconds. In the barrier-less version though, the com-
bined Shuffle and Reduce stage begins at 50 seconds, when
the first Mappers begin to complete. We refer to the time
gap between when the first Mappers complete and when the

Algorithm 2 Barrier-less WordCount
Changes made to Algorithm 1 are boldfaced and italicized.

function reduce(key, values, context):
// key: a word
// values: a list of counts
result ← 0
for each v in values do

result ← result + v
end for
Insert (key, result) in the TreeMap

function run():
Create a new TreeMap
while context has more keys do

key ← current key from context
values ← current values from context
if TreeMap does not contain key then

Insert (key, 0) in the TreeMap
end if
reduce(key, values, context)

end while
// After all the reduce invocations are done
for each (key, value) in TreeMap do

Write (key, value) to context
end for

Fig. 1 Progress of MapReduce which performs a word count on a
3 GB Wikipedia data set

shuffle stage completes as the mapper slack. It is indicative
of the extra time taken by the buffering and sorting parts of
the Shuffle stage.
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In barrier-less MapReduce, there is no distinct barrier be-
tween Shuffle and Reduce. Instead, each Reducer works on
individual records as the Shuffle process pulls them in. Be-
cause these two stages are combined and interleaved, we see
an improvement in job completion time. We observe that
the job finishes within 160 seconds, or only 10 seconds after
the final Map task completes. This is a 30% improvement in
the job completion time for WordCount. This benefit arises
because we can perform meaningful work in the form of Re-
duce operations during the mapper slack time, in which the
barrier version is performing the shuffle/sort operation. At
the same time, since our modifications were non-invasive,
the correctness and the completeness of the MapReduce ex-
ecution is not compromised.

Finally, we observe that depending on the application, the
amount of memory consumed at each Reducer by partial re-
sults may vary. In the worst case the number of partial results
may become very large and cause the Reducer to run out of
memory. This motivates the development of new memory
management techniques that can prevent overflows and we
address this in Sect. 5.

4 Classifying reduce operations

In order to understand the implications of breaking the bar-
rier in the general case, we need to understand concrete
MapReduce applications. Hence, we performed a case study
of a wide variety of published MapReduce applications and
investigated how to break the barrier for each of them. The
applications we studied were the following: MapReduce ex-
ample benchmarks [7]; machine learning benchmarks [5];
statistical machine translation [4], [9]; optimization algo-
rithms [24]; finance algorithms [3]; and similarity scor-
ing [10].

We classified the Reduce operations performed in these
applications. The result is a list of seven types: Identity,
Sorting, Aggregation, Selection, Post-reduction processing,
Cross-key operations and Single reducer aggregations. This
information is summarized in Table 1. In the rest of this sec-
tion, we present our classification. For each type, we discuss
a representative application and how partial results must be
stored and updated during execution in barrier-less MapRe-
duce.

4.1 Identity

Identity operations are Reduce operations that perform little
to no explicit work. An example of an Identity operation is
a Distributed Grep application [7]. The Map function emits
a line of text if it matches a pattern. The Reduce function is
merely used to write the final output.

Identity operations are the simplest kind of Reduce op-
eration. They do not require the Reduce input to be sorted
by key. There is also no need to keep partial results for any

keys, because the results are written immediately as final
output. Hence, there is no difference between implementing
this operation for original and for barrier-less MapReduce.

4.2 Sorting

This is the only prominent kind of operation we found that
requires a strict ordering on the output keys. For sorting op-
erations, the Reduce operation must write output that is in
a sorted order. This is a popular application, e.g., a sort im-
plemented in Hadoop holds the record for the fastest sort of
100 TB of data [19].

The implementation of a sorting operation is dependent
on whether or not a barrier is present. With a barrier, the im-
plementation of a sorting operation is identical to an Identity
operation. The MapReduce framework itself, rather than the
Reduce operation, does the job of sorting the output by key.
If sorting by value is also required, a secondary sort oper-
ation is easily performed using custom grouping and com-
parison operations. However, this is not the case when the
barrier is broken.

Effect of no barrier: To implement a sorting operation
without a barrier, the data must be sorted in the Reduce
function, typically through the use of an ordered data struc-
ture like a Red-Black tree. None of the partial results can be
emitted until all the values have been seen and completely
sorted. Thus, in the worst case each Reducer must main-
tain a data structure of size O(records), the total number of
records executed at the Reducer.

4.3 Aggregation

We classify aggregation operations as those that are com-
mutative and distributive—they include addition and multi-
plication. They perform an operation on all the values asso-
ciated with a key, and emit an aggregated value as output.
Since the operations are commutative, the ordering of the
keys is not required.

An example is the WordCount application from Sect. 3.
For each key, the entries that contain the count of the key are
summed up into the aggregate word count. In the original
version, the Reduce function is invoked with a key and all of
its associated values. Hence, it can aggregate them and emit
the final count immediately.

Effect of no barrier: For the barrier-less version, a run-
ning aggregate result must be maintained for each key. Thus,
the Reducers must maintain O(keys) state for storing the
partial results. The Reducer outputs the results only when
all the keys and their associated values have been processed.

4.4 Selection

Selection operations are those that select a subset of the val-
ues associated with a key. Examples include finding the max,
min, median, or top k values.
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With a barrier present, while sorting keys the framework
can also allow the developers to sort values as well (e.g.,
Hadoop’s secondary sort). Given such an ordering, the Re-
duce function can trivially select the values of interest. For
example, when finding a minimum, the Reducer can select
and output the first value for every key.

In our barrier-less implementation, we bypass the sort op-
eration, so these operations must be performed on a running
basis. For example, a running minimum (or minimum k val-
ues) can be kept and updated as new values arrive. There-
fore, the barrier-less version of a selection operation main-
tains a per-key context with the currently selected values,
and emits the final output once all values have been pro-
cessed.

To investigate selection algorithms, we implemented a k-
Nearest Neighbors algorithm. This is a classic algorithm that
reads in two sets of data, a training set and an experimental
set, and finds the k values in the training set closest to each
value in the experimental set. It was first presented in [12]
and is often used in statistical analysis applications, such as
finding pairwise similarity [10].

The distance between an experimental value (E) and the
training value (T ) is defined as the absolute value of their
difference (|E − V |). It is necessary to compare each exper-
imental value to every training value. The barrier version’s
Map function emits a tuple (E, |E − V |) for the key, and
an integer T for the value. A secondary sort is performed,
sorting by the |E − V | value in the key, but grouping by E.
Then, in the Reducer, the first k values are emitted.

Effect of no barrier: The barrier-less version maintains a
k-value-per-key context, stored as a TreeMap (a Red-Black
tree implementation in Java) of linked lists. The Mapper
emits an integer E as the key and a tuple (T , |E − V |) as
the value. There is no need to emit a tuple as before, since a
sort is not performed. Now, for each key, the Reducer main-
tains a size-k ordered linked list, and decides if the most re-
cently received (E, |E − V |) tuple belongs in the list, based
on the |E − V | value within the tuple. If this is the case, it
is inserted into the appropriate location within the ordered
linked list, evicting the tuple with the largest distance if the
linked list size exceeds k. Once all value tuples have been
processed for a key, the contents of the linked list (namely
the top k E values), are emitted.

4.5 Post-reduction processing

In post-reducer processing operations, the Reduce operation
works in two steps. First, the entries with a key are processed
and inserted into a temporary data structure. When all the
entries for a key have been processed, a post-processing op-
eration is applied on the temporary data structure to get the
final output for the key.

An example application is the one used at Last.fm to track
the number of unique users that listen to each track of music

in the service [26]. Entries of the input data consists of a
userId and trackId (and other information). The trackId is
the key of the record. The number of unique users per track
is counted in two steps. In the processing stage, the userId of
each record is added into a data structure that does not hold
duplicate values e.g., the code presented in [26] uses a Java
Set. Then the post-processing step counts the total number
of entries in the data structure.

Effect of no barrier: With a barrier, the temporary data
structure will grow with the maximum number of records
with a certain key. This in itself could be a large amount
of data. However, when the barrier is broken, the structure
can grow even larger. The temporary data structure for each
key must be maintained, in a partial result structure such as
a TreeMap. The total amount of partial results can grow to
O(records).

4.6 Cross-key operations

Typically a Reduce function processes its keys independent
of the other Reduce functions. However, in cross key oper-
ations, the Reduce function can depend on other keys, for
example the previous k keys. This can be implemented by
maintaining a window of k previously seen keys, operating
over them and emitting the final output. Since Reduce does
not depend on other keys, it can terminate after emitting its
output.

To investigate cross-key operations, we use the example
of genetic algorithms; in particular we use [24]. Each indi-
vidual (I ) is represented as a key and the Mapper computes
the fitness (F ) of each individual and emits the tuple (I,F ).
The Reducer maintains a window of previously seen indi-
viduals and when the window is full, performs the selection
and crossover operations of the genetic algorithm and finally
emits the individuals as output.

Effect of no barrier: Only partial results for the window
containing the previous k keys need to be maintained. When
a partial result is removed from the window, it is written
as a final result. Thus, the memory requirement for storing
partial results is O(k).

4.7 Single reducer aggregation

Single reducer aggregations involve the use of a single Re-
ducer to aggregate the outputs from multiple Mappers. This
is generally used for determining measures of central ten-
dency or dispersion where global knowledge of all the Map
outputs is required.

We study single reducer aggregations through a Monte
Carlo simulation that computes the Black-Scholes option
pricing value ([3, 11]). Each Mapper performs complex
floating point operations like exponentiation according to
the Black-Scholes formula and the Reducer computes the
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average and standard deviation of all the values computed
by the Mappers.

Effect of no barrier: The average operation can be incre-
mentally computed by maintaining a running sum of the val-
ues and performing a division at the end. In order to calcu-
late the standard deviation along with the average, the Map-
per emits the square of the value along with the value itself.
The Reducer maintains a running sum of the squares of the
values along with a running sum and a count of the values.
Let x1, x2, . . . , xN be the values whose mean is x̄. The stan-
dard deviation is computed as follows:
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√
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1

N
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N
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As only the running sums have to be saved, only O(1)

memory is required for storing the partial results at the Re-
ducer. Since summations are commutative operations, order-
ing of the keys is not required.

5 Managing memory overflows

As noted in Sect. 3, an important change in our barrier-less
MapReduce framework is the need to manage the storage
of partial results. Depending on the category of the Reduce
operation involved (see Sect. 4), the partial result memory
complexity can be up to O(records), growing to the num-
ber of records executed at the Reducer. For large datasets,
which MapReduce caters to, this can quickly overflow the
in-memory capacity at a server. For instance, the line “In-
memory TreeMap” in Fig. 2 shows the amount of heap space
used by a Reducer in a MapReduce job which performs
a WordCount on a 16 GB dataset. The used memory in-
creased, until the Reducer ran out of available heap space.
An OutOfMemory exception was thrown and the job was
killed around 80 s.

In order to address these memory overflow problems, we
explore two possible memory management solutions: a disk
spill and merge scheme and an off-the-shelf disk-spilling
key/value store.

5.1 Disk spill and merge

In the disk spill and merge scheme, we define a memory
threshold. If memory usage for partial results reaches this

Fig. 2 WordCount over a 16 GB dataset with 10 Reducers. Having the
complete TreeMap in memory leads to out of memory error. Spill and
merge uses less memory and the job completes successfully. Partial
results threshold is 240 MB

threshold, it is spilled to a newly created file on disk. When
all records have been processed, the spilled files are merged
using a merge function defined by the programmer.

During the course of execution at a Reducer, the mem-
ory threshold may be reached multiple times, creating many
spill files. Thus, partial results for a single key may be spilled
onto multiple different spill files. After all invocations of the
Reduce function at a Reducer are finished, all the partial re-
sults for a single key must be merged together.

The disk spill and merge scheme is designed to allow the
merge to be performed efficiently. Partial results are sorted
by key as they are moved to a spill file. Then the merge phase
merges all the partial results for each key in a straightfor-
ward manner, similar to an external merge-sort. For every
local spill file, the first partial result is loaded into the mem-
ory and stored in a buffer. Spill files containing the globally
lowest key are then repeatedly read from until the lowest
key’s partial results are all loaded into memory. Once all
partial results for a key have been merged, the result can be
written as the final output. The next globally lowest key is
found and processed in the same fashion, until all keys have
been processed.

The method of merging results of each key depends on
the application and the data structure that stores the partial
results. Thus, the programmer supplies the merge function.
This function is functionally similar to the combiner method
of MapReduce (as specified in [7]), but may be customized
if more complex methods are required for maintaining par-
tial results.

The effect of using Disk Spill and Merge is shown in
Fig. 2. In our implementation, we maintain a count of
records in the partial result data structure to estimate the
memory usage. We spill to and read from disk by using
Java’s serialize/deserialize interface. The line “Spill and
Merge” shows that the partial results data structure is kept
below the memory threshold.
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5.2 Disk spilling key/value store

Instead of flushing the entire contents of the memory to a
file on the disk, the partial results can be maintained in a
key/value store that has the capability of spilling to disk. Ev-
ery invocation of the Reduce function fetches the previous
partial result from the key/value store, processes the current
input and then stores the result back into the key/value store.
This read-modify-update cycle is carried out for all the in-
puts to the Reducer. The key/value store is capable of evict-
ing some records out of memory and spilling to disk accord-
ing to policies like Least Recently Used (LRU), whenever it
runs out of memory.

We experimented with different key/value stores such as
BerkeleyDB [18], Tokyo Cabinet [23] and MongoDB [17].
Among these, BerkeleyDB (Java Edition) exhibited the
highest raw read and write throughput in terms of operations
per second. Hence, we chose it as the key/value system to
run our experiments. We configured BerkeleyDB for per-
formance without guaranteeing fault-tolerance of the data,
because the MapReduce framework takes care of these con-
cerns. The transaction log buffers were maintained in mem-
ory and only written to stable storage when BerkeleyDB
determines that they are full or it is out of main memory.

5.3 Qualitative comparison

The disk spill and merge approach has the advantage of
avoiding the thrashing of in-memory data, unlike Berke-
leyDB’s caching scheme. Similarly, because it is intended
specifically for managing partial result storage, it is more
lightweight and efficient than a generic disk-spillable key/
value store. On the other hand, it will not be able to take ad-
vantage of any prior knowledge of the distribution of keys,
as it treats each of them equally. Therefore, in situations
where certain keys are significantly more common than oth-
ers, unnecessary spilling may occur. BerkeleyDB, like most
key/value stores, performs caching and pre-fetching of com-
mon entries, in order to minimize reading from disk, and
can therefore exploit temporal locality. We compare these
approaches quantitatively in Sect. 6.5.

6 Experimental evaluation

In this section, we evaluate the performance characteristics
of our implementation of barrier-less MapReduce. Our im-
plementation is based on Hadoop 0.20. We measured the
improvement over the original Hadoop 0.20 for the seven
classes of applications described in Sect. 4.

We performed our experiments on 16 nodes from the
Cloud Computing Testbed (CCT) [15] running 64 bit Cent
OS 5.4 operating system. Each node has dual Intel Quad

cores, 16 GB RAM and a single 1 TB hard disk. The
nodes are connected together with a Gigabit Ethernet switch.
A single node was configured to be the JobTracker and the
NameNode and the other 15 nodes were used as slaves. The
replication factor of the distributed file system was set to 3
and the default chunksize was 64 MB. The number of Map-
pers and Reducers per node was set to 4, in order to utilize
all the 8 cores on each node.

6.1 Improvement with input data size

We experimentally evaluated the improvements in the job
completion times for six applications in the following sub-
sections. These applications correspond to the seven classes
described in Sect. 4. (We omit the Identity class because
the original and barrier-less versions are identical.) Figure 3
shows the job completion times for various benchmarks with
and without barrier.

6.1.1 Sort

Our barrier-less sort is implemented in a similar manner to
our WordCount implementation, in order to avoid consum-
ing memory for duplicate keys. We use a Red-Black tree im-
plementation (Java TreeMap) to store a per-key count value.
This count value is incremented, when a duplicate key is
encountered. When we output the results, we emit the dupli-
cates of the key count number of times.

This is a degenerate case, because in the original MapRe-
duce, both Mappers and Reducers perform no work. The
comparison between the original and the barrier-less MapRe-
duce versions becomes a competition between the two sort-
ing mechanisms. In this case the original merge sort is faster
than performing insertions into a Red-Black Tree. As a re-
sult, we observed slight slowdowns in the barrier-less ver-
sion, up to 9% in the 8 GB case, and going down to 2% for
the 16 GB case.

6.1.2 WordCount

The WordCount application involves the aggregation oper-
ation of summing the count of the word occurrences. De-
spite the relatively small amount of non-sorting work per-
formed in this benchmark, we observed that the barrier-less
approach results in an average of 15% decrease in job com-
pletion times. Although the work performed in the barrier-
less WordCount is essentially the same as in the barrier-less
Sort, WordCount has more room for improvement due to the
extra aggregation work the original version performs. This
shows that, although Reducers performing no work may not
see gains from our barrier-less system, even work as sim-
ple as aggregation can see notable gains. However, this im-
provement did not increase proportionally with the size of
the dataset, since writing the output to the distributed file
system is the bottleneck.



Cluster Comput (2013) 16:191–206 199

Fig. 3 Comparison of different benchmarks: Sort, WordCount (WC), k-Nearest Neighbor (KNN) and Post Processing (PP) with and without
barrier, with increasing dataset sizes

6.1.3 k-Nearest Neighbors

This application uses a selection operator which selects the
top k values from the input keys. For our experiments, we
used a k value of 10. Our data values ranged from 0 to
1,000,000. The barrier-less version of k-Nearest Neighbors
must perform extra work in maintaining a sorted list of the
top k values, which is done automatically by the Shuffle
stage in the original framework.

Nevertheless, we observed an average decrease of 18%
in job completion times. This improvement slowly increased
as the dataset size was increased, since the number of Map
rounds increased, thereby increasing mapper slack. In addi-
tion, the experimental values must be unique while training
set values need not be. Therefore, the number of keys did
not grow at the same rate as the number of values, resulting
in less per-key data. This nature of the data affects perfor-
mance as it results in relatively lesser memory overhead for
the barrier-less version.

6.1.4 Last.fm unique listens

The calculation of unique listens uses post-reduction pro-
cessing. The application counts the unique number of users
that listen to a track. We ran our experiments on a dataset
that generated track listens, uniformly at random across 50
users and 5000 tracks. For varying sizes of input data, we
consistently observed a 20% decrease in job completion
time.

6.1.5 Genetic Algorithms

Genetic Algorithms are used to exemplify cross-key opera-
tions. The genetic algorithm required no change to perform
barrier-less calculation, as no per-key data had to be main-
tained. The algorithm in both the original and the barrier-less

Fig. 4 Genetic Algorithms (GA) and Black Scholes (BS) with and
without barrier, varying the number of Mappers

versions only need to maintain O(window_size) keys, since
each key is independent of the others.

In this experiment (Fig. 4), we executed a genetic algo-
rithm with a population of 50 million individuals per mapper
and varied the dataset size by increasing the number of map-
pers. The number of Reducers was set to 40. We observed
that the performance is limited by the time spent in writing
intermediate data to the local disk or the output to the dis-
tributed filesystem. This resulted in a benefit of about 15%,
which stays relatively constant as the dataset size increases.

6.1.6 Black-Scholes options pricing

The calculation of options pricing using Black-Scholes in-
volves using a single reducer aggregation to calculate the
mean and standard deviation. In this experiment, we exe-
cuted a million iterations of the Black-Scholes algorithm per
mapper. Black-Scholes, similar to genetic algorithms, has a
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constant amount of memory in use at the Reducer (O(1)

with relation to the input dataset size). However, unlike ge-
netic algorithms, the output data is also constant in size since
it is just a single running average and standard deviation.
Figure 4 shows that our approach resulted in an average ben-
efit of about 56%, which continued to increase as the number
of iterations increased. The maximum improvement in com-
pletion time observed was 87%. This is the best performance
of our approach across all application classes.

6.1.7 Comparing improvement across applications

Black-Scholes showed the largest improvement, due to
the O(1) memory overhead and output dataset size. The
other benchmarks had improvements that stayed consistent
around the 20% mark, which was the common case due
to the limitations imposed by mapper slack and time spent
writing to disk. In addition, sort was observed to be our
worst case with a small performance loss on average.

Fig. 5 Genetic Algorithms with and without barrier, varying the num-
ber of reducers

6.2 Performance improvement breakdown

In order to better understand the reason behind the improve-
ment in overall completion time for barrier-less MapReduce,
we take an in-depth look at the execution of two of the appli-
cations, WordCount and Genetic Algorithm. We chose these
applications because they showed improvements closest to
the average.

In Fig. 6, we plot a CDF of the duration of each task in the
Reduce stage, for both original MapReduce and barrier-less
MapReduce. The task duration denotes the duration from
when the first byte is received at the Reduce task from a
Map task, to when the Reduce task emits its final byte of
output. We make two observations about the improvement
in overall completion time. First, the median Reduce task
completion time is smaller for barrier-less MapReduce. For
WordCount, up to the 95th percentile, the gap is between
20 to 30 seconds, while for Genetic Algorithm, up to the
90th percentile, the gap is between less than 5, to around
10 seconds. Secondly, the original MapReduce contains out-
lier Reduce tasks that have significantly longer completion
times than other Reduce tasks. In contrast, we do not see
any significant outliers in barrier-less MapReduce. Due to
this, there is a large gap between the Reduce tasks with the
longest completion times: the gap for WordCount is more
than 40 seconds, while for Genetic Algorithm it is almost 25
seconds.

These factors are also visibly present in Fig. 7, where we
plot the end time for each Reduce task, i.e., when the final
byte of output is emitted, counting from the start of the entire
MapReduce job.

Figures 8 and 9 plot the start and duration for each indi-
vidual Map and Reduce task. For original MapReduce, the
Reduce stage is separated into Shuffle, Sort (not to be con-
fused with the Sort application), and Reduce function exe-
cution. Shuffle execution is dominated by network I/O, Sort

Fig. 6 CDF of Reduce task duration
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Fig. 7 CDF of end times of Reduce tasks

Fig. 8 Lanes plot of WordCount

Fig. 9 Lanes plot of Genetic Algorithms

is dominated by disk I/O, and Reduce is dominated by CPU
computation. From the plot, we observe two main causes
of the dissimilarity in Reduce task duration times. First, the
contrast in median completion time is because barrier-less

MapReduce is able to successfully interleave both disk I/O
and CPU computation together with network I/O. Thus, the
duration of the entire barrier-less Reduce task is close to
the duration of Shuffle for the original Reduce task. Sec-
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Fig. 10 WordCount performance on heterogeneous machines processing 7.5 GB (left) and 55 GB input dataset (right)

ond, Sort appears to be the main cause for the outliers of the
original Reduce—this is likely caused by heterogeneity of
disk I/O performance within the cluster.

The variation in Reduce execution time for Genetic Algo-
rithm is likely due to the involved computation being more
complex. We observe high variance in the duration for both
Map and Reduce function execution for the original tasks.
This effect is also observed in the barrier-less setting, where
the end times of the Reduce tasks in Genetic Algorithm have
more variance than WordCount.

Thus, we conclude that for the Genetic Algorithm and
WordCount applications, any outliers arising from our set-
ting are eliminated by using a barrier-less approach.

6.3 Improvement with number of Reducers

In order to understand the sensitivity to the number of Re-
ducers, we varied the Reducer count in Fig. 5 and observed
the improvement as the count rose from 30 to 70 (which is
10 more than the number of available CPU cores for Re-
ducers). This illustrates the effect of applications or systems
with an irregular amount of Reducers, for example if nodes
fail in the middle of computation.

Our results show that although job completion time de-
creased as the compute utilization increased (as the num-
ber of Reducers reached the compute capacity of 60), our
improvement over the barrier version decreased somewhat.
When the number of Reducers surpassed the amount of
compute resources available (70 Reducers running on 60
cores), the job completion time increased, but our improve-
ment also increased.

The reason for our scheme having a larger improvement
when the system is underutilized (for example when there
are only 30 Reducers), is that each Reducer has to shuffle
respectively more data than in the fully utilized case. This
means that the shuffle time is larger, and the mapper slack,

during which the barrier-less version can perform meaning-
ful work, is also larger. As the utilization becomes more
full, the mapper slack decreases, limiting, but not removing,
the benefit gained from breaking the barrier. On the other
hand, once the system becomes over-saturated (the 70 Re-
ducer case), a new round of Reducers is needed, which must
themselves undergo a shuffle stage, once again increasing
the mapper slack. In other words, the benefit of switching
to a barrier-less framework is closely tied to the amount of
mapper slack in the runtime.

6.4 Cluster heterogeneity

We go a step further and induce more heterogeneity, by plac-
ing multiple Mappers and Reducers on a designated over-
loaded machine. This setup emulates heterogeneity caused
by different loads on cluster machines, e.g. which is typical
in a virtualized data center [28].

In these experiments, we look at the effect of cluster
heterogeneity on barrier-less MapReduce and compare it to
original MapReduce. Some heterogeneity is already present
in our cluster despite it being composed of machines with
originally identical specifications. We go a step further and
induce more heterogeneity, by overloading machines with
more Mappers and Reducers. Our 16 machine cluster has
1 master and 15 workers. We vary the number of worker
machines n from 15 to 13, with the following configura-
tion: n − 1 machines each have 4 map and 4 reduce slots
while the nth (designated) machine has (16 − n) ∗ 4 map
and (16 − n) ∗ 4 reduce slots. This causes the nth machine
to be overloaded.

Figure 10 shows the execution time of WordCount with
15, 14, and 13 worker machines, i.e., when the designated
machine is configured with 4, 8, and 12 Mappers and an
equal number of Reducers respectively. This mimics, for
example, a virtualized cluster where heterogeneity can be
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Fig. 11 Lanes plot of WordCount processing 7.5 GB on 13 heterogeneous machines

caused by many virtual machines being run on a single ma-
chine. When the input dataset processed is 7.5 GB, the en-
tire intermediate data is kept in memory for both barrier-less
and original MapReduce. We see a large difference (54%)
in execution time in the case of the 13 worker machines.
We observe that increasing the heterogeneity from 14 to
13 worker machines leads to 58% worse performance for
original MapReduce, but only 27% worse performance for
barrier-less MapReduce.

In order to understand the cause for this improvement,
Fig. 11 shows the start and duration of each task when Word-
Count is run on 13 worker machines. In this configuration,
one of the machines is configured with 12 Mappers and 12
Reducers, while the other 12 machines are configured with
4 Mappers and 4 Reducers. We observe that the duration
of the map tasks on the overloaded machines is longer in
original MapReduce. This is because the overloaded ma-
chines have too little available memory per task, and thus
the Mappers must buffer their records on disk. These Map
outliers, coupled with the barrier, force the Reduce function
execution to be delayed. In contrast, barrier-less Mappers
are not required to buffer all records because they transfer
records immediately. Thus, disk I/O time is saved resulting
in the overloaded Map outliers finishing earlier than their
original counterparts. Also, because there is no barrier, the
Reduce function execution is interleaved with the network
transfer, resulting in the combined Shuffle and Reduce fin-
ishing shortly after the final outlier Mapper. As a result of
the combination of these factors, we observe that the en-
tire job completes in our barrier-less MapReduce implemen-
tation before even the Map stage is completed in original
MapReduce.

When the input dataset size is increased to 55 GB, the
amount of intermediate data processed per Reducer in-
creases above the available memory limit and the disk spill
and merge technique is used in the barrier-less version,
while the original version uses an external MergeSort. In

Fig. 12 WordCount with different memory management techniques
with increasing number of Reducers

this case, we observe that the difference (27%) is smaller
when the disk spill and merge technique is used instead of
keeping the intermediate results entirely in memory, because
disk I/O is required.

Thus, we conclude that our barrier-less implementation
reduces variation in task completion times and thus helps in
reducing the performance degradation due to some types of
heterogeneity.

6.5 Memory management techniques

We compared the different memory management techniques
described in Sect. 5. Figure 12 shows a plot of the job com-
pletion times for WordCount with and without a barrier,
while varying the number of Reducers. The disk spill and
merge scheme performed slightly worse than storing the par-
tial results in memory. However, as the number of Reducers
was decreased below 25, the in-memory technique resulted
in an out of memory exception and the job was killed. The
spill and merge technique continued to perform better than
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Fig. 13 WordCount with different memory management techniques
with increasing dataset size

Table 2 Programmer effort, in terms of LOC required to convert
MapReduce applications to their barrier-less versions

Application Lines of code (LOC)

Original Barrier-less % increase

Sort 28 95 240%

WordCount 73 88 20%

k-Nearest Neighbors 195 208 10%

Post Processing 73 91 25%

Genetic Algorithm 532 533 0%

Black-Scholes 251 252 0%

the original MapReduce. BerkeleyDB on the other hand,
performed poorly on the WordCount. Even though we could
observe about 30,000 inserts per second into the database,
this was not enough throughput to keep up with the millions
of small records handled at each Reducer. This result shows
that off-the-shelf key/value stores may not be a suitable op-
tion for MapReduce workloads.

Figure 13 shows a comparison with increasing dataset
size. It can be seen that as the dataset increases, both the disk
spill and merge, and the in-memory barrier-less versions,
outperformed the original version. Again, the BerkeleyDB
key/value store can not keep up with the high frequency of
record accesses.

6.6 Programmer effort

Table 2 summarizes the programmer effort required, in
terms of lines of code, to convert the MapReduce applica-
tions into their barrier-less counterparts. The code for sort-
ing in the original case is very short due to the use of the
Identity Mapper and the Identity Reducer, since the frame-
work does the job of sorting. However, we had to add more
functionality in the Reduce function of the barrier-less ver-

sion. WordCount, k-Nearest Neighbors and Post Processing
required small changes to compute and update the partial re-
sults. For Black-Scholes and the genetic algorithm, the only
change required was that a flag for barrier-less execution be
turned on.

7 Related work

MapReduce has been widely used for processing large data
because of its simple model that is applicable to “em-
barrassingly parallel” problems—such as log processing.
Current research looks to push MapReduce by using it to
solve harder problems. These include machine learning [5],
statistical machine translation [4–9], optimization [24], fi-
nance [3], and similarity scoring [10]. MapReduce is a log-
ical choice because it allows the problems to be solved on
a loosely coupled set of machines, with less effort than pro-
ducing custom parallel processing code. However, MapRe-
duce does not always give the most efficient parallel process-
ing implementation. In this paper, we looked at the stage bar-
rier in MapReduce and showed how breaking it may result in
making MapReduce more efficient for general MapReduce
problems.

We are not the first to investigate the transition between
the Map and Reduce stages. In MapReduce Online [6], data
is pushed by Mappers and merge-sorted by Reducers at a
finer granularity. This has two main advantages. First, this
effectively overlaps (pipelines) the stages, resulting in faster
runtime. Our work can similarly benefit from such an op-
timization. Second, this allows early partial results (snap-
shots) to be computed to approximate the correct result.
Each snapshot must be computed independently of others
and furthermore, previous snapshots do not help in comput-
ing subsequent results. In contrast, by storing partial results
we are able to decrease the time needed to compute the ac-
tual final result.

Similar techniques like incremental updates of materi-
alized views [14], hash-based joins [8], etc. have been ex-
plored by the parallel database community. However, such
techniques can only be applied to a select group of opera-
tors, while our technique can be applied to many arbitrary
MapReduce programs. Also, MapReduce programs benefit
from scalability and fault tolerance at the cost of some per-
formance overhead as compared to parallel DBs. There is
a considerable amount of debate on MapReduce vs paral-
lel databases [22]. Pavlo et. al [20] perform a comparison
of MapReduce and parallel databases for large scale data
analysis and demonstrate the overhead of materializing the
intermediate data in MapReduce.

Improving the efficiency of MapReduce has been of re-
cent interest to the systems community. Much of the re-
search presented has required changes to the MapReduce



Cluster Comput (2013) 16:191–206 205

API [27]. Other work has aimed to be completely transpar-
ent to the programmer [28]. Our work is a combination of
both categories. We have preserved the baseline MapRe-
duce API, while empowering the programmer to improve
performance by relaxing assumptions in the Reduce func-
tion.

Dryad [16] is a distributed platform that has been de-
veloped at Microsoft to provide large-scale, parallel, fault-
tolerant execution of processing tasks. The techniques in this
paper can likely be applied to break the barrier in a similar
way to the MapReduce barrier. Because Dryad is a closed
system, we were not able to make modifications to apply
these techniques.

There has been recent interest in dealing with outliers
in MapReduce clusters. The Longest Approximate Time to
End (LATE) scheduling algorithm [28] was designed to pro-
vide better performance in the face of outliers. The algo-
rithm shows improved performance in virtualized, heteroge-
neous clusters. The Mantri system [2] is also designed to tar-
get MapReduce outliers to improve performance. The sys-
tem uses real-time progress reports to detect outliers early in
their lifetime, and takes corrective action depending on the
cause of the outlier and the available resources in the cluster.
While not the main goal, our barrier-less implementation is
shown to reduce outliers and their effect on job completion
time, in homogeneous conditions and under some types of
heterogeneity.

8 Conclusion

This paper demonstrated that general purpose MapReduce
frameworks without a barrier are feasible, and they can
result in significant performance benefits. By intelligently
managing memory and identifying which forms of Reduce
functions see the most benefit, our experiments with Hadoop
demonstrate speedups of up to 87% for well-suited applica-
tions, and an average of 25% for more typical applications.
This is because our barrier-less MapReduce framework al-
lows the interleaving of network I/O and computation while
keeping disk usage to a minimum. At the same time, our ap-
proach preserves the fault tolerance of the original MapRe-
duce model, and has similar ease of programming. Our work
opens up new avenues. Memoization, an optimization sim-
ilar to DryadInc [21] becomes feasible in the barrier-less
model.
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