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Abstract Several MPI systems for Grid environment, in
which clusters are connected by wide-area networks, have
been proposed. However, the algorithms of collective com-
munication in such MPI systems assume relatively low
bandwidth wide-area networks, and they are not designed
for the fast wide-area networks that are becoming avail-
able. On the other hand, for cluster MPI systems, a bcast
algorithm by van de Geijn, et al. and an allreduce algo-
rithm by Rabenseifner have been proposed, which are effi-
cient in a high bi-section bandwidth environment. We mod-
ify those algorithms so as to effectively utilize fast wide-
area inter-cluster networks and to control the number of
nodes which can transfer data simultaneously through wide-
area networks to avoid congestion. We confirmed the effec-
tiveness of the modified algorithms by experiments using
a 10 Gbps emulated WAN environment. The environment
consists of two clusters, where each cluster consists of nodes
with 1 Gbps Ethernet links and a switch with a 10 Gbps up-
per link. The two clusters are connected through a 10 Gbps
WAN emulator which can insert latency. In a 10 millisecond
latency environment, when the message size is 32 MB, the
proposed bcast and allreduce are 1.6 and 3.2 times faster, re-
spectively, than the algorithms used in existing MPI systems
for Grid environment.
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1 Introduction

There are several MPI systems for clusters in Grid environ-
ment, such as MPICH-G2, MagPIe, and PACX-MPI, and
they have implemented a set of efficient algorithms of col-
lective communication for high latency networks [6, 11, 12].
The set of algorithms assumes that the bandwidth of inter-
cluster links is much lower than that of the network links of
the cluster nodes.

However, recently, the bandwidth of wide-area networks
has become much wider, and far exceeds the bandwidth of
the network interfaces of typical cluster nodes [7, 19]. This
situation will continue at least for a while, because the op-
tical network technology for wide-area networks will con-
tinue to advance, while providing the fastest network inter-
faces to all the cluster nodes costs too much and is imprac-
tical. Thus, new algorithms of collective communication are
needed, which match the fast inter-cluster networks.

Among the set of collective operations, bcast and allre-
duce are two important ones [16]. The bcast operation
(MPI_Bcast) is a broadcast, in which data on one node
(called a root node) is copied to all other nodes. The allre-
duce operation (MPI_Allreduce) is a reduction opera-
tion to all nodes, in which a reduction result is copied to
all nodes. It can be thought as a reduction followed by a
broadcast. It is reported that the allreduce operation took
37% of MPI execution time in 5-year profiling on a Cray
T3E [16, 20].

For these two operations, efficient algorithms have been
invented targeting a high bi-section bandwidth environment:
the bcast algorithm by van de Geijn et al. [2, 3], and the
allreduce algorithm by Rabenseifner [17]. Both the bcast
and allreduce algorithms are based on a similar idea of split-
ting a message, where a message is split and distributed to
the nodes, and then gathering the split messages again in
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every node. The van de Geijn bcast can be implemented
by scatter followed by allgather. The Rabenseifner allre-
duce can be implemented by reduce-scatter followed by all-
gather. Here, scatter, reduce-scatter, and allgather are all
implemented by log(P)-step algorithms, and can effectively
utilize the available bandwidth of each node.

We have been investigating algorithms of collective com-
munication for systems where multiple clusters are con-
nected by wide-area networks. In such systems, the network
interface of each node has one bi-directional link, and intra-
cluster communication is through a switched network, while
inter-cluster communication is through a long-and-fast net-
work. Here, long-and-fast roughly means:

long: L(inter-cluster) � L(inter-node) ∗ log(P )

fast: B(inter-cluster) > B(node-link)

where, L is the latency, B is the bandwidth, and P is the
number of nodes in a cluster. The reason for adding log(P )

factor to the latency is to assume that arbitrary log(P )-step
algorithms can be performed inside a cluster without con-
sidering inter-cluster communication issues. Also, we focus
only on large messages, since the efficiency of communica-
tion for short messages depends almost only on the inter-
cluster latency. Under these assumptions, the inter-node la-
tency inside a cluster is marginal and can be omitted from
consideration.

A low bandwidth environment, in which the inter-cluster
bandwidth is less than the bandwidth of a network link of
a node, is out of the scope of this paper. In such an envi-
ronment, only one node will perform inter-cluster commu-
nication at a time, and regulating the amount of transmission
from that node is the issue. Bandwidth limiting mechanisms
such as PSPacer [18] and Linux’s Token Bucket Filter will
work for that purpose, but they are not discussed in this pa-
per.

We have shown in a previous paper that the practical
upper-bound of the latency of inter-cluster communication is
about 10 milliseconds, when benchmark programs for clus-
ters, such as the NAS Parallel Benchmarks, are not modified
to tolerate latency [14]. Although the effect of latency nat-
urally depends on the application, most benchmarks have
shown good performance up to a 10 millisecond latency.
Out of this range, however, most benchmarks run poorly and
connecting two clusters is meaningless in terms of the com-
puting performance, whereas there is still a benefit of using
large amounts of resources such as memory and disks. A
10 millisecond latency roughly corresponds to 1000 miles in
actual networks, and there may exist some large-scale clus-
ters in this range. Thus, all experiments in this paper are
performed with a 10 millisecond latency.

In the following, the designs and the implementations of
the algorithms for long-and-fast networks are described in

Sect. 2 and Sect. 3. Section 2 describes the bcast and allre-
duce operations, and Section 3 briefly describes the exten-
sions to the other collective operations. The experimental
results are shown in Sect. 4. We mention very briefly related
work in Sect. 5, and conclude the paper in Sect. 6.

2 Design and implementation

2.1 Design overview

Our objective is to design algorithms of collective commu-
nication to utilize the available bandwidth of wide-area net-
works, which is a number of times larger than the bandwidth
of the network link of each node, e.g., the inter-cluster band-
width is 10 Gbps while the inter-node bandwidth is 1 Gbps.
In such an environment, a number of nodes should send mes-
sages simultaneously to the inter-cluster network to fully
utilize the bandwidth. However, contention among the mes-
sages should be avoided when nodes send messages simul-
taneously, especially when the TCP/IP protocol is used on
long-and-fast networks [15]. The total transmission rate of
the sending nodes should be limited to the bandwidth of the
inter-cluster network.

For a cluster environment, good algorithms for bcast and
allreduce operations have been proposed. van de Geijn et
al. [2, 3] proposed a bcast algorithm. Rabenseifner [17] pro-
posed an allreduce algorithm. Our algorithms are based on
those algorithms, which are modified to efficiently utilize
the bandwidth of wide-area networks which connect clus-
ters.

The van de Geijn bcast is algorithmically equivalent to
scatter followed by allgather. The scatter operation splits
a message and distributes the parts of that message to all
nodes. The allgather operation collects parts of the message
from all nodes, and rebuilds the message from the collected
parts on each node. We modified this algorithm to extend it
for inter-cluster communication. The modified van de Geijn
bcast inserts a copy operation between the scatter and all-
gather stages, which copies the message between the clus-
ters through a wide-area network. Details are described fol-
lowing this section.

The Rabenseifner allreduce is algorithmically equivalent
to reduce-scatter followed by allgather. The reduce-scatter
operation splits a message and distributes the parts of that
message to all nodes. In addition, it performs a reduction
on the part of the message. The allgather operation collects
parts of the reduced message from all nodes, and rebuilds the
result in each node. We modified this algorithm to extend it
for inter-cluster communication. The modified Rabenseifner
allreduce inserts copy and reduction operations between the
reduce-scatter and allgather stages in a way similar to the
case of bcast. Details are described following this section,
too.
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Fig. 1 Data movement of the
modified van de Geijn bcast

Fig. 2 Skeleton of the modified van de Geijn bcast

Based on the modifications of the algorithms as stated
above, all nodes in a cluster participate in inter-cluster com-
munication. Now, we need to regulate the total transmission
rate to avoid contention among the messages. We took a sim-
ple forwarding approach in the implementation, in which
only selected nodes are allowed to send messages to the op-
posite cluster, while the other nodes send messages to the
selected nodes inside the cluster.

2.2 Bcast

Figures 1 and 2 show an outline of the modified van de Geijn
bcast and its data movement example. The algorithm is iden-
tical to the van de Geijn bcast except for the addition of
counter_copy and working in the hemisphere com-
municator. The hemisphere communicator represents a
half of MPI_COMM_WORLD and corresponds to each clus-
ter. The nprocs variable holds the number of processes in
MPI_COMM_WORLD.

The steps of the modified van de Geijn bcast are as fol-
lows:

1. The split_copy function performs the steps of scatter
in the original bcast algorithm. In the i-th step, it splits a
message in half and copies the half to a 2(nprocs/2−i)-apart
process. It follows a pattern called recursive-halving.
Note that the split_copy function is only performed
in a cluster which contains the root rank (the source of
the bcast data).

2. The counter_copy function copies the scattered mes-
sages from the cluster containing the root rank to the
other cluster. Basically, each node sends its part of the
message to the opposite node in the other cluster as
shown in Fig. 1. That is, there is one-to-one correspon-
dence between nodes in each cluster.

3. The merge_copy function performs the steps of all-
gather in the original bcast algorithm. In the i-th step, it
merges a message from a 2i -apart process to its holding
message. It follows a pattern called recursive-doubling.

The counter_copy function can overflow the bottle-
neck link when all the nodes simultaneously send their mes-
sages. Thus, counter_copy takes a parameter for the
number of nodes which are allowed to send messages si-
multaneously. Only selected nodes may send messages to
the other cluster. The other nodes forward their messages
to selected nodes inside the cluster. The number of selected
nodes can be any value between 1 and nprocs/2 according
to the available inter-cluster bandwidth.

2.3 Allreduce

Figures 3 and 4 show an outline of the modified Raben-
seifner allreduce and its data movement example. The al-
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Fig. 3 Data movement in the
modified Rabenseifner allreduce
with the addition operation

Fig. 4 Skeleton of the modified Rabenseifner allreduce

gorithm is identical to the Rabenseifner allreduce except
for the addition of counter_reduce and working with
hemisphere. The allreduce algorithm is very similar to
bcast, where each step performs a reduction in place of a
simple copy.

The steps of the modified Rabenseifner allreduce are as
follows:

1. The split_reduce function performs the steps of
reduce-scatter in the original allreduce algorithm. In the
i-th step, it splits a message in half and copies the half to
a 2(nprocs/2−i)-apart process. It then performs reduction.
It follows a pattern called recursive-halving.

2. The counter_reduce function performs a bi-direct-
ional copy and a reduction on the exchanged message.
The counter_reduce function works in the same
way as counter_copy, but it is followed by a reduc-
tion.

3. The merge_copy function performs the steps of all-
gather in the original allreduce algorithm. It is the same
as the one in the modified van de Geijn bcast algorithm.

counter_reduce takes a parameter for the number of
nodes which are allowed to send messages simultaneously,
too. It can take any value between 1 and nprocs/2.

Note that counter_reduce is bi-directional and re-
ceives messages from the opposite cluster. Therefore, for-
warding inside a cluster may cause conflicting use of the re-
ceiving link of the node. In the implementation, the order of
sends was ad hocly skewed in order to avoid concentration,
but we observed no significant effect on the performance of
the operation in the experiments.

2.4 Design choice: avoiding contention

The forwarding scheme described in the previous subsec-
tions is one choice to reduce the inter-cluster traffic, and
there are other ways to reduce the number of nodes si-
multaneously communicating. We will discuss some design
choices below.

One way is to algorithmically reduce the number of
nodes. In bcast, the split_copy operation splits and
distributes a message as a part of the scatter stage. If
the counter_copy operation is performed just after
the i-th iteration of split_copy, 2i nodes hold the
split message. Therefore, only 2i nodes participate in
counter_copy. After counter_copy, the remaining
iterations of split_copy are performed. Although this
scheme seems attractive, the number of communicating
nodes is limited to powers of two, and it is not flexible.
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Algorithmically reducing number of sending nodes can-
not be done without some penalty in allreduce. The split_
reduce steps in the reduce-scatter stage cannot be sus-
pended before completion, because fully reduced values are
needed to minimize the message exchanged between clus-
ters. Therefore, to reduce the number of nodes allowed to
communicate, a few extra merge_copy operations must
be performed before the counter_reduce. Repeating
merge_copy i times makes 2i nodes hold identical copies
of the reduced message. Thus, after the i-th merge_copy,
the 1/2i nodes may participate in the counter_reduce
function. However, the receiving side also needs to per-
form some extra split_copy operations to get back to
the state at which allgather can be performed. Note that
split_copy undoes the effect of merge_copy per-
formed in the sending cluster. An arbitrary number of pairs
of split_copy and merge_copy can be used without
affecting the correctness of the algorithm.

Another way to reduce the traffic is to select a set of nodes
by chaining one set after another, and phasing the use of
the bottle-neck link. However, there is no portable way to
know the end of transmission in the standard socket API.
Messages are buffered in the socket, and there is no way
to know when the socket buffer becomes empty. Therefore,
chaining the nodes is not considered in our implementation,
because it needs support from the system software.

The forwarding mechanism increases the traffic inside a
cluster, and also occupies the receiving link on the forward-
ing node. However it is the simplest way, and allows regulat-
ing the sending nodes to an arbitrary number. Thus, simple
forwarding is used in our implementation.

2.5 Adaptation for more clusters

Naturally, the two-cluster algorithm described above can be
extended to more clusters. Inter-cluster communication can
be simple one-to-all for bcast and all-to-all for allreduce.
The algorithms can also be adapted to the available band-
width between each pair of clusters. When the wide-area
network is shared, in a case such as one where one city ex-
ists in the middle of two other cities, the number of sending
nodes should be reduced.

In addition, there is a situation where imbalance exists
in the number of nodes of clusters. The above mentioned
method to algorithmically reduce the number of communi-
cating nodes can be used at the larger cluster, in case the
numbers of nodes in clusters are different by more than a

factor of two. By using the method, the number of commu-
nicating nodes in the larger cluster can be matched to that of
the opposing cluster.

3 Other MPI collective operations

3.1 MPI collective operations

The operations bcast and allreduce are very important, but
MPI defines 16 collective operations (14 in MPI-1.2). They
are shown in Table 1. This section briefly describes applying
the modifications to other operations. As we have described
in the design section (Sect. 2), collective operations can
be implemented by combinations of more primitive oper-
ations. Some of the collective operations are sub-algorithms
of bcast and allreduce, and our modifications work for them
straightforwardly. Avoiding message contention by limiting
the number of nodes which send messages simultaneously
should work for some other collective operations.

We omitted barrier, scan, exscan, and operations with the
postfixes v and w from consideration. The operation barrier
is omitted, because its message size is zero. The operations
with the postfixes are omitted, because they are variants of
the operations without the postfixes and work similarly. The
operations scan and exscan are also omitted, because data
do not take appropriate positions when the modifications are
based on splitting and scattering found in the van de Geijn
or Rabenseifner algorithms, and applying our modifications
is not straightforward.

3.2 Allgather/reduce-scatter

The allgather operation gathers parts of data from all nodes
and copies the gathered data to all nodes. It is the opera-
tion found in the second-half of the van de Geijn bcast algo-
rithm. The operation can be carried out by first exchanging
data between clusters, and then, by performing allgather in-
side each cluster. Exchanging data can be performed by the
counter_copy function modified to work in both direc-
tions.

The reduce-scatter operation scatters parts of the result
of the reduction. It is the operation found in the first-half of
the Rabenseifner allreduce algorithm. The operation can be
carried out by first performing allreduce inside each clus-
ter, and then, exchanging and reducing data between clus-
ters. Exchanging and reducing data can be performed by the
counter_reduce function.

Table 1 Collective operations of MPI-2.0

MPI_Barrier MPI_Bcast MPI_Gather MPI_Gatherv MPI_Scatter MPI_Scatterv

MPI_Allgather MPI_Allgatherv MPI_Alltoall MPI_Alltoallv MPI_Alltoallw MPI_Reduce

MPI_Allreduce MPI_Reduce_scatter MPI_Scan MPI_Exscan
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These operations are sub-algorithms of the van de Geijn
bcast and Rabenseifner allreduce algorithms.

3.3 Reduce

The reduce operation can be implemented by reduce-scatter
followed by gather. That is, allgather found in the second-
half of the Rabenseifner allreduce algorithm is replaced
by gather. This operation is a sub-algorithm of the Raben-
seifner allreduce algorithm.

3.4 Scatter

The scatter operation distributes parts of data on one node
(called a root node) to all nodes. In scatter, the root node
should generate all data to others, and the network of the
root node is a bottle-neck. Thus, there is no merit of using
multiple inter-cluster connections.

3.5 Gather/alltoall

The gather operation gathers parts of data on all nodes to
one root node. The alltoall operation exchanges data from
each node to each node. These operations have no similarity
to the van de Geijn bcast and Rabenseifner allreduce algo-
rithms. But, avoiding contention can be useful, because all
nodes send data to one node simultaneously. Limiting the
number of nodes which send messages over the inter-cluster
connections can be applied to these operations. Since they
are only operations essentially differ from the van de Geijn
bcast and Rabenseifner allreduce algorithms, their perfor-
mance results are included in the evaluation section.

4 Evaluation

4.1 Simple cost model of bcast

The communication cost is modeled by the following pa-
rameters in this section: M is the message size, B is the
bandwidth of the link of the node, L is the latency of inter-
cluster communication. n is the number of connections used
in inter-cluster communication.

To compare the performance of the proposed bcast algo-
rithm, a simple bcast algorithm is implemented. The algo-
rithm is called far-first bcast in this paper. In the algorithm,
the whole message is sent first using inter-cluster commu-
nication. It minimizes time by using long links first. This
algorithm is a simplified one used in existing MPI systems
for wide-area networks. It uses the van de Geijn bcast algo-
rithm inside a cluster.

The cost of far-first is (L + M/B + (M/B + M/B)),
when simply ignoring the latency in the intra-cluster com-
munication. The term (M/B + M/B) is for the bcast in-
side a cluster, where the first M/B in it corresponds to the

Table 2 Cost of algorithms

Bcast

van de Geijn (L + M/nB + M/B + M/B)

far-first (L + M/B + (M/B + M/B))

Allreduce

Rabenseifner (L + M/nB + M/B + M/B)

two-tier (L + M/B + (M/B + M/B) + (M/B + M/B))

Others

Allgather (L + M/nB + M/B)

Reduce-scatter (L + M/nB + M/B)

Reduce (L + M/nB + M/B + M/B)

Reduce (two-tier) (L + M/B + M/B + M/B)

Scatter (L + M/B)

Gather (L + M/B)

Alltoall (L + M/B)

scatter stage, and the second M/B to the allgather stage.
Note that the cost of the scatter stage is M/B , because the
split_copy operation halves the message in each step,
and the sum of the cost of repeating it accumulates to M/B

asymptotically. It is similar for the allgather stage.
Similarly, the cost of the modified van de Geijn bcast is

(L+M/nB +M/B +M/B). The second term is changed to
M/nB by the effect of using multiple connections. Thus, the
modified van de Geijn wins by multiple uses of connections.

Table 2 summarizes the costs of the algorithms.

4.2 Simple cost model of allreduce

To compare the performance of the proposed allreduce al-
gorithm, a simple allreduce algorithm is implemented. The
algorithm is called two-tier allreduce in this paper. It first
performs the reduction inside each cluster, exchanges the re-
duced messages between clusters, and then performs bcast
with the messages inside each cluster. This algorithm is a
simplified one used in existing MPI systems for wide-area
networks. It performs the reduction inside a cluster by a vari-
ant of the Rabenseifner allreduce, in which allgather of the
second stage is replaced with gather.

The cost of two-tier allreduce is (L + M/B + (M/B +
M/B) + (M/B + M/B)). The third and fourth terms
(M/B + M/B) correspond to the reduction and bcast car-
ried out inside a cluster.

Similarly, the cost of the modified Rabenseifner allreduce
is (L+M/nB +M/B +M/B). The third M/B term corre-
sponds to the reduce-scatter stage and the fourth M/B term
corresponds to the allgather stage.

Note that the modified Rabenseifner performs better al-
gorithmically, without regard to the bandwidth of inter-
cluster communication.

Table 2 summarizes the costs of the algorithms.
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4.3 Simple cost model of others

The allgather operation is the second-half of the van de
Geijn bcast. The cost can be calculated by adding the cost
of the inter-cluster communication to the cost of the second-
half of the bcast. Similarly, the reduce-scatter operation is
the first-half of the Rabenseifner allreduce. The cost can be
calculated by adding the cost of the inter-cluster communi-
cation to the cost of the first-half of the allreduce, too.

The reduce operation is the same as the Rabenseifner
allreduce whose second-half is replaced by gather. The cost
is the same, because replacing the operation does not reduce
the time taken. The cost can be calculated similarly, when
the two-tier allreduce is used as the base algorithm. The cost
of reduce can be reduced by using multiple connections.

The scatter, gather, and alltoall operations are limited by
the network of a single node. Thus, the costs are very simply
(L + M/B).

Table 2 includes the costs of the above operations. In the
table, the message size M for gather is the total size of the
messages (i.e., the data size multiplied by the number of
nodes).

4.4 Experimental setting

Figure 5 shows the experimental setting, and Table 3 shows
the specification of the node PC and the Ethernet switches.
Two clusters were connected via a WAN emulator. In the
experiment, we used GtrcNET-10 [9] to emulate a WAN

Fig. 5 Experimental setting

Table 3 PC cluster specifications

Node PC

CPU Opteron (2.0 GHz)

Memory 6 GB DDR333

NIC Broadcom BCM5704 (on-board)

OS SuSE Enterprise Server 9 (Linux-2.6.17)

Switch Huawei-3Com Quidway S5648
+ optional 10 Gbps port

environment, which is a 10 Gbps successor of a well-
established network testbed, GtrcNET-1 [13] for 1 Gbps
Ethernet. GtrcNET-10 consists of a large-scale Field Pro-
grammable Gate Array (FPGA), three 10 Gbps Ethernet
XENPAK ports, and three blocks of 1 GB DDR-SDRAM.
The FPGA is a Xilinx XC2VP100, which includes three
10 Gbps Ethernet MAC and XAUI interfaces. GtrcNET-10
provides many functions such as traffic monitoring in mil-
lisecond resolution, traffic shaping, and WAN emulation
at 10 Gbps wire speed. GtrcNET-10 was used to add la-
tency between clusters and to observe precise network traf-
fic. GtrcNET-10 added a 10 millisecond delay (one-way) in
the experiment.

We used the MPI system, YAMPII [10], in the experi-
ments, which almost fully implements the MPI-2.0 specifi-
cation. YAMPII is the base of the MPI system, GridMPI [8],
for Grid environment. Both YAMPII and GridMPI are fully
functional, but YAMPII was used in the experiment, because
GridMPI supports heterogeneity and has overheads in han-
dling messages (e.g., byte-order conversion).

In the experiment, TCP buffer sizes of sockets were
set to 128 KB for intra-cluster connections and 2 MB for
inter-cluster connections. The 2 MB buffer size was cho-
sen to tolerate a 10 millisecond latency. Also, some ker-
nel TCP parameters were set as in the table below, be-
cause standard settings are not adequate for the experi-
ment. tcp_no_metrics_save disables recording of the pa-
rameters of the previous connection to reuse them. These
TCP parameters can be found in Linux in the directories
/proc/sys/net/core and /proc/sys/net/ipv4.

tcp_no_metrics_save 1
wmem_max 3000000
rmem_max 3000000
tcp_rmem 3000000 3000000 3000000
tcp_wmem 3000000 3000000 3000000
tcp_mem 3000000 3000000 3000000

We ran each operation 10 times and took the maximum
for stable results. TCP behaves disastrously at congestion,
and the variance of performance sometimes reached near
50 percent in the experiment.

4.5 Bcast performance

The left graph of Fig. 6 shows the bandwidth achieved in
bcast by varying the message size. The unit of the Y-axis
is MB/s, but it just represents the value of the total user-
level messages over the time (M ∗ nprocs/T ). It does not
count the actual messages sent by nodes because different
algorithms send different amounts of messages.

The results labeled with n = 1 to n = 32 are for the
modified van de Geijn algorithm, and n indicates the num-
ber of nodes simultaneously communicating. The label far-
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Fig. 6 Throughput of bcast and allreduce (delay = 10 msec)

Fig. 7 Throughput of bcast and allreduce (without delay)

first indicates the far-first algorithm. The label (world) in-
dicates the original van de Geijn algorithm, which works in
MPI_COMM_WORLD and does not distinguish a bottle-neck
link. It is included for comparison.

As the cost model suggests, far-first bcast behaves simi-
larly to the modified van de Geijn algorithm for n = 1. How-
ever, the modified van de Geijn algorithm improves as n in-
creases, up to n = 8. When the traffic overwhelms the band-
width between clusters over n = 8, the performance drops
but gradually improves as the message size increases.

No resend of TCP was observed in the modified van de
Geijn algorithm for n ≤ 8 in inter-cluster communication.

4.6 Allreduce performance

The right graph of Fig. 6 shows the bandwidth achieved in
allreduce by varying the message size. The unit of the Y-axis
is MB/s, but it just represents the value of the total message
size over the time (M ∗ nprocs2/T ).

The results labeled with n = 1 to n = 32 are for the mod-
ified Rabenseifner algorithm, and n indicates the number of

nodes simultaneously communicating. The label two-tier in-
dicates the two-tier algorithm. The label (world) indicates
the original algorithm, which works in MPI_COMM_WORLD
and does not distinguish a bottle-neck link.

As the cost model suggests, the modified Rabenseifner
allreduce outperforms the two-tier algorithm, even at n = 1.

No resend of TCP was observed in the modified Raben-
seifner algorithm for n ≤ 8 in inter-cluster communication.

4.7 Clusters environment

The proposed algorithms are expected to show good perfor-
mance for clusters with limited bi-section bandwidth, such
as clusters with multiple Ethernet switches or fat-trees with
a reduced number of links at upper levels.

Figure 7 shows the results without delay. The two Ether-
net switches were still connected via GtrcNET-10 and there
was a bottle-neck at 10 Gbps bandwidth.

The results labeled with (world) are for the original al-
gorithms, which work in MPI_COMM_WORLD and do not
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Fig. 8 Throughput of gather and alltoall (delay = 10 msec)

distinguish a bottle-neck link. The performance of the orig-
inal algorithms is not good. It is because they heavily use
the bottle-neck link as if it had a full bi-section bandwidth.
Although the modified algorithms generally perform well,
the effect of reducing the number of nodes of simultaneous
communication was almost not observed in a low latency
environment.

4.8 Gather and alltoall performance

Figure 8 shows the results of gather and alltoall in a 10 mil-
lisecond delay.

The graph of gather shows the effectiveness of using
multiple connections and limiting the number of connec-
tions. The performance improves up to eight connections.
The label direct shows the case when each node sends data
directly to the root node. The drop found at 2 MB message
size is caused by congestion. The reason of congestion was
not precisely analyzed, but the traffic can conflict between
inter-cluster and intra-cluster communication, because our
algorithm limits only the inter-cluster communication but
does nothing for intra-cluster communication.

The graph of alltoall shows no effectiveness of limiting
the number of connections. The label direct shows the case
when each node sends data directly to all nodes. The cases
of direct and the 32 connections are the same. Congestion is
not avoided in alltoall, and the well-known multiple stream
effect of TCP works for the direct case, in which the over-
supplied connections compensate the congested connections
with each other [1]. The overall performance of alltoall was
not good enough for the available bandwidth.

The results without delay is omitted in this case, because
they behaved similarly with and without delay. For bcast
and allreduce, showing the graphs without delay is mean-
ingful because they reduce the communication cost, but our
gather and alltoall have the same cost. The difference is

likely due to the timing of messages and the congestion be-
havior, which are not investigated in this work.

5 Related work

The van de Geijn bcast [2, 3] and the Rabenseifner allre-
duce [17] algorithms described in the design section are used
in MPICH-1.2.6 and MPICH-2 [20].

PACX-MPI [6], MPICH-G2 [11], and MagPIe [12] are
MPI systems designed for Grid environment. They are all
designed to exploit the hierarchy of communication media
ranging from memory systems to wide-area networks, and
to adapt to the complex structure in latency and topology
of wide-area networks. Although some optimality results
have been presented for their algorithms, they are not de-
signed to exploit the bandwidth of a single wide-area net-
work. Thus, their bcast and allreduce algorithms are reduced
to the simple far-first and two-tier algorithms shown in the
evaluation section, when the setting is a simple two cluster
configuration connected by a fast network. We have already
shown that the modified van de Geijn and modified Raben-
seifner algorithms outperformed the far-first and two-tier al-
gorithms in such a setting.

Chan, et al discuss algorithms of collective operations for
machines capable of sending to or receiving from multiple
links [5]. They have proposed the variations of algorithms
depending on the capabilities and limitations of the torus
network of BlueGene/L.

There is large amount of research in multicast overlay
networks (including bcast) under the general setting where
a network is represented by a weighted graph. Especially,
den Burger el al. discuss the use of multiple multicast trees
in clusters connected via wide-area networks [4]. However,
it cannot directly be compared to the communication algo-
rithms, because the work is general and proposes a method
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to find near-optimal multicast trees, and thus, the behavior
of the algorithm is only implied by the trees.

6 Conclusion

Since the assumption of low bandwidth wide-area networks
is now false, the algorithms of collective communication
need to be redesigned. In this paper, we have developed al-
gorithms of inter-cluster collective communication for bcast
and allreduce, which are based on the algorithms by van
de Geijn, et al and by Rabenseifner. They are designed for
fast wide-area networks, with bandwidth larger than that of
a network link of a node. The algorithms utilize multiple
node-to-node connections while regulating the number of
nodes simultaneously communicating, and improve the per-
formance of collective operations on large messages. Exper-
iments using an emulated WAN environment with 10 Gbps
bandwidth and a 10 millisecond latency have shown that our
bcast and allreduce algorithms performed 1.6 and 3.2 times
faster, respectively, than the algorithms used in existing MPI
systems for Grid environment.
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