
Cluster Comput (2012) 15:79–100
DOI 10.1007/s10586-011-0152-0

Software architecture definition for on-demand cloud provisioning

Clovis Chapman · Wolfgang Emmerich ·
Fermín Galán Márquez · Stuart Clayman · Alex Galis

Received: 12 September 2010 / Accepted: 11 January 2011 / Published online: 27 February 2011
© Springer Science+Business Media, LLC 2011

Abstract Cloud computing is a promising paradigm for the
provisioning of IT services. Cloud computing infrastruc-
tures, such as those offered by the RESERVOIR project,
aim to facilitate the deployment, management and execution
of services across multiple physical locations in a seamless
manner. In order for service providers to meet their quality
of service objectives, it is important to examine how soft-
ware architectures can be described to take full advantage of
the capabilities introduced by such platforms. When dealing
with software systems involving numerous loosely coupled
components, architectural constraints need to be made ex-
plicit to ensure continuous operation when allocating and
migrating services from one host in the Cloud to another.
In addition, the need for optimising resources and minimis-
ing over-provisioning requires service providers to control
the dynamic adjustment of capacity throughout the entire
service lifecycle. We discuss the implications for software

This research has been partly funded by the RESERVOIR EU FP7
Project through Grant Number 215605.

C. Chapman (�) · W. Emmerich
Dept. of Computer Science, UCL, Gower Street, London, UK
e-mail: c.chapman@cs.ucl.ac.uk

W. Emmerich
e-mail: we@acm.org

F.G. Márquez
Telefónica I+D, Emilio Vargas 6, Madrid, Spain
e-mail: fermin@tid.es

S. Clayman · A. Galis
Dept. of Electronic Engineering, UCL, Gower Street, London, UK

S. Clayman
e-mail: s.clayman@ee.ucl.ac.uk

A. Galis
e-mail: a.galis@ee.ucl.ac.uk

architecture definitions of distributed applications that are
to be deployed on Clouds. In particular, we identify novel
primitives to support service elasticity, co-location and other
requirements, propose language abstractions for these prim-
itives and define their behavioural semantics precisely by es-
tablishing constraints on the relationship between architec-
ture definitions and Cloud management infrastructures using
a model denotational approach in order to derive appropriate
service management cycles. Using these primitives and se-
mantic definition as a basis, we define a service management
framework implementation that supports on demand cloud
provisioning and present a novel monitoring framework that
meets the demands of Cloud based applications.

Keywords Cloud computing · Service definition · Software
architecture · Service management · Monitoring system

1 Introduction

Cloud computing [35] is a promising paradigm for the pro-
visioning of IT services. Cloud computing infrastructures,
such as those offered by the RESERVOIR project [25], aim
to facilitate the deployment, management and execution of
services across multiple physical locations in a seamless
manner.

Until recently, operating systems managed the allocation
of physical resources, such as CPU time, main memory, disk
space and network bandwidth to applications. Virtualisa-
tion infrastructures, such as Xen [4] and VMWare [31] are
changing this by introducing a layer of abstraction known
as a hypervisor. A hypervisor runs on top of physical hard-
ware, allocating resources to isolated execution environ-
ments known as virtual machines, which run their own in-
dividual virtualised operating system. Hypervisors manage

mailto:c.chapman@cs.ucl.ac.uk
mailto:we@acm.org
mailto:fermin@tid.es
mailto:s.clayman@ee.ucl.ac.uk
mailto:a.galis@ee.ucl.ac.uk

80 Cluster Comput (2012) 15:79–100

the execution of these operating systems, booting, suspend-
ing or shutting down systems as required. Some hypervisors
even support replication and migration of virtual machines
without stopping the virtualised operating system.

It turns out that the separation between resource pro-
vision and operating systems introduced by virtualisation
technologies is a key enabler for Cloud computing. Specif-
ically, virtualisation is an enabler for Infrastructure-as-a-
Service (IaaS) Clouds, the type on which this paper is fo-
cused. For a description of the different types of Cloud com-
puting see [35].

Compute Clouds provide the ability to lease computa-
tional resources at short notice, on either a subscription or
pay-per-use model and without the need for any capital ex-
penditure into hardware. A further advantage is that the unit
cost of operating a server in a large server farm is lower
than in small data centres. Examples of compute Clouds are
Amazon’s Elastic Compute Cloud (EC2) [1] or IBM’s Blue
Cloud [15]. Organisations wishing to use computational re-
sources provided by these Clouds supply virtual machine
images that are then executed by the hypervisors running in
the Cloud, which allocate physical resources to virtualised
operating systems and control their execution.

With an increasing number of providers seeking to mi-
grate services to the Cloud in order to save on deployment
costs, cater for rapid growth or generally relieve themselves
from the responsibility of provisioning the infrastructural re-
sources needed to support the service, whether related to
power, bandwidth, software or hardware [3], there is a cru-
cial need to ensure that a same service quality can be re-
tained when relying upon Clouds while generally delivering
on the promise of lowering costs by minimising overprovi-
sioning through efficient upscaling and downscaling of ser-
vices.

In this paper we review the implications of the emer-
gence of virtualisation and compute Clouds for software en-
gineers in general and software architects in particular. We
find that software architectures need to be described differ-
ently if they are to be deployed into a Cloud. The reason is
that scalability, availability, reliability, ease of deployment
and total cost of ownership are quality attributes that need
to be achieved by a software architecture and these are criti-
cally dependent upon how hardware resources are provided.
Virtualisation in general and compute Clouds in particular
provide a wealth of new primitives that software architects
can exploit to improve the way their architectures deliver
these quality attributes.

The principal contribution of this paper is a discussion of
architecture definition for distributed applications that are
to be deployed on compute Clouds. The key insight is that
the architecture description needs to be reified at run-time
so that it can be used by the Cloud computing infrastructure
in order to implement, monitor and preserve architectural

quality goals. This requires several advances over the state
of the art in software architecture. Architectural constraints
need to be made explicit so that the Cloud infrastructure can
obey these when it allocates, replicates, migrates and de-
activates virtual machines that host components of the ar-
chitecture. The architecture also needs to describe how and
when it responds to load variations and faults; we propose
the concept of elasticity rules for architecture definitions so
that the Cloud computing infrastructure can replicate com-
ponents and provide additional resources as demand grows
or components become unavailable. Finally, there must be
an understanding of how a management cycle for a ser-
vice deployed on a Cloud can be derived from a descrip-
tion of these constraints and we demonstrate how this can
be achieved using a model driven approach.

As such the overall contributions of the paper are as fol-
lows: we identify a list of requirements and constraints that a
provider must describe when deploying and hosting a multi-
component application on a Cloud. We present a language
for the description of such requirements that builds on ex-
isting standards and introduces new abstractions such as the
ability to specify on demand scaling. We define an archi-
tecture for a Cloud infrastructure to support these abstrac-
tions and specify clear behavioural semantics for our lan-
guage with respect to this architecture using a model deno-
tational approach. We then describe the overall implementa-
tion of the service lifecycle management process, with par-
ticular focus on service management components and the
monitoring infrastructure which will address the scaling re-
quirements and physical distribution of application services.
Finally we evaluate our language primitives experimentally
with a distributed computational chemistry application.

This paper is an enhancement and extension to work pre-
viously presented [5] and is structured as follows: In Sect. 2,
we present the background to this research and in particu-
lar the primitives that are now provided by modern virtu-
alisation and Cloud computing technologies in general and
the infrastructure developed by the RESERVOIR project in
particular. We then use a motivating example in Sect. 3 to
argue why architecture definition for Cloud computing dif-
fers from more conventional deployments. In Sect. 4, we de-
scribe our novel abstractions, such as co-location constraints
and elasticity rules for describing architectures that are to
be deployed in a Cloud. Section 5 presents the main com-
ponents of the architecture which manage the lifecycle of
services within a cloud, namely the Service Manager and
the Monitoring Framework. In Sect. 6 we describe the ex-
perimental evaluation of our approach by means of a com-
putational chemistry application that we have deployed in a
computational Cloud. We discuss related work and present
conclusions in Sects. 7 and 8.

Cluster Comput (2012) 15:79–100 81

2 Background

The Resources and Services Virtualization without Barriers
(RESERVOIR) project is a European Seventh Framework
Programme (FP7) project which aims to promote through
standardisation an open architecture for federated Cloud
computing. It defines an open framework of modular com-
ponents and APIs that enable a wide range of configurations
within the Cloud space, focusing on Infrastructure as a Ser-
vice (IaaS) Clouds [35].

The RESERVOIR architecture [25] aims to satisfy the vi-
sion of service oriented computing by distinguishing and ad-
dressing the needs of Service Providers, who understand the
operation of particular businesses and offer suitable Service
applications, and Infrastructure Providers, who lease com-
putational resources in the form of a Cloud computing in-
frastructure. This infrastructure provides the mechanisms to
deploy and manage self contained services, consisting of a
set of software components, on behalf of a service provider.

The Cloud computing abstractions supported by this in-
frastructure and the architecture we have used to implement
these abstractions are described in detail in [26]. The archi-
tecture is shown in Fig. 1.

RESERVOIR builds upon generally available virtuali-
sation products and hypervisors. The lowest layer of the
RESERVOIR architecture is the Virtual Execution Environ-
ment Host (VEEH). It provides plugins for different hy-
pervisors and enables the upper layers of the architecture
to interact with heterogeneous virtualisation products. The
layer above is the Virtual Execution Environment Manager
(VEEM), which implements the key abstractions needed for
Cloud computing. A VEEM controls the activation of vir-
tualised operating systems, migration, replication and de-
activation. A VEEM typically controls multiple VEEHs
within one site. The key differentiator from other Cloud
computing infrastructure is RESERVOIR’s ability to feder-

Fig. 1 RESERVOIR architecture

ate across different sites, which might be implementing dif-
ferent virtualisation products. This is achieved by cross-site
interactions between multiple different VEEMs operating on
behalf of different Cloud computing providers. This sup-
ports replication of virtual machines to other locations for
example for business continuity purposes. The highest level
of abstraction in the RESERVOIR architecture is the Ser-
vice Manager. While the VEEM allocates services accord-
ing to a given placement policy, it is the Service Manager
that interfaces with the Service Provider and ensures that re-
quirements (e.g. resource allocation requested) are correctly
enforced. The Service Manager also performs other service
management tasks, such as accounting and billing of service
usage.

An implementation of the VEEM layer, OpenNebula,
which we have used in our experimental evaluation de-
scribed below is publicly available from [24]. It provides
the ability to interact with hypervisors such as Xen [4] or
VMWare [31] via appropriate plugins and is included from
release 9.04 in the Ubuntu Linux distribution.

3 Motivation

How is a software development project now going to use
Cloud computing infrastructures, such as the one provided
by RESERVOIR. We aim to answer this question and then
derive the main research questions for this paper using a run-
ning example, an enterprise resource planning system, such
as those provided by SAP [27]. A high-level architecture
of an SAP system is illustrated in Fig. 2. SAP ERP sys-
tems have a multi-tiered software architecture with a rela-
tional database layer. On top of the database is an application
layer that has a Central Instance, which provides a number
of centralised services, such as synchronisation, registration
and spooling capabilities, and generally serves as a data-
base gateway. Moreover SAP applications have a number
of Dialog Instances, which are application servers responsi-
ble for handling business logic and generating HTTP-based
dialogues that are shown in a browser. A Web Dispatcher
may be used to balance workloads between multiple dia-
log instances. To date SAP systems are hosted in substantial
data centres, but organisations (playing the role of Service
Provider) in the future might wish to deploy it in a compute
Cloud in order to avoid the significant capital investment as-
sociated with the construction of a data centre.

If the SAP system is handed over to a Cloud computing
provider that uses an infrastructure based on the RESER-
VOIR architecture, a number of architectural constraints of
the SAP system will need to be obeyed by the Cloud. For
example, the Central Instance will frequently make queries
to the database and in a typical SAP configuration the Cen-
tral Instance and the database need to be co-located on the

82 Cluster Comput (2012) 15:79–100

Fig. 2 SAP three-tiered architecture

same LAN subnet. When the VEEM allocates the virtual
machines for the Central Instance and the DBMS to particu-
lar VEEHs, it will have to respect this co-location constraint.
Another architectural constraint is that the Central Instance
can not be replicated in any SAP system. Dialog Instances,
on the other hand are replicated to accommodate growing
demand. Therefore these architectural constraints have to be
expressed by the SAP provider and made available to the
Service Manager so that it can obey these constraints at run-
time.

This requires the software architecture to be expressed in
terms of services, their relationship and their resource re-
quirements. While a traditional SAP deployment would re-
quire that spare capacity is retained to deal with peaks in de-
mand, Cloud computing introduces the ability to minimise
overprovisioning by tying resource provision directly to the
needs of the application. Resource requirements, in this case
dictated by the number of Dialog Instances required to han-
dle the current load, can be scaled dynamically and adjusted
to maximise cost savings. This requires means of describing
the state of the system and rules for adjustments.

4 Architecture definition

4.1 Requirements

Based on an understanding of the underlying hosting in-
frastructure described in Sect. 2, and the example provided
in Sect. 3, we can break down the core issues that must be
defined when deploying and running software systems on
a Cloud computing infrastructure into the following high-
level requirements, in order to provide a suitable definition
for the terminology employed in later sections:

MDL1 software composition: A software system may be
composed of one or more loosely coupled components,

which may have differing resource (e.g. CPU, memory)
and software (e.g. operating system, libraries, disk im-
age) requirements.
The components of the multi-layered SAP system, the
Web Dispatcher, Central Instance, Dialog Instance and
DBMS, will have varying hardware and software require-
ments, but will nevertheless be required to be managed
jointly. We can expect for example the DBMS service to
be very I/O and memory intensive and with large stor-
age requirements. In contrast, the Dialog Instances may
be more processor intensive, and hardware requirements
may be adjusted accordingly.

MDL2 network topology: The system may require a spe-
cific network topology both to interconnect components
of the system and communicate with external systems.
With respect to the SAP system, the Web Dispatcher
should provide an external interface and internal compo-
nents should be at the very least interconnected, though
external access may not necessarily be required.

MDL3 capacity adjustment: Hardware requirements may
evolve during the lifetime of the system according to
workload, time or other application-level variables.
In order to deal with potential increases in requests, it may
be necessary to deploy additional Dialog Instances in or-
der to facilitate load balancing and ensure a certain level
of performance.

MDL4 dependencies: Deployment and un-deployment de-
pendencies may exist between components.
The order in which components of an SAP system are
started or stopped may affect the overall operation of the
system. The DBMS and Central Instance components,
serving as the backbone of the system, should be active
before individual Dialog Instances.

MDL5 location constraints: Constraints on the distribu-
tion of service components across physical locations may
exist.
Federation of Clouds is key to enabling scalable provi-
sioning of services. However along with the ability to
seamlessly deploy services across multiple physical and
administrative domains comes a need to allow service
providers to control the “spread” of the application by
defining clear constraints on the distribution of services
across sites. These constraints can be of a technical nature
(e.g. deploy certain components on a same host) or ad-
ministrative (e.g. avoid un-trusted locations). Though we
have, for example, established that the Central Instance
and DBMS should be located on a same (virtual) network,
a service provider may wish to minimise latency by ensur-
ing proximity.

MDL6 customisation: Components may be dependent on
configuration parameters not known until deployment.
When deploying multiple instances of a same component,
certain application-level parameters may be instance spe-
cific. As such it may be necessary to customise individual

Cluster Comput (2012) 15:79–100 83

instances upon their creation and deployment. Dialog In-
stances may for example require the IP addresses of the
Central Instance and DBMS to be provided, if this infor-
mation is not know at pre-deployment time (e.g. dynamic
IP allocation via DHCP).

In order to automate the management of a software sys-
tem on a Cloud infrastructure it is necessary for a service
provider to communicate both the software system stack
(OS, middleware, application, configuration, and data) pro-
viding self contained services in the form of a virtualised
image (addressing requirement MDL1) and a description of
these requirements in the form of a Service Definition Mani-
fest (addressing requirements MDL2-MDL6). The manifest
therefore serves as a contract between service and infrastruc-
ture providers regarding the correct provisioning of a ser-
vice. It hence reifies key architectural constraints and invari-
ants at run-time so that they can be used by the Cloud.

To define manifests, we require a declarative language
whose syntax should be sufficiently flexible to cater for a
general purpose service provisioning environment, and pro-
vide the necessary abstractions to describe capacity and op-
erational requirements of the software architecture both at
deployment time and throughout the entire lifecycle.

We rely in our implementation on the Open Virtualisation
Format (OVF) [10], a DMTF standard backed by VMWare
and XenSource which aims to offer a packaging mechanism
in a portable and platform neutral way. Building on open
standards facilitates interoperability particularly in the con-
text of federation and eases compatibility with existing ser-
vices and tools. In addition it ensures that as Cloud tech-
nology matures, continued compliance with the standard
avoids vendor lock-in and potential deployment on newer
platforms. OVF hence serves as a building block for our
manifest, and provides the syntax for the description of vir-
tual disks, networks, resource requirements and other issues
related to dependencies or customisation. However, OVF (as
other service description languages for existing virtualisa-
tion technologies) primarily caters for the initial distribution
and deployment of fixed size services [10], which does not
by itself fully realise the vision of Cloud computing.

Indeed, Clouds differ from traditional software deploy-
ment in many ways. Beyond the impact of virtualisation on
multi-component architectures, existing deployment mech-
anisms are typically one-way “channels” where a service is
configured and deployed according to an initial deployment
descriptor. There is no feedback mechanism to communicate
specific state, parameters and other information from a de-
ployed service back to the infrastructure to adapt the execu-
tion environment dynamically. The manifest should enable
the automation of provisioning and management through
template based provisioning, where the service manifest is
used as a template for easily provisioning instances of the
application, and support for resource consumption control.

We hence need to add a number of abstractions to OVF,
the primary being elasticity specification in the form of rules
allowing conditions related to the state and operation of the
service, such as application level workload, and associated
actions to follow should these conditions be met, applica-
tion domain description, which allow the state of the appli-
cation to be described in the form of monitorable application
level parameters and placement and co-location constraints,
which identify sites that should be favoured or avoided when
selecting a location for a service.

In previous work [13], we have discussed a number of
additional extensions to the OVF syntax to support Clouds,
including attribute and section changes to incorporate sup-
port for service components IDs in elastics arrays, cross vir-
tual machines reference, IP dynamic addresses and elasticity
rules and bounds. However, a syntactic definition of a de-
ployment descriptor only forms part of what is necessary to
ensure these requirements are met with respect to the under-
lying Cloud computing infrastructure.

Indeed, there must exist a clear understanding of how we
derive from the language used to express the requirements of
the Service Provider a management cycle, which will con-
sist of several actions being taken throughout the lifetime
of a service to ensure a certain service quality being ob-
tained. Using the RESERVOIR framework as a reference,
and examining specifically issues related to dynamic capac-
ity adjustment and service deployment, we now describe
how the behavioural semantics for our manifest language
are described and how they guide the operation of underly-
ing Cloud components.

Focusing specifically on elasticity and application do-
main description, as well as service deployment, we refine
and extend in this paper our OVF based service definition
language syntax to incorporate these abstractions.

4.2 Manifest language definition

In this section, we describe the overall approach undertaken
to define and provide support for the Manifest Language.
This is achieved through the specification of three com-
plementary facets of the language: the abstract syntax, the
well-formedness rules, and the behavioural semantics. The
abstract syntax of the manifest language is modelled using
the Essential Meta-Object Facility (EMOF), an OMG stan-
dard part of the Model Driven Architecture initiative [22] for
describing the structure of meta-data, and embedded within
an object-oriented model of the RESERVOIR architecture.
Because the manifest describes the way in which a RESER-
VOIR based infrastructure should provision a service ap-
plication, the semantics of the language can be expressed
in the model denotational style to define semantics that we
introduced in [29] as constraints between the abstract syn-
tax and domain elements that model the operation of Cloud

84 Cluster Comput (2012) 15:79–100

infrastructure components. These constraints are formally
defined using the Object Constraint Language (OCL) [23],
a language for describing consistency properties, providing
the static and behavioural semantics of the language. In this
manner the language serves to constrain the behaviour of the
underlying infrastructure, ensuring the correct provisioning
of the software system services.

The motivations for this approach are two-fold: firstly by
modelling the syntax of the manifest language as an EMOF
model, we seek to express the language in a way that is in-
dependent of any specific implementation platform. Com-
ponents of a Cloud infrastructure such as RESERVOIR may
rely on a number of different concrete languages, whether
implementation languages (Java, C++, etc.), higher-level
“meta” languages (HUTN, XML, etc.), or even differing
standards (WS-Agreement, OVF, etc.). A higher level of ab-
straction ensures that we free ourselves from implementa-
tion specific concerns, and allows seamless and automated
transitions between platform specific models as required by
components.

Secondly, providing a clear semantic definition of the
manifest using OCL allows us to identify functional char-
acteristics that service management components should
present in order to support capabilities such as application
based service elasticity, again irrespective of the implemen-
tation platform. As such the definitions presented in this
paper extend beyond the scope of RESERVOIR or any spe-
cific Cloud infrastructure, instead providing a clear under-
standing of expected provisioning behaviours, with respect
to identified and required component interfaces.

Finally, we may also consider that clear semantics en-
sure that we limit ambiguities when it comes to interpre-
tation of the manifest. This is of crucial importance where
financial liabilities may exist; a formal understanding of the
nature of the service being provided is required in order to
ensure that the service is provisioned as expected by both
parties, and in a way that both can evaluate to be correct,
either through run-time monitoring capabilities or historical
logs. We achieve this by tying the specification of the mani-
fest to the underlying model of the Cloud infrastructure.

4.2.1 Abstract syntax

The abstract syntax of the manifest describes the core el-
ements of the language and their accompanying attributes.
The core syntax relies upon, as previously stated, OVF [10].
The OVF descriptor is an XML-based document composed
of three main parts: description of the files included in the
overall service (disks, ISO images, etc.), meta-data for all
virtual machines included, and a description of the dif-
ferent virtual machine systems. The description is struc-
tured into various “Sections”. Focusing primarily on the
most relevant, the <DiskSection> describes virtual disks,

<NetworkSection> provides information regarding log-
ical networks, <VirtualHardwareSection> describes
hardware resource requirements of service components and
<StartupSection> defines the virtual machine booting
sequence.

Incorporating the OVF standard ensures that we tackle
several of the requirements identified in Sect. 4.1, providing
the manifest language with a syntactic model for the expres-
sion of physical resource requirements and hardware config-
uration issues. We introduce new abstractions in the form of
extensions to the standard rather than create new indepen-
dent specifications. OVF is extensible by design and doing
so ensures continued compatibility with existing OVF-based
systems.

We model these extensions using EMOF. EMOF models
are very similar to UML class diagrams, in that they describe
classes, the data they contain and their relationships, but are
at a higher level of abstraction: they describe the constructs,
rules and constraints of a model. As such, EMOF is typically
used to define the syntax of languages.

Application description language Reliance on Cloud com-
puting introduces the opportunity to minimise overprovi-
sioning through run-time reconfiguration of a service, effec-
tively limiting resource consumption to only what is cur-
rently required by the application. However, when dealing
with rapid changes in service context and load, timely ad-
justments may be necessary to meet service level obliga-
tions which cannot be met by human administrators. In such
a case, it may be necessary to automate the process of re-
questing additional resources or releasing existing resources
to minimise costs.

This automated scaling of service capacity to support po-
tential variations in load and demand can be implemented
in numerous ways. Application providers may implement
such scaling at the application level, relying on an exposed
interface of the Cloud computing infrastructure to issue
specific reconfiguration requests when appropriate. Alterna-
tively, they may have a desire to keep the application design
free of infrastructure specific constraints and opt instead to
delegate such concerns to the infrastructure itself. With a
sufficient level of transparency at the application level for
workload conditions to be identified, and through the speci-
fication of clear rules associating these conditions with spe-
cific actions to undertake, the Cloud computing infrastruc-
ture can handle dynamic capacity adjustment on behalf of
the service provider.

It is the latter approach that we have chosen to adopt
in the context of RESERVOIR. By providing a syntax and
framework for the definition and support of elasticity rules,
we can ensure the dynamic management of a wide range
of services with little to no modification for execution on a
Cloud. With respect to the syntax, we can identify the two

Cluster Comput (2012) 15:79–100 85

Fig. 3 Application description
language

following subsets of the language that would be required to
describe such elasticity: service providers must first be able
to describe the application state as a collection of Key Per-
formance Indicators (KPIs), and the means via which they
are obtained in the manifest. These will serve as a basis for
the formulation of the rules themselves, described in the fol-
lowing subsection.

Because we do not want the manifest language to be tied
to any specific service architecture or design, it is necessary
to decouple the KPI descriptions from the application do-
main via the use of an Application Description Language
(ADL). Though it is possible to build elasticity conditions
based purely on infrastructure level performance indicators,
this may prove limiting. Indeed, the disk space, memory or
CPU load may not accurately reflect the current needs of the
application, as will be seen in the evaluation. This language
will allow the description of services in terms of compo-
nents, parameters of interest and their monitoring require-
ments.

Alongside the syntactic requirements, a suitable moni-
toring framework must exist. A service provider is expected
to expose parameters of interest through local Monitoring
Agents, responsible for gathering suitable application level
measurements and communicating these to the service man-
agement infrastructure. Though communication protocols
with the underlying framework are outside the scope of the
manifest language, there must exist a correlation between
the events generated by the monitors and the KPIs described
in the manifest. This is modelled in Fig. 3.

Based on our running example, the figure exempli-
fies the relationship between the ADL, the RESERVOIR
application-level monitoring infrastructure, and the appli-
cation domain. The syntax of the ADL consists of one or

more named components, with a number of associated KPIs.
These KPIs are identified using appropriate qualified names
(e.g. com.sap.webdispatcher.kpis.sessions), that
will allow the underlying infrastructure to identify corre-
sponding events obtained from an application level monitor
and forward these to subscribers responsible for the enforce-
ment of elasticity rules.

We are concerned in the SAP example with the number of
simultaneous web sessions managed by the web dispatcher,
as there is a proportional relationship between resource re-
quirements and sessions. The number of simultaneous ses-
sions will be used as a basis for scaling the number of Dia-
log Instances.However, directly monitoring the traffic to and
from the web dispatcher would be impossible, as SAP uses
proprietary protocols. The SAP system can nonetheless re-
port the number of sessions provided an appropriate query is
formulated. The monitoring agent would be responsible for
such queries and forwarding obtained responses, bridging
the gap between application and monitoring infrastructure.

KPI qualified names would be considered global within
the scope of a service. If there exists a need to distinguish
the KPI measurements produced by multiple instances of a
same component, this is achieved by using distinct quali-
fied names. Monitoring agents can, for example, include in-
stance IDs in the qualified name. The structure of the quali-
fied name itself would not fall within the scope of the man-
ifest specification. Instances of an application service as a
whole however would be considered distinct. At the imple-
mentation level, KPIs published within a network are tagged
with a particular service identifier, and rules, covered below,
will also be associated with this same identifier. Multiple
instances of an application service would hence operate in-
dependently.

86 Cluster Comput (2012) 15:79–100

Fig. 4 Elasticity rules syntax

Elasticity rules With respect to the rule syntax, we adopt
an Event-Condition-Action approach to rule specification.
This is a widely adopted model for rule definition, adopted
for example in active databases and rule engines, and suited
in this instance. Based on monitoring events obtained from
the infrastructure, particular actions from the VEEM are to
be requested when certain conditions relating to these events
hold true. This requires rules to be expressed with respect
to the interface of the underlying VEEM and monitoring
events.

A representation of the elasticity rules based on a gen-
eral rule-base model and their relationship to monitoring
events and the Cloud infrastructure is illustrated in Fig. 4.
The syntax specifies conditions, based on monitoring events
at the application layer or otherwise, which would lead to
specified actions, based on a set of operations presented by
the VEEM. The operations, modelled on the OpenNebula
framework capabilities will involve the submission, shut-
down, migration, reconfiguration, etc. of VMs and should
be invoked within a particular time frame. The conditions
are expressed using a collection of nested expressions and
may involve numerical values, arithmetic and boolean oper-
ations, and values of monitoring elements obtained. The re-
lationship between KPIs specified in the manifest and these
events has been described in the previous section. The elas-
ticity rules will be supervised by the Cloud infrastructure at
the Service Manager layer during the running of the soft-
ware system and it is expected that a rule interpreter will re-
ceive events from the infrastructure or application monitors
and trigger such operations accordingly.

With respect to the example, this language enables us
to express that virtual machines with new Dialog Instances
should be created as the number of user sessions maintained
by the SAP web dispatcher grows in order to handle the in-
creased load. A concrete example of an elasticity rule will
be provided in Sect. 6.

It is worth briefly discussing the subject of time manage-
ment. The service provider controls the timeliness of the

response in multiple ways. Firstly the rate at which mon-
itoring events are sent by the application level monitor is
entirely dictated by the application and this should be bal-
anced against expected response time to avoid duplicate
responses. Secondly service providers can specify a time
frame within which particular actions should take place, as
described above. Finally, the current time can be introduced
as a monitorable parameter if necessary.

Additionally service providers may prefer expressing
conditions regarding a series of measurements within a time
frame rather than focusing on single events. We may be con-
cerned here with the average number of active sessions in a
window in order to limit the impact of strong fluctuations.
While the language is extensible and presents the oppor-
tunity to provide such functionality, and we are currently
working on the ability to specify a time series and opera-
tions related to that time series (mean, minimum, maximum,
etc.), this can be achieved by aggregating measurements at
the application level, with the monitoring agent performing
such tasks.

Elasticity rules can be a powerful tool to express capac-
ity constraints. The structure is kept purposely simple: not
intended as a substitute for a programming language, elas-
ticity rules only aim to inform the Cloud infrastructure of
the corrective process to be undertaken. Auto-scaling is not
a form of capacity planning but it aids in introducing a cer-
tain degree of flexibility in resource allocation which en-
sures that strong and often unexpected variations in demand
can be met. In general, more complex relationships between
performance indicators can be computed at the application
level, before being forwarded to the service manager.

4.2.2 Semantic definition

We examine in this section the dynamic semantics of the
manifest language as OCL constraints on the relationship
between the syntactic model of the manifest and the in-
frastructure and application domains. Dynamic semantics

Cluster Comput (2012) 15:79–100 87

are concerned with deployment and run-time operation.
These will specify behavioural constraints that the system
should adhere to during its execution.

The question of how and when we verify that these con-
straints hold true during the provisioning of a service should
be discussed briefly. Defined invariants should be true at any
moment in time, however it is not feasible in practice to con-
tinuously check for this. Instead it is preferable to tie the
verification to monitoring events or specific actions, such as
a new deployment. Another question to be posed is what
should be done when an evaluation of the state system does
not fit the specified constraints. This will depend on the con-
text: an exception may occur, or an operation should be in-
voked to trigger some corrective action, as would be the case
with elasticity rules.

Service deployment As the manifest is processed by the
various independent components of the Service Manager
to generate a deployment descriptor for submission to the
VEEM, it becomes important to ensure that the final prod-
uct, which may be expressed using a different syntax, is still
in line with the requirements of the service provider. In the
case of RESERVOIR, the VEEM would introduce it’s own
deployment template. Using OpenNebula as a reference im-
plementation of a VEEM, the deployment template relied
upon by the system is roughly based on a Xen configura-
tion file. The association between manifest and deployment
template is illustrated in Fig. 5.

It is presumed that the service manager’s Manifest-

Processor will be responsible for parsing the manifest and
generating one or more deployment templates accordingly.
The ServiceConfigAnalyzer may be used to further op-
timise the placement with regards to the multiple sites at
which it may be deployed, though the manifest specification
is not concerned with this. It is only necessary to ensure that
the optimisation process respects certain constraints regard-
ing resource requirements. This is a design by contract ap-
proach [36]. We are not concerned with the actual transfor-
mation process, but rather that the final product, i.e. the de-
ployment descriptor, respects certain constraints. These can
be expressed in OCL as follows:

c o n t e x t A s s o c i a t i o n
inv :
m a n i f e s t . vm −> f o r A l l (v |

d e p d e s c r i p t o r . e x i s t s (d |
d . name = v . i d &&
d . memory = v . v i r t u a l h a r d w a r e . memory &&
d . d i s k . s o u r c e =

(m a n i f e s t . r e f s . f i l e −>a s S e t ()−>
s e l e c t (i d = v . i d))−> f i r s t () . h r e f

. . .
)

This OCL description is a sample of what is required to
establish a relationship between manifest and deployment
descriptor. Here, we describe that there should be at least

one deployment descriptor generated for every virtual sys-
tem described in the manifest definition that has the same
identifier and memory requirements. The full OCL specifi-
cation contains a full mapping of attributes of our manifest
language to that of a VEEM deployment descriptor.

Service elasticity Similarly, we can specify the expected
outcome of elasticity rule enforcement with respect to both
the syntax of the manifest and the underlying RESERVOIR
components. OCL operations are side effect free, as in they
do not alter the state of the system. Nevertheless they can be
used to verify that the dynamic capacity adjustments have
indeed taken place when elasticity rule conditions have been
met, using the post context.

This is described in OCL as follows:

−− C o l l e c t m o n i t o r i n g r e c o r d s upon n o t i f i c a t i o n
c o n t e x t R u l e I n t e r p r e t e r : : n o t i f y (e : Event)
pos t : m o n i t o r i n g R e c o r d s =

moni to r ingRecords@pre −>append (e)
−− E v a l u a t e e l a s t i c i t y r u l e s and check a d j u s t m e n t
c o n t e x t R u l e I n t e r p r e t e r : : e v a l u a t e R u l e s ()
pos t : e l a s t i c i t y R u l e s −> f o r A l l (e r |

i f s e l f . e v a l u a t e (e r . exp r) > 0 then
e r . a c t i o n s −> f o r A l l (a | veem^ i n v o k e (a . r e q))

e l s e t r u e
e n d i f)

−− Query s i m p l e t y p e v a l u e
c o n t e x t R u l e I n t e r p r e t e r : : e v a l u a t e (e l :

E lementSimpleType) : Real
pos t : r e s u l t = e l . v a l u e
−− Obta in l a t e s t v a l u e f o r m o n i t o r i n g r e c o r d
−− w i t h s p e c i f i c q u a l i f i e d name
c o n t e x t R u l e I n t e r p r e t e r : : e v a l u a t e (qe :

Q u a l i f i e d E l e m e n t) : Real
pos t :
i f m o n i t o r i n g R e c o r d s −> s e l e c t (name=qe . name)

−> l a s t ()−> e x i s t s () then
r e s u l t = m o n i t o r i n g R e c o r d s

−> s e l e c t (name=qe . name)
−> l a s t () . v a l u e

e l s e r e s u l t = qe . d e f a u l t
e n d i f
−− E v a l u a t e e x p r e s s i o n s
−− D e f i n e d as p o s t i n o r d e r t o use r e c u r s i o n
c o n t e x t R u l e I n t e r p r e t e r : : e v a l u a t e (exp r :

E x p r e s s i o n) : Real
pos t :

i f ex p r . op . o c l I s T y p e O f (G r e a t e r T h a n) then
i f s e l f . e v a l u a t e ((op . e l −> f i r s t ()) >

s e l f . e v a l u a t e ((op . e l −> l a s t ()) then
r e s u l t = 1

e l s e r e s u l t = 0
end i f

e l s e
. . . .

e n d i f

This OCL pseudo-code is only a subset of the complete OCL
specification that aims to illustrate how we can specify the
correct execution of elasticity rules with respect to the rule
syntax. The code is split into a number of individual seg-
ments. The first simply states that monitoring events ob-
tained are expected to be collected as records for the purpose
of later evaluation. The second element states that if the con-
ditional element of one of the elasticity rules is found to be

88 Cluster Comput (2012) 15:79–100

Fig. 5 Service manifest and
deployment descriptor

true, then particular actions should have been invoked. To
reiterate, the operations are side effect free, implying that no
processing of any kind will take place in an OCL statement.
Instead we only check that there has been communication
with the VEEM to invoke certain operations if the condi-
tions described hold true. How it is implemented is then left
to developers.

The final segments relate to the evaluation of the con-
ditions themselves. The RuleInterpreter: evaluate

(qe: QualifiedElement) describes that upon evalua-
tion of the rules, values for key performance indicators
described in the document are obtained from the moni-
toring records, by examining the latest monitoring event
with matching qualified name. This defines the relationship
between KPIs and monitoring events. This asynchronous
model is chosen because the Cloud infrastructure does not
control application level monitoring agents. As there is no
guarantee over how often monitoring information is pro-
vided, and rules may involve measurements from several
services, it is for the implementation to determine when the
rules should be checked to fit within particular timing con-
straints rather than tying checks to the reception of any spe-
cific monitoring event. Finally the last segment illustrates
the recursive evaluation of expressions based on the type of
formula selected by the service provider.

4.2.3 Concrete syntax

While the specification of our manifest language is kept
free of implementation concerns, the model-denotational ap-
proach adopted here provides a basis for automatically de-
riving concrete human or machine readable representations
of the language that can be manipulated by the end-user or
processed directly by the RESERVOIR based infrastructure.

Fig. 6 Programmatic generation of monitoring instruments

Moreover, beyond creating and editing the manifest itself,
the syntax and accompanying semantics can be used as in-
put for a generative programming tool to automate the gen-
eration of applications to control the provisioning process.

In practice, the RESERVOIR architecture may be imple-
mented using a wide range of programming languages and
existing technologies. The semantic definition described in
this paper will generally serve as an important software en-
gineering artefact, guiding the design and development of
components. However, the potential for errors to occur dur-
ing the provisioning process always exists, due to imple-
mentation or a failure to correctly interpret the specifica-
tion of our language. We can assist in identifying and flag-
ging such errors by programmatically generating monitor-
ing instruments which will validate run-time constraints pre-
viously described in Sect. 4.2.2. The process by which this
is achieved is illustrated in Fig. 6.

Cluster Comput (2012) 15:79–100 89

In previous work, we have developed the UCL-MDA
tools [28], a graphical framework for the manipulation of
EMOF and OCL implemented as a plug-in for the Eclipse
IDE. The framework relies on existing standards for the
transformation of EMOF models and OCL into code, such
as the Java Metadata Interface (JMI) standard and OCL in-
terpreters, and is available at [34].

We have extended the framework for the purpose of this
work. Our extensions introduce the ability to create, edit
and validate manifests describing services to be deployed
on a RESERVOIR based infrastructure. Element attribute
values are input via the graphical interface in accordance
with the structure of the language. Infrastructure related at-
tributes and configuration values may be included in order
to verify that OCL constraints are correctly maintained. This
may be used amongst other things to verify that deployment
descriptors generated by the infrastructure fit within the re-
quirements specified by the manifest as covered.

Via the interface, users can additionally request the cre-
ation of stand-alone monitoring instruments in Java capable
of interaction with our implementation of the RESERVOIR
framework, which will be described in detail in Sect. 5.
These are currently of two forms. The first is simply respon-
sible for gathering and reporting the values of specific KPIs
described in the manifest. The second will validate the cor-
rect enforcement of elasticity rules by evaluating incoming
monitoring events and verifying where appropriate that suit-
able adjustment operations were invoked by matching en-
tries and time frames in infrastructural logs. The framework
also allows the generation of custom stubs which the ser-
vice provider may used as a basis for the development by
the service provider of monitoring agents, handling issues
such as communication protocols, measurement labelling
and packaging, and providing a control interface to man-
age frequency and operation. This would have to be supple-
mented with appropriate probes responsible for the applica-
tion level collection of measurements.

Java code is generated from a combination of data ob-
tained from the specification, element values input by the
user and Java templates, the latter being used to bridge the
gap between the abstract model of the infrastructure and
the actual implementation. As previously discussed, issues
such as communication channels for the distribution of mon-
itoring events fall outside the scope of the manifest lan-
guage specification. Templates provide the necessary code
to gather KPI measurements or parse infrastructure logs and
pass this information to OCL interpreters.

The tool hence serves the following purposes: firstly, it al-
lows users to specify and manipulate manifests. Secondly it
allows the generation of code allowing the service provider
to verify the correct provisioning of a service at run-time
according to the semantics of the language. Finally it pro-
vides the means of interfacing a service with the RESER-
VOIR monitoring architecture.

5 Service lifecycle management

The service lifecycle encapsulates the initial deployment of
a service, whereby a Service Provider sends a manifest de-
scribed in the language detailed above to a cloud, through to
the first instantiation of one or more service components, the
monitoring of said components, and finally the additional
deployment, undeployment and resizing of service compo-
nents as demand and workload evolves. All of these com-
plex functions are undertaken through the collaboration of
the Service Manager, the Monitoring Framework, and the
VEEM, and are just one of the many control loops that are
required within a cloud computing environment.

In this section we describe these components and discuss
the implementation decisions that were taken to ensure a
scalable, manageable service management infrastructure.

5.1 Service manager

Previous sections have dealt with the language to define ser-
vice manifests, describing the requirements that have driven
its design along with its abstract and concrete syntax. In the
current subsection we describe in detail the Service Man-
ager, which is the main component of the RESERVOIR
middleware that processes descriptions in the manifest lan-
guage, instantiates the services, and manages these services
throughout their lifecycles.

The Service Manager within the overall RESERVOIR
stack has been already introduced in Fig. 1, with a more de-
tailed architecture shown in Fig. 7. It exposes a deployment
interface to Service Providers, based on the OVF-based ser-
vice manifest language discussed in Sect. 4.2.1. It interacts
with the Virtual Execution Environment Manager (VEEM)
via a REST based interface to handle the deployment and
management of the virtual machines composing the appli-
cation of the service providers .

The main components of the Service Manager are de-
scribed below. Although it includes many additional com-
ponents (e.g. for accounting and billing), we focus here on
the ones related to service deployment and elasticity for the
sake of clarity. These are:

Manifest parser: The parser handles and processes the ser-
vice specification (in OVF) provided by the Service
Provider, extracting from it a suitable service lifecycle
that meets the provider requirements.

Service lifecycle manager: This component controls the
service lifecycle and is in charge of all service manage-
ment operations, including initial deployment, runtime
scaling and service termination. The Service Lifecycle
Manager orchestrates all the other Service Manager com-
ponents and interfaces with the VEEM in order to actually
implement the management operations, e.g. sending indi-
vidual deployment descriptors to create new VEEs.

90 Cluster Comput (2012) 15:79–100

Fig. 7 Service manager architecture

Rule engine: The rule engine enforces scaling rules during
service runtime. It is based on a business engine (the cur-
rent Service Manager implementation uses Drools [11])
which takes KPI monitoring information as input for the
given rule set derived from our specification, resulting in
scaling operations when some rule is triggered.

HTTP internal server: The Service Manager includes an in-
ternal HTTP server to provide virtual machine images that
the VEEM needs to deploy new virtual machines. In par-
ticular, the HTTP server is used to place both the base im-
age containing operating system and service software and
the image containing the customization data. The server
is needed because it is preferable to include references to
the images in the REST messages than passing the actual
images themselves, which are usually very large.

Taking into account these various components, we now de-
scribe how the Service Manager implements the manifest
language semantics described in Sect. 4.2.2 for both service
deployment and service elasticity.

5.1.1 Service deployment

The service deployment process consists of 7 steps. These
are illustrated in the left of Fig. 8. The workflow is as fol-
lows:

(1) The Service Provider issues a service deployment oper-
ation to the Service Manager. The main parameter for

this operation is the service manifest, expressed in OVF.
The Manifest Parser processes the file and, as result of
this task, an internal representation of the service man-
ifest is built, to be used for the other Service Manager
components.

(2) The service deployment command is issued to the Ser-
vice Lifecycle Manager.

(3) The Service Lifecycle Manager sets up and installs the
elasticity rules specified in the manifest in the Rule En-
gine, so it starts enforcing them when the service gets
deployed.

(4) The Service Lifecycle Manager interacts with the HTTP
server to set up all the images required by the virtual ma-
chines composing the service. For each virtual machine,
two images are provided—the base image, and the disk
containing the customisation data (e.g. IP address) ac-
cording to the OVF Environment format (see [10]). Both
the reference to the base image and the customisation
data are extracted from the service manifest.

(5) The Service Lifecycle Manager sends a deployment de-
scriptors to the VEEM to create a new VEE.

(6) The VEEM gets the base disk for the VEE, creates it
and boots it. The created VEE is shown in a dashed line
in the figure.

(7) The customization disk is attached to the VEE (typically
as a virtual CD/DVD) so the Activation Engine that runs
as part of the VEE boot procedure can access the cus-
tomization data and configure the VEE properly (e.g.
setting the assigned IP in the operating system configu-
ration).

It is worth mentioning that, although we are showing just the
creation of a single virtual machine, the subflow composed
by steps 5-to-7 repeat for every VEE needed for initial ser-
vice deployment. For example, if the initial layout of the
service is composed of a load balancer, a web server, and a
database, each with its own virtual machine, then three of
these 5 to 7 cycles will be done.

5.1.2 Service elasticity

When considering a running service, the process by which
elasticity is managed has a dedicated workflow, which is
shown in the right hand side of Fig. 8. The steps are as fol-
lows:

(1) Monitoring probes running in the virtual machines are
continuously sending KPI measures to the Monitoring
Framework.

(2) The Monitoring Framework provides KPI information
to the Rule Engine running at the Service Manager level.

(3) When the KPI value triggers a given elasticity rule to
scale up the service, the Rule Engine issues a command
to the Service Lifecycle Manager.

Cluster Comput (2012) 15:79–100 91

Fig. 8 Service deployment
workflow (left) and service
elasticity workflow (right)

(4) A customization disk is generated for that image in the
HTTP internal server.

(5) The Service Lifecycle Manager follows the conven-
tional procedure (described in Sect. 5.1.1 workflow in
steps 5-to-7) to deploy a new virtual machine.

5.2 Monitoring framework

Key to facilitating the flow of information in a cloud based
environment is a monitoring process via which various met-
rics regarding the operation of services and infrastructure
can be circulated to the required components in a scalable
and effective way. We have already covered the relation-
ship between provider requirements specified in the mani-
fest and measurements obtained from the monitoring frame-
work, and resulting scaling operations.

Here we discuss the implementation of the monitoring
framework itself, and the design decisions that were taken to
ensure that its operation does not affect the performance of
the network itself or the running service applications. This is
achieved by ensuring that the management components only
receive data that is of relevance: In a large distributed system
there may be hundreds or thousands of measurement probes
which can generate data. It would not be effective to have all
of these probes sending data all of the time, so a mechanism
is needed that controls and manages the relevant probes.

Existing monitoring systems such as Ganglia [17], Na-
gios [19], MonaLisa [20], and GridICE [2] have addressed
monitoring of large distributed systems. They are designed
for the fixed, and relatively slowly changing physical in-
frastructure that includes servers, services on those servers,
routers and switches. However, they have not addressed or
assumed a rapidly changing and dynamic infrastructure as

seen in virtual environments. In the physical world, new ma-
chines do not appear or disappear very often. Sometimes
some new servers are purchased and added to a rack, or a
server or two may fail. Also, it is rare that a server will move
from one location to another. In the virtual world, the oppo-
site is the case. Many new hosts can appear and disappear
rapidly, often within a few minutes. Furthermore, the virtual
hosts, can be migrated from one network to another, still re-
taining their capabilities.

It is these characteristics that provide a focus for the
monitoring framework. We have determined that the main
features for monitoring in a virtualized environment which
need to be taken account of are:

Scalability: to ensure that the monitoring can cope with a
large numbers of probes.

Elasticity: so that virtual resources created and destroyed
by expanding and contracting services are monitored cor-
rectly.

Migration: so that any virtual resource which moves from
one physical host to another is monitored correctly.

Adaptability: so that the monitoring framework can adapt to
varying computational and network loads in order to not
be invasive.

Autonomic: so that the monitoring framework can keep run-
ning without intervention and reconfiguration.

Federation: so that any virtual resource which reside on an-
other domain is monitored correctly.

To establish such features in a monitoring framework re-
quires careful architecture and design.

The RESERVOIR monitoring system covers all of the
layers and components presented in Fig. 1 of Sect. 2. The

92 Cluster Comput (2012) 15:79–100

following sections provide details of the design of the
RESERVOIR monitoring system.

5.2.1 Producers and consumers

The monitoring system itself is designed around the concept
of producers and consumers. That is there are producers of
monitoring data, which collect data from probes in the sys-
tem, and there are consumers of monitoring data, which read
the monitoring data. The producers and the consumers are
connected via a network which can distribute the measure-
ments collected.

The collection of the data and the distribution of data are
dealt with by different elements of the monitoring system so
that it is possible to change the distribution framework with-
out changing all the producers and consumers. For example,
the distribution framework can change over time, say from
IP multicast, to an event bus, or a publish/subscribe frame-
work. This should not affect too many other parts of the sys-
tem.

5.2.2 Data sources and probes

In many systems probes are used to collect data for system
management [9, 17]. In this regard, this monitoring frame-
work will follow suit. However, to increase the power and
flexibility of the monitoring we introduce the concept of a
data source. A data source represents an interaction and con-
trol point within the system that encapsulates one or more
probes. A probe sends a well defined set of attributes and
values to the consumers, defined in a data dictionary. This
can be done by transmitting the data out at a predefined in-
terval, or transmitting when some change has occured.

The measurement data itself is sent via a distribution
framework. These measurements are encoded to be a small
as possible in order to maximise the network utilization.
Consequently, the measurement meta-data is not transmitted
each time, but is kept separately in an information model.
This information model can be updated at key points in the
lifecycle of a probe and can be accessed as required by con-
sumers.

5.2.3 Probe data dictionary

One of the important aspects of this monitoring design is the
specification of a Data Dictionary for each probe. The Data
Dictionary defines the attributes as the names, the types and
the units of the measurements that the probe will be sending
out. These consist essentially of the KPIs that are specified
in the service manifest.

This is important because the consumers of the data can
collect this information in order to determine what will be
received. In particular, for the Service Manager, this in-
formation will allow specifications in the manifest to be

checked in elasticity and SLA rules. At present many mon-
itoring systems have fixed data sets, with a the format of
measurements being pre-defined. The advantage here is that
as new probes are to added to the system or embedded in the
application, it will be possible to introspect what is being
measured.

The measurements that are sent will have value fields that
relate directly to the data dictionary. To determine which
field is which, the consumer can lookup in the data dictio-
nary to elaborate the full attribute value set. Probes will be
embedded in both the infrastructure and the application ser-
vice components themselves. To manage scaling according
to our process, it will be the responsibility of the service
provider to ensure that probes embedded in the virtual ma-
chines to be deployed rely on a data dictionary that is con-
sistent with the KPIs specified in the service manifest.

5.2.4 Measurements

The actual measurements that get sent from a probe will
contain the attribute-value fields together with a type and
a timestamp, plus some identification fields. The attribute-
values contain the information the probe wants to send, the
type indicates what kind of data it is, and the timestamp
has the time that the data was collected, as modelled in
Sect. 4.2.1.

The identification fields are used to determine for which
component or which service and from which probe this data
has arrived from. We rely for this purpose on the qualified
names discussed in Sect. 4.2.1. As there are multiple compo-
nents which need monitoring and multiple running services,
the consumer of the data must be able to differentiate the
arriving data into the relevant streams of measurements.

5.2.5 Distribution framework

In order to distribute the measurements collected by the
monitoring system, it is necessary to use a mechanism that
fits well into a distributed architecture such as the manage-
ment overlay. We need a mechanism that allows for multiple
submitters and multiple receivers of data without having vast
numbers of network connections. For example, having many
TCP connections from each producer to all of the consumers
of the data for that producer would create a combinatorial
explosion of connections. Solutions to this include IP mul-
ticast, Event Service Bus, or publish/subscribe mechanism.
In each of these, a producer of data only needs to send one
copy of a measurement onto the network, and each of the
consumers will be able to collect the same packet of data
concurrently from the network.

5.2.6 Design and implementation overview

Within the monitoring framework there are implementations
of the elements presented in the relationship model shown in

Cluster Comput (2012) 15:79–100 93

Fig. 9 Relationship model

Fig. 9. In this model we see, a DataSource which acts as the
control point and a container for one or more Probes. Each
Probe defines the attributes that it can send. These are set in
a collection of ProbeAttribute objects, that specify the name,
the type, and the units of each value that can be sent within
a measurement.

When a Probe triggers a monitoring event by sending a
Measurement, the Measurement has a set of values called
Probe Values. The Probe Values that are sent are directly
related to the Probe Attributes defined within the Probe.

When the system is operating, each Probe reports the col-
lected measurement to the Data Source. The Data Source
passes these measurements to a networking layer, where
they are encoded into an on-the-wire format, and then sent
over the distribution network. The receiver of the monitor-
ing data decodes the data and passes reconstructed Measure-
ments to the monitoring consumer. Encoding measurement
data is a common function of monitoring systems [17] as it
increases speed and decreases network utilization.

In the monitoring framework, the measurement encod-
ing is made as small as possible by only sending the values
for a measurement on the data distribution framework. The
definitions for the Probe Attributes, such as the name and
the units are not transmitted with each measurement, but are
held in the information model and are accessed as required.

The current implementation is written in Java, and the
output for each type currently uses XDR [30]. As such each
type defined uses the same byte layout for each type as de-
fined in the XDR specification. All of this type data is used
by a measurement decoder in order to determine the actual
type and size of the next piece of data in a packet.

5.2.7 Information model encoding

The Information Model for the Monitoring System holds all
of the data about Data Sources, Probes, and Probe Data Dic-
tionaries present in a running system. As Measurements are
sent with only the values for the current reading, the meta-
data needs to kept for lookup purposes. By having this In-
formation Model, it allows consumers of measurements to
lookup the meaning of each of the fields.

Table 1 Information model entries for a datasource

Key Value

/datasource/datasource-id/name Datasource name

/probe/probe1-id/datasource Datasource-id

/probe/probe2-id/datasource Datasource-id

.

/probe/probeN-id/datasource Datasource-id

Table 2 Information model entries for a datasource

Key Value

/probe/probe-id/name Probe name

/probe/probe-id/datarate Probe data rate

/probe/probe-id/on Is the probe on or off

/probe/probe-id/active Is the probe active or inactive

/schema/probe-id/size No of attributes N

/schema/probe-id/0/name Name of probe attribute 0

/schema/probe-id/0/type Type of probe attribute 0

/schema/probe-id/0/units Units for probe attribute 0

/schema/probe-id/1/name Name of probe attribute 1

.

/schema/probe-id/N/units Units for probe attribute 0

In many older monitoring systems this information
model is stored in a central repository, such as an LDAP
server. Newer monitoring systems use a distributed ap-
proach to holding this data, with MonAlisa using JINI as
its information model store.

For the implementation of the Information Model we
have used a Distributed Hash Table (DHT) for the distrib-
uted information model. This allows the receivers of Mea-
surement data to lookup the fields received to determine
their names, types, and units. The information model nodes
uses the DHT to interact among one another.

The implementation has a strategy for converting an ob-
ject structure into a path-based taxonomy for use as keys in
the DHT. The IDs of the Data Sources and the IDs of the
Probes are important elements of this taxonomy.

For each Data Source, the keys and values shown in Ta-
ble 1 are added to the DHT. For each Probe, the keys and
values shown in Table 2 are added to the DHT. For each
Probe, the keys and values shown in Table 2 are added to the
DHT.

Using the encoded data from the information model, any
of the consumers of the monitoring data, in particular the
management overlay, can evaluate all the meta-data of the
measurements.

The RESERVOIR monitoring system has been used suc-
cessfully to provide data on all the elements of the cloud
architecture and the running services [7, 8, 16]. The mea-

94 Cluster Comput (2012) 15:79–100

surements supplied have been used for the service lifecycle
management, such as service elasticity, as well as for ac-
counting and billing. In the following section on evaluation,
these measurements are used for the real execution of a com-
putational chemistry application.

6 Experimental evaluation

In the evaluation of our work we aim to prove the follow-
ing hypothesis: provided that an architecture definition cor-
rectly specifies requirements and elasticity rules, and that the
Cloud computing infrastructure obeys the constraints iden-
tified in the semantic definition, then the quality of service
that can be obtained from a Cloud computing infrastructure
should be equivalent to that obtained were the application
hosted on dedicated resources. In addition, through the spec-
ification of elasticity rules, providers can considerably re-
duce expenditure by minimising over-provisioning.

We will demonstrate this hypothesis by deploying a pro-
duction level service on an infrastructure consisting of the
RESERVOIR stack. The Service Manager of the RESER-
VOIR stack incorporates monitors that validate the specified
constraints. The selected service is a grid based application
responsible for the computational prediction of organic crys-
tal structures from the chemical diagram [12].

The application operates according to a predefined work-
flow involving multiple web based services and Fortran pro-
grams. Up to 7200 executions of these programs may be re-
quired to run, as batch jobs, in both sequential and parallel
form, to compute various subsets of the prediction. Web ser-
vices are used to collect inputs from a user, coordinate the
execution of the jobs, process and display results, and gener-
ally orchestrate the overall workflow. The actual execution
of batch jobs is handled by Condor [33], a job scheduling
and resource management system, which maintains a queue
of jobs and manages their parallel execution on multiple
nodes of a cluster.

This case study provides many interesting challenges
when deployed on a Cloud computing infrastructure such
as RESERVOIR. Firstly, the application consists of a num-
ber of different components with very different resource re-
quirements, which are to be managed jointly. Secondly, the
resource requirements of the services will vary during the
lifetime of the application. Indeed, as jobs are created, the
number of cluster nodes required to execute them will vary.
Our goal in relying upon a Cloud computing infrastructure
will be to create a virtualised cluster, enabling the size of the
cluster to dynamically grow and contract according to load.

For this evaluation, we will compare the quality of ser-
vice, i.e. the duration required to complete the prediction,
when executing this workflow on a dedicated cluster, com-
pared to a Cloud computing infrastructure that provides sup-
port for our abstractions. We are not concerned here with

the overhead of hypervisors such as Xen, which are well
documented [6]. Instead we are concerned with evaluating
the costs of dynamically adjusting the resource provisioning
during the application lifecycle and determining whether an
appropriate level of service can still be obtained.

6.1 Testbed architecture

6.1.1 Service components

The testbed we use is illustrated in Fig. 10. Three main types
of service components can be distinguished. The Orchestra-
tion Service is a web based server responsible for manag-
ing the overall execution of the application. It presents an
HTTP front end enabling users to trigger predictions from
a web page, with various input parameters of their choice.
The Business Process Execution Language (BPEL) [21], is
used to coordinate the overall execution of the polymorph
search, relying on external services to generate batch jobs,
submit the jobs for execution, process the results and trigger
new computations if required.

The Grid Management Service is responsible for coordi-
nating the execution of batch jobs. It presents a web service
based interface for the submission of jobs. Requests are au-
thenticated, processed and delegated to a Condor scheduler,
which will maintain a queue of jobs and manage their exe-
cution on a collection of available remote execution nodes.
It will match jobs to execution nodes according to workload
and other characteristics (CPU, memory, etc.). Once a target
node has been selected it will transfer binary and input files
over and remotely monitor the execution of the job.

The last type of component is the Condor Execution Ser-
vice, which runs the necessary daemons to act as a Condor
execution node. These daemons will advertise the node as an
available resource on which jobs can be run, receive job de-
tails from the scheduler and run the jobs as local processes.
Each node runs only a single job at a time and upon com-
pletion of the job transfers the output back to the scheduler,
and advertises itself as available.

6.1.2 Deployment

Packaged as individual virtual machines encapsulating oper-
ating system and other necessary software components, the
three components are deployed on the RESERVOIR-based
infrastructure. The associated manifest describes the capac-
ity requirements of each component, including CPU and
memory requirements, references to the image files, start-
ing order (based on service components dependencies), elas-
ticity rules and customisation parameters. For the purpose
of the experiment, the Orchestration and Grid Management
Services will be allocated a fixed set of resources, with only
a single instance of each being required. The Condor exe-
cution service however will be replicated as necessary, in

Cluster Comput (2012) 15:79–100 95

Fig. 10 Testbed architecture

order to provide an appropriate cluster size for the parallel
execution of multiple jobs.

The elasticity rules will tie the number of required Con-
dor execution service instances to the number of jobs in
queue as presented by the Condor scheduler. This enables
us to dynamically deploy new execution service instances
as the number of jobs awaiting execution increases. Simi-
larly as the number of jobs in the queue decreases it is no
longer necessary to use the resources to maintain a large
collection of execution nodes, and hosts in the Cloud can
be released accordingly. This is expressed as follows in the
manifest using an XML concrete syntax, which conforms to
the abstract syntax described in Sect. 4.2.1. We use a sim-
ilar elasticity rule for downsizing allocated capacity as the
queue size shrinks.

< E l a s t i c i t y R u l e name=" A d j u s t C l u s t e r S i z e U p ">
< T r i g g e r >

< T i m e C o n s t r a i n t u n i t ="ms">5000< / T i m e C o n s t r a i n t >
< E x p r e s s i o n >

(@uk . u c l . condor . schedd . q u e u e s i z e /
(@uk . u c l . condor . exec . i n s t a n c e s . s i z e +1) > 4) &&
(@uk . u c l . condor . exec . i n s t a n c e s . s i z e < 16)

</ E x p r e s s i o n >
< / T r i g g e r >
< A c t i o n run =

" deployVM (uk . u c l . condor . exec . r e f) " / >
< E l a s t i c i t y R u l e >

The elasticity rules will refer to key performance indica-
tors that are declared within the context of the application
structure. This is expressed as follows:

< A p p l i c a t i o n D e s c r i p t i o n
name=" polymorphGridApp ">
<Component name=" GridMgmtService " o v f : i d ="GM">

< K e y P e r f o r m a n c e I n d i c a t o r c a t e g o r y =" Agent " t y p e =" i n t ">
< Frequency u n i t =" s ">30< / Frequency >
<QName>uk . u c l . condor . schedd . q u e u e s i z e < / QName>

< / K e y P e r f o r m a n c e I n d i c a t o r >
< / Component>
. . .

< / A p p l i c a t i o n D e s c r i p t i o n >

All components and KPIs are declared in this man-
ner. This enables the infrastructure to monitor KPI mea-
surements being published by specific components and as-
sociate them to the declared rules according to the pre-
viously stated semantics. In this particular instance we
are specifying that a monitoring agent associated with the
Grid Management Service will publish measurements under
the uk.ucl.condor.schedd.queuesize qualified name
every 30 seconds as integers.

The overall management process can hence be described
as follows: upon submission of the manifest, the Service
Manager, which is responsible for managing the joint alloca-
tion of service components and service elasticity, will parse
and validate the document, generating suitable individual
deployment descriptors to be submitted to the VEEM be-
ginning with the Orchestration and Grid Management com-
ponents. The VEEM will use these deployment descriptors
to select a suitable physical host from the pool of known
resources. These resources are running appropriate hypervi-
sor technology, in this case the Xen virtualisation system,
to provide a virtualised hardware layer from which the cre-
ation of new virtual machines can be requested. Upon de-
ployment, the disk image is replicated and the guest operat-
ing system is booted with the appropriate virtual hardware
and network configuration.

When the Grid Management component is operational,
a monitoring agent, as described in Sect. 4.2.1, will be-
gin the process of monitoring the queue length and broad-
cast the number of jobs in the queue on a regular ba-
sis (every 30 seconds) under the selected qualified name
(uk.ucl.condor.schedd.queuesize). These monitor-
ing events, combined with appropriate service identifier in-
formation, will be recorded by the rule interpreter com-
ponent of the Service Manager to enforce elasticity rules.
When conditions regarding the queue length are met (i.e.
there are more than 4 idle jobs in the queue), the Service

96 Cluster Comput (2012) 15:79–100

Fig. 11 Job submission and resource availability

Manager will request the deployment of an additional Con-
dor Execution component instances. Similarly, when the
number of jobs in queue falls below the selected threshold,
it will request the deallocation of virtual instances.

The actual physical resources which are managed by the
RESERVOIR infrastructure used in this experiment consist
of a collection of six servers, each of them presenting a
Quad-Core AMD Opteron(tm) Processor 2347 HE CPU and
8 GBs of RAM and with shared storage via NFS. OpenNeb-
ula v1.2, as the VEEM implementation, is used to manage
the deployment of virtual machines on these resources ac-
cording to the requirements specified by a Service Manager.

Both the Orchestration and Grid Management compo-
nents will be allocated the equivalent of a single physical
host each, due to heavy memory requirements, and up to 4
Condor Execution components may be deployed on a sin-
gle physical host, limiting the maximum cluster size to 16
nodes. This mapping however is transparent to the Service
Manager, Service Provider and application.

6.1.3 Metrics

It is also important to briefly describe the characteristics of
the overall application workflow, in order to determine ap-
propriate metrics for the experiment. Our primary indica-
tor of quality of service is the overall turn around time of
a prediction. The turn around time can be defined as the
amount of time elapsed between the moment a client user
requests a search to the moment results are displayed on the
web page. As previously stated, the overall process com-
bines functionality from a number of different Fortran pro-
grams into a larger workflow. Based on our selected input,
two long running jobs will first be submitted, followed by
an additional set of 200 jobs being spawned with each com-
pletion to further refine the input. We must also take into

account the additional processing time involved in orches-
trating the service and gathering outputs.

Another important metric to consider is that of resource
usage. The goal of service elasticity is to reduce expendi-
tures by allowing Service Providers to minimise overprovi-
sioning. While the actual financial costs will be dependent
on the business models employed by Cloud infrastructure
providers, we can at the very least rely upon resource usage
as an indicator of cost.

6.1.4 Experiment results

We compare turn-around time and resource usage obtained
on our Cloud infrastructure with elasticity support with
that obtained in an environment with dedicated physical re-
sources. The objective is to verify that there are no strong
variations in turn around time, but a significant reduction
in resource usage. The results are illustrated in Fig. 11. The
number of queued jobs is plotted against the number of Con-
dor execution instances deployed. Both charts show large
increases in queued jobs as the first long running jobs com-
plete and the larger sets are submitted. In addition, the first
chart represents the execution of the application in a dedi-
cated environment and shows a set of 16 continuously allo-
cated execution nodes. The second chart represents the ex-
ecution of the application with elasticity support, shows the
increase in the number of allocated nodes as jobs in queue
increases, and a complete deallocation as these jobs com-
plete. The overall turn around time and resource usage ob-
tained is described in Table 3.

As we can see from the results, a 7.15% increase in turn
around time occurs. As there is little difference in execution
times in the individual batches of jobs on either the ded-
icated or virtual cluster, the increase in turn around time
comes primarily from the additional time that is taken to

Cluster Comput (2012) 15:79–100 97

Table 3 Experiment results

Dedicated Cloud

environment infrastructure

Search turn around time (s) 8605 9220

Complete shutdown time (s) N/A 9574

Average execution nodes

For run 16 10.49

Until shutdown N/A 10.42

Percentage differences

Resource usage saving 34.46%

Extra run time (jobs) 7.15%

create and deploy new instances of the Condor execution
service as jobs are added in the queue. This can be verified
in Fig. 11, where a small delay can be observed between
increases in the number of jobs in queue, and the increase
in Condor execution services. The overhead incurred is due
to the deployment process, which will involve duplicating
the disk image of the service, deploying it on a local hy-
pervisor, and booting the virtual machine, and the registra-
tion process, which is the additional time required for the
service to become fully operational as the running daemons
register themselves with the grid management service. There
exists ways of reducing this overhead independently of the
Cloud computing infrastructure, at the expense of resource
usage, such as relying on pre-existing images to avoid repli-
cation.

A 10 minute increase of time in can however be consti-
tuted as reasonable considering the overall time frame of a
search, which is well over 2 hours. This is particularly true
as we consider the overall resource usage savings. Indeed
as can be seen in the table, with respect to execution nodes,
the overall resource usage decreases by 34.46% by relying
on service elasticity. This is because the totality of the exe-
cution nodes are not required for the initial bulk of the run,
where only 2 jobs are to be run. It is only in the second
stage that more nodes are required to handle the additional
jobs.

Of course the savings here are only considered in the con-
text of the run itself. If we consider the overall use of the
application over the course of a randomly selected week on
a fully dedicated environment where resources are continu-
ously available, even more significant cost savings will exist.
Examining logs of searches conducted during this period,
and based on cost savings obtained here, we have estimated
that overall resource consumption would drop by 69.18%,
due to the fact that searches are not run continuously; no
searches were run on two days of the week, and searches,
though of varying size, were run only over a portion of the
day, leaving resources unused for considerable amounts of
time.

7 Related work

Much of this work builds on the foundation previously es-
tablished with SLAs, where we used a model denotational
approach to specify service level agreements for web-based
application services [29]. In this paper, we have aimed to
broaden the approach to encapsulate Cloud computing prim-
itives and environment, providing a specification for a man-
ifest language describing software architecture, physical re-
quirements, constraints and elasticity rules.

In addition, it is worth examining research developments
related to service virtualisation, grid computing and com-
ponent based software architecture description languages.
With respect to virtual environment deployment descrip-
tions, the manifest language proposed here builds upon the
Open Virtualisation Format (OVF) [10], whose limitations
have already been discussed.

There exists a number of software architecture descrip-
tion languages which serve as the run-time configuration
and deployment of component based software systems. The
CDDLM Component Model [32], for example, outlines the
requirements for creating a deployment object responsible
for the lifecycle of a deployed resource with focus on grid
services. Each deployment object is defined using the CDL
language. The model also defines the rules for managing the
interaction of objects with the CDDML deployment API.
Though the type of deployment object is not suited to vir-
tual machine management, the relationship between objects
and the deployment API can be compared to our approach
we have undertaken here, providing a semantic definition for
the CDL language. However in our case the relationship be-
tween domain and syntactic models is performed at a higher
level of abstraction, relying on OCL to provide behavioural
constraints. Our specification is hence free of implementa-
tion specific concerns.

The general approach to dynamic and automated provi-
sioning may also be compared to the self-managing com-
puting systems associated with autonomic computing re-
search [14]. While our approach to elasticity is explicit, in
that providers define appropriate scaling rules based on an
event condition action model, we have laid a foundation
for further methods to be developed relying on predictive
and autonomic mechanisms to anticipate future allocation
changes and further minimise over-provisioning, providing
monitoring channels and a rule based framework for the dy-
namic management of services.

Finally it is important to examine current developments
in production level Cloud environments, such as Amazon’s
EC2 offering [1]. In particular, auto-scaling has been intro-
duced by Amazon to allow allocated capacity to be auto-
matically scaled according to conditions defined by a service
provider. These conditions are defined based on observed re-
source utilisation, such as CPU utilisation, network activity

98 Cluster Comput (2012) 15:79–100

or disk utilisation. Whilst the approach laid out in this paper
can be used to define elasticity rules based on such metrics,
this can prove limiting. With respect to the evaluation, the
need to increase the cluster size cannot be identified through
these metrics as we require an understanding of the schedul-
ing process. The ability to describe and monitor application
state is crucial if we wish to correctly anticipate demand.

In addition, the focus of our paper has primarily been
on Infrastructure-as-a-Service Clouds. Nevertheless it is still
important to briefly discuss the relevance of this work with
respect to Platform-as-a-Service (PaaS) Clouds such as Win-
dows Azure [18]. PaaS Clouds provide an additional level
of abstraction over IaaS Clouds, providing a runtime envi-
ronment for the execution of application code and a set of
additional software services, such as communication proto-
cols, access control, persistence, etc. Windows Azure allows
services to be described as distributed entities: clients can
specify the interfaces exposed by services, communication
end points, channels and roles (web or worker) and different
hardware requirements may be allocated. However a need to
control the management, distribution and lifecycle of multi-
component systems still exists, though with the added bene-
fit of application specific operations being more readily ex-
posed to the infrastructure. How this is implemented will be
tied to the specifics of the platform itself but we do believe
there is potential to adapt many aspects of our approach to
the platform specific interfaces and tools.

8 Conclusion and future work

In this paper, we have proposed an abstract syntax and se-
mantic definition for a service manifest language which
builds on the OVF standard and enables service require-
ments, deployment constraints (placement, co-location and
startup/stopping order) and elasticity rules to be expressed.
We believe that clear behavioural semantics are of para-
mount importance to meet quality goals of both the Ser-
vice and Infrastructure provider. Our model-driven approach
aims to strengthen the design of the RESERVOIR stack,
identifying functional capabilities that should be present and
constraints the system should observe. We also explored the
relationship between a novel RESERVOIR monitoring in-
frastructure and service manifest, focusing particularly on
notions such as data dictionary and the KPIs defined at the
abstract layer. Such relationship has served to drive the im-
plementation of the monitoring infrastructure.

We have shown experimentally that the implementation
of these concepts is feasible and that a complete architecture
definition that uses our manifest syntax can enable Cloud
computing infrastructure to realise significant savings in re-
source usage, with little impact on overall quality of ser-
vice. Given that a Cloud can deliver a near similar quality

of service as a dedicated computing resource, Clouds then
have a substantial number of advantages. Firstly applica-
tion providers do not need to embark on capital expendi-
ture and instead can lease the infrastructure when they need
it. Secondly, because the elasticity rules enable the appli-
cation provider to flexibly expand and shrink their resource
demands so they only pay the resources that they actually
need. Finally, the Cloud provider can plan its capacity more
accurately because it knows the resource demands of the ap-
plications it provides.

While Cloud computing is still a relatively new para-
digm, and as such changes in standards, infrastructural ca-
pabilities and component APIs are inevitable, defining the
software architecture of services hosted on a Cloud with re-
spect to the capabilities of the underlying infrastructure is
key to optimizing resource usage. This allows us to bridge
the gap between application and infrastructure and provides
the means for providers to retain some control over the man-
agement process.

Our work paves the way towards quality of service aware
service provisioning. In future work, we aim to develop ap-
propriate syntax and semantics for resource provisioning
service level agreements. Building upon the approach laid
out here, we aim to provide a framework for the automated
monitoring and protection of service level obligations based
on defined semantic constraints.

References

1. Amazon: Amazon Elastic Compute Cloud (Amazon EC2) (2006).
[Online] http://aws.amazon.com/ec2

2. Andreozzi, S., De Bortoli, N., Fantinel, S., Ghiselli, A., Rubini,
G.L., Tortone, G., Vistoli, M.C.: GridICE: a monitoring service for
grid systems. Future Gener. Comput. Syst. 21(4), 559–571 (2005).
doi:10.1016/j.future.2004.10.005

3. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Kon-
winski, A., Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Za-
haria, M.: Above the clouds: a Berkeley view of cloud comput-
ing. Tech. Rep. UCB/EECS-2009-28, EECS Department, Univer-
sity of California, Berkeley (2009). http://www.eecs.berkeley.edu/
Pubs/TechRpts/2009/EECS-2009-28.html

4. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A.,
Neugebauer, R., Pratt, I, Warfield, A.: Xen and the art of virtualiza-
tion. In: SOSP’03: Proceedings of the Nineteenth ACM Sympo-
sium on Operating Systems Principles, pp. 164–177. ACM, New
York (2003). doi:10.1145/945445.945462

5. Chapman, C., Emmerich, W., Márquez, F.G., Clayman, S.,
Galis, A.: Software architecture definition for on-demand cloud
provisioning. In: 19th ACM International Symposium on High
Performance Distributed Systems. ACM, New York (2010)

6. Cherkasova, L., Gardner, R.: Measuring CPU overhead for I/O
processing in the Xen virtual machine monitor. In: Proceedings of
the USENIX Annual Technical Conference, pp. 387–390 (2005)

7. Clayman, S., Galis, A., Chapman, C., Toffetti, G., Rodero-Merino,
L., Vaquero, L., Nagin, K., Rochwerger, B.: Monitoring service
clouds in the future internet. In: Towards the Future Internet—
Emerging Trends from European Research. IOS Press, Amster-
dam (2010)

http://aws.amazon.com/ec2
http://dx.doi.org/10.1016/j.future.2004.10.005
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://dx.doi.org/10.1145/945445.945462

Cluster Comput (2012) 15:79–100 99

8. Clayman, S., Galis, A., Mamatas, L.: Monitoring virtual networks
with lattice. In: Management of Future Internet—ManFI 2010
(2010). http://www.manfi.org/2010/

9. Cooke, A., Gray, A.J.G., Ma, L., Nutt, W., et al.: R-GMA: an in-
formation integration system for grid monitoring. In: Proceedings
of the 11th International Conference on Cooperative Information
Systems, pp. 462–481 (2003)

10. DMTF: Open Virtualization Format. Specification DSP0243
v1.0.0, Distributed Management Task Force (2009)

11. DROOLS: DROOLS (2010). [Online] http://jboss.org/drools
12. Emmerich, W., Butchart, B., Chen, L., Wassermann, B., Price,

S.L.: Grid service orchestration using the business process execu-
tion language (BPEL). J. Grid Comput. 3(3–4), 283–304 (2005).
http://dx.doi.org/10.1007/s10723-005-9015-3

13. Galán, F., Sampaio, A., Rodero-Merino, L., Loy, I, Gil, V., Va-
quero, L.M., Wusthoff, M.: Service specification in cloud envi-
ronments based on extensions to open standards. In: Fourth In-
ternational Conference on COMmunication System softWAre and
middlewaRE (COMSWARE) (2009)

14. Ganek, A., Corbi, T.: The dawning of the autonomic computing
era. IBM Syst. J. 42(1), 5–18 (2003)

15. IBM: IBM blue cloud (2007). [Online] http://www-03.ibm.com/
press/us/en/pressrelease/22613.wss

16. Mamatas, L., Clayman, S., Charalambides, M., Galis, A.,
Pavlou, G.: Towards an information management overlay for the
future internet. In: IEEE/IFIP NOMS (2010)

17. Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed
monitoring system: design, implementation and experience. Par-
allel Comput. 30, 2004 (2003)

18. Microsoft: Windows Azure Platform (2008). [Online] http://www.
microsoft.com/windowsazure/

19. Nagios: Nagios (1999). [Online] http://www.nagios.org/
20. Newman, H., Legrand, I., Galvez, P., Voicu, R., Cirstoiu, C.: Mon-

ALISA: a distributed monitoring service architecture. In: Proceed-
ings of CHEP03, La Jolla, California (2003)

21. OASIS: Web Service Business Process Execution Language Ver-
sion 2.0 Specification. OASIS standard (2007)

22. Object Management Group: Meta Object Facility Core Specifica-
tion 2.0, OMG Document, formal/2006-01-01 (2006)

23. Object Management Group: Object Constraint Language (OCL)
2.0, OMG Document, formal/2006-05-01 (2006)

24. OpenNebula: OpenNebula: The Open Source Toolkit for Cloud
Computing (2010). [Online] http://www.opennebula.org

25. Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin, K.,
Llorente, L., Montero, R., Wolfsthal, Y., Elmroth, E., Cáceres,
J., Ben-Yehuda, M., Emmerich, W., Gálan, F.: The RESERVOIR
model and architecture for open federated cloud computing. IBM
Systems Journal Special Edition on Internet Scale Data Centers
53(4) (2009)

26. Rochwerger, B., Galis, A., Levy, E., Cáceres, J., Breitgand, D.,
Wolfsthal, Y., Llorente, I., Wusthoff, M., Montero, R., Elm-
roth, E.: RESERVOIR: management technologies and require-
ments for next generation service oriented infrastructures. In: The
11th IFIP/IEEE International Symposium on Integrated Manage-
ment, New York, USA, pp. 1–5 (2009)

27. SAP: SAP Enterprise Resource Planning (2003). [Online] http://
www.sap.com/solutions/business-suite/erp/index.epx

28. Skene, J., Emmerich, W.: Engineering runtime requirements-
monitoring systems using MDA technologies. Lect. Notes Com-
put. Sci. 3705, 319 (2005)

29. Skene, J., Lamanna, D.D., Emmerich, W.: Precise service level
agreements. In: ICSE’04: Proceedings of the 26th International
Conference on Software Engineering, pp. 179–188. IEEE Com-
put. Soc., Los Alamitos (2004)

30. Srinivasan, R.: XDR: eXternal Data Representation standard
(1995)

31. Sugerman, J., Venkitachalam, G., Lim, B.H.: Virtualizing I/O de-
vices on VMware workstation’s hosted virtual machine monitor.
In: Proc. of the 2001 USENIX Annual Technical Conference,
Usenix, Boston, Mass (2001)

32. Tatemura, J.: CDDLM Configuration Description Language Spec-
ification 1.0. Tech. rep., Open Grid Forum (2006)

33. Thain, D., Tannenbaum, T., Livny, M.: Condor and the grid. In:
Berman, F., Fox, G., Hey, T. (eds.) Grid Computing: Making the
Global Infrastructure a Reality. Wiley, New York (2002)

34. UCL: UCL MDA Tools (2008). [Online] http://uclmda.
sourceforge.net/

35. Vaquero, L.M., Rodero-Merino, L., Cáceres, J., Lindner, M.:
A break in the clouds: towards a cloud definition. SIGCOMM
Comput. Commun. Rev. 39(1), 50–55 (2009). doi:10.1145/
1496091.1496100

36. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting
Your Models Ready for MDA. Addison-Wesley, Longman, Read-
ing, Harlow (2003)

Clovis Chapman received an M.Sc.
in Data Communication and Dis-
tributed Systems and a Ph.D. in
2009 from the department of Com-
puter Science at University College
London. He has been involved as
a research fellow in several UK and
European wide research projects fo-
cusing on Grid and Cloud com-
puting technologies and has au-
thored over 25 papers in interna-
tional conferences and journals. His
primary research interests include
the management of large scale dis-
tributed computing infrastructures,

with specific focus on virtualisation technologies and service oriented
computing.

Wolfgang Emmerich graduated
from the Universitat Dortmund and
obtained his doctorate from the Uni-
versitat of Paderborn. He is a pro-
fessor of Distributed Computing in
the Department of Computer Sci-
ence, where he is Director of Re-
search and Head of the Software
Systems Engineering Group. He is
a member of the Editorial Board of
IEEE Transactions of Software En-
gineering and a member of the IET
and Chartered Engineer. Aside from
a wide range of research publica-
tions, he is author of Engineering

Distributed Objects, a major textbook published by Wiley.

http://www.manfi.org/2010/
http://jboss.org/drools
http://dx.doi.org/10.1007/s10723-005-9015-3
http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
http://www.microsoft.com/windowsazure/
http://www.microsoft.com/windowsazure/
http://www.nagios.org/
http://www.opennebula.org
http://www.sap.com/solutions/business-suite/erp/index.epx
http://www.sap.com/solutions/business-suite/erp/index.epx
http://uclmda.sourceforge.net/
http://uclmda.sourceforge.net/
http://dx.doi.org/10.1145/1496091.1496100
http://dx.doi.org/10.1145/1496091.1496100

100 Cluster Comput (2012) 15:79–100

Fermín Galán Márquez received
an M.Sc. degree in telecommunica-
tions and a Ph.D. in telematics from
Universidad Politécnica de Madrid
in 2002 and 2010, respectively.
Since 2001 he has participated in
several EU and Spanish research
projects, and been involved in stan-
dardization activities at DMTF as
Telefónica’s delegate. He has au-
thored more than 40 papers in in-
ternational conferences and jour-
nals. His current research interests
include configuration management,
networking testbeds, virtualization
technologies, and cloud computing.

Stuart Clayman received a Ph.D.
in Computer Science from Univer-
sity College London in 1993. Cur-
rently a senior research fellow in the
department of Electrical Engineer-
ing at University College London,
he has participated in several Euro-
pean research projects related to the
deployment, management and mon-
itoring of large scale complex IT
services. He is also a regular con-
tributor to the European Future In-
ternet Assembly, a collaboration of
150 projects aiming to strengthen
European activities on the Future
Internet.

Alex Galis is a Visiting Professor
at the University College London
(UCL). He has published four re-
search books, six book chapters and
over 150 publications in the field
of networks, services and distrib-
uted systems. He has served in sev-
eral program committees, organ-
ised several IEEE conferences and
workshops. He served as reviewer
for Computer Networks Journal,
IEEE Communications Magazine,
International Journal of Internet
Protocol Technology, IEEE Journal
on Selected Areas in Communica-

tions, IEEE Network Magazine, IBM Systems Journal, IEEE Journal
of Network and Systems Management. He has served also as Principal
Investigator in 3 EU projects and he has contributed to other 8 research
EU projects.

	Software architecture definition for on-demand cloud provisioning
	Abstract
	Introduction
	Background
	Motivation
	Architecture definition
	Requirements
	Manifest language definition
	Abstract syntax
	Application description language
	Elasticity rules

	Semantic definition
	Service deployment
	Service elasticity

	Concrete syntax

	Service lifecycle management
	Service manager
	Service deployment
	Service elasticity

	Monitoring framework
	Producers and consumers
	Data sources and probes
	Probe data dictionary
	Measurements
	Distribution framework
	Design and implementation overview
	Information model encoding

	Experimental evaluation
	Testbed architecture
	Service components
	Deployment
	Metrics
	Experiment results

	Related work
	Conclusion and future work
	References

