
Cluster Comput (2007) 10: 127–143
DOI 10.1007/s10586-007-0012-0

Performance analysis of MPI collective operations

Jelena Pješivac-Grbović · Thara Angskun ·
George Bosilca · Graham E. Fagg · Edgar Gabriel ·
Jack J. Dongarra

Published online: 15 March 2007
© Springer Science+Business Media, LLC 2007

Abstract Previous studies of application usage show that
the performance of collective communications are critical
for high-performance computing. Despite active research in
the field, both general and feasible solution to the optimiza-
tion of collective communication problem is still missing.

In this paper, we analyze and attempt to improve intra-
cluster collective communication in the context of the
widely deployed MPI programming paradigm by extend-
ing accepted models of point-to-point communication, such
as Hockney, LogP/LogGP, and PLogP, to collective opera-
tions. We compare the predictions from models against the
experimentally gathered data and using these results, con-
struct optimal decision function for broadcast collective. We
quantitatively compare the quality of the model-based de-
cision functions to the experimentally-optimal one. Addi-

J. Pješivac-Grbović (�) · T. Angskun · G. Bosilca · G.E. Fagg ·
J.J. Dongarra
Innovative Computing Laboratory, Computer Science
Department, University of Tennessee, 1122 Volunteer Blvd.,
Knoxville, TN 37996-3450, USA
e-mail: pjesa@cs.utk.edu

T. Angskun
e-mail: angskun@cs.utk.edu

G. Bosilca
e-mail: bosilca@cs.utk.edu

G.E. Fagg
e-mail: fagg@cs.utk.edu

J.J. Dongarra
e-mail: dongarra@cs.utk.edu

E. Gabriel
Department of Computer Science, University of Houston, 501
Philip G. Hoffman Hall, Houston, TX 77204-3010, USA
e-mail: gabriel@cs.uh.edu

tionally, in this work, we also introduce a new form of an
optimized tree-based broadcast algorithm, splitted-binary.

Our results show that all of the models can provide use-
ful insights into various aspects of the different algorithms
as well as their relative performance. Still, based on our find-
ings, we believe that the complete reliance on models would
not yield optimal results. In addition, our experimental re-
sults have identified the gap parameter as being the most
critical for accurate modeling of both the classical point-to-
point-based pipeline and our extensions to fan-out topolo-
gies.

Keywords MPI collective communication · Performance
modeling · Parallel communication models · Hockney ·
LogP · LogGP · PLogP

1 Introduction

Previous studies of application usage show that the perfor-
mance of collective communications are critical to high-
performance computing (HPC). A profiling study [1] showed
that some applications spend more than eighty percent of a
transfer time in collective operations. Thus, it is essential for
MPI implementations to provide high-performance collec-
tive operations. Collective operations (collectives) encom-
pass a wide range of possible algorithms, topologies, and
methods. The optimal1 implementation of a collective for a
given system depends on many factors, including for exam-
ple, physical topology of the system, number of processes

1The “optimal implementation” is defined in the following way: given
a set of available algorithms for the collective, optimal implementation
will use the best performing algorithm for the particular combination
of parameters (message size, communicator size, root, etc.).

128 Cluster Comput (2007) 10: 127–143

involved, message sizes, and the location of the root node
(where applicable). Furthermore, many algorithms allow ex-
plicit segmentation of the message that is being transmitted,
in which case the performance of the algorithm also de-
pends on the segment size in use. Some collective opera-
tions involve local computation (e.g. reduction operations),
in which case the local characteristics of each node need to
be considered as they could affect our decision on how to
overlap communication with computation.

Simple, yet time consuming way to find even a semi-
optimal implementation of a collective operation is to run an
extensive set of tests over a parameter space for the collec-
tive on a dedicated system. However, running such detailed
tests even on relatively small clusters (32–64 nodes), can
take a substantial amount of time [2].2 If one were to ana-
lyze all of the MPI collectives in a similar manner, the tuning
process could take days. Still, many of current MPI imple-
mentations use “extensive” testing to determine switching
points between the algorithms. The decision of which algo-
rithm to use is semi-static and based on predetermined para-
meters that do not model all possible target systems.

Alternatives to the static decisions include running a lim-
ited number of performance and system evaluation tests.
This information can be combined with predictions from
parallel communication models to make run-time decisions
to select near-optimal algorithms and segment sizes for
given operation, communicator, message size, and the rank
of the root process.

There are many parallel communication models that pre-
dict performance of any given collective operation based
on standardized system parameters. Hockney [3], LogP [4],
LogGP [5], and PLogP [6] models are frequently used to
analyze parallel algorithm performance. Assessing the pa-
rameters for these models within local area network is
relatively straightforward and the methods to approximate
them have already been established and are well under-
stood [6, 7].

The major contribution of this paper is the direct com-
parison of Hockney, LogP/LogGP, and PLogP based paral-
lel communication models applied to optimization of intra-
cluster MPI collective operations. We quantitatively com-
pare the predictions of the models to experimentally gath-
ered data and use models to obtain optimal implementation
of broadcast collective. We assess the performance penalty
of using model generated decision functions versus the ones
generated by exhaustive testing of the system. Additionally,
we introduce a new form of optimized tree-based broad-
cast algorithm called splitted-binary. Indirectly, this work
was used to implement and optimize the collective opera-
tion subsystem of the FT-MPI [8] library.

2For example, profiling the linear scatter algorithm on 8 nodes took
more than three hours [2].

The rest of this paper proceeds as follows. Section 2
discusses related work. Section 3 provides background in-
formation on parallel communication models of interest;
Sect. 4 discusses the Optimized Collective Communication
(OCC) library and explains some of the algorithms it cur-
rently provides; Sect. 5 provides details about the collec-
tive algorithm modeling; Sect. 6 presents the experimental
evaluation of our study; and Sect. 7 is discussion and future
work.

2 Related work

Performance of MPI collective operations has been an ac-
tive area of research in recent years. An important aspect of
collective algorithm optimizations is understanding the al-
gorithm performance in terms of different parallel commu-
nication models.

Grama et al. in [9] use Hockney model to perform cost
analysis of different collective algorithms on various net-
work topologies (such as torus, hypercube, etc). In [10],
Thakur et al. discuss optimizations of their MPICH-2 MPI
implementation. They use Hockney model to assess the per-
formance of collectives and determine whether a particular
algorithm would perform better for small or large message
sizes. Using this analysis coupled with extensive testing they
determine switching points between algorithms based on
message size and whether the number of involved proces-
sors is exact power of two or not. Similarly, Chan et al. [11],
use Hockney model to evaluate the performance of differ-
ent collective algorithms on c × r mesh topology. Hockney
model was used by Rabenseifner et al. in [12] to estimate
performance of tree-based reduce algorithm optimized for
large messages.

Kielmann et al. [13] use PLogP model to find optimal
algorithm and parameters for topology-aware collective op-
erations incorporated in the MagPIe library. The MagPIe
library provides collective communication operations opti-
mized for wide area systems. Across high-latency, wide-
area links MagPIe selects segmented linear algorithms for
collectives, while various tree-based algorithms are used in
low-latency environment. Barchet-Estefanel et al. [14] use
PLogP model to evaluate performance of broadcast and scat-
ter operation on intra-cluster communication.

Bell et al. [15] use extensions of LogP and LogGP models
to evaluate performance of small and large messages on con-
temporary super-computing networks. Similarly to PLogP,
their extension of LogP/LogGP model accounts for the end-
to-end latency instead of the transport latency. Additionally,
they evaluate the potential for overlapping communication
and computation on their systems. Bernaschi et al. [16] ana-
lyze the efficiency of reduce-scatter collective using LogGP
model.

Cluster Comput (2007) 10: 127–143 129

Table 1 Analysis of different barrier algorithms

Barrier Model Duration

Flat-Tree Hockney T = (P − 1) × α

Flat-Tree LogP/LogGP
Tmin = (P − 2) × g + 2 × (L + 2 × o)

Tmax = (P − 2) × (g + o) + 2 × (L + 2 × o)

Flat-Tree PLogP
Tmin = P × g + 2 × L

Tmax = P × (g + or) + 2 × (L − or)

Double Ring Hockney T = 2 × P × α

Double Ring LogP/LogGP T = 2 × P × (L + o + g)

Double Ring PLogP T = 2 × P × (L + g)

Recursive Doubling Hockney
T = log2(P) × α, if P is exact power of 2

T = (log2(P) + 2) × α, otherwise

Recursive Doubling LogP/LogGP
T = log2(P) × (L + o + g), if P is exact power of 2

T = (�log2(P)� + 2) × (L + o + g), otherwise

Recursive Doubling PLogP
T = log2(P) × (L + g), if P is exact power of 2

T = (�log2(P)� + 2) × (L + g), otherwise

Bruck Hockney T = �log2(P)� × α

Bruck LogP/LogGP T = �log2(P)� × (L + o + g)

Bruck PLogP T = �log2(P)� × (L + g)

Vadhiyar et al. [2] use a modified LogP model which
takes into account the number of pending requests that have
been queued. Using this model coupled with modified hill-
descent heuristics, they reduce the total number of tests
necessary to tune the broadcast, scatter, gather, reduce, all-
reduce, and all-gather collective on their systems.

The work in this paper is closest to the work published by
Barchet-Estefanel et al. in [14]. Like them, we try to improve
performance intra-cluster collective communication opera-
tions using parallel communication models. Unlike them,
we consider wider range of collective operations, multi-
ple communication models, and quantify the performance
penalties which would arise from using models in place of
extensive testing. Tables 1–4 point the reader to the relevant
work related to the algorithms in question.

3 Summary of related models and parameters

Our work is built upon mathematical models of parallel
communication. For better understanding of how we use
these models we describe them in more detail below. Since
MPI collective operations consist of communication and
computation part of the algorithm, both network and com-
putation aspects of the collective need to be modeled for any
meaningful analysis.

3.1 Modeling network performance

In modeling communication aspects of collective algo-
rithms, we employ the models most-frequently used by the
message-passing community:

Hockney model

Hockney model [3] assumes that the time to send a mes-
sage of size m between two nodes is α + βm, where α is
the latency for each message, and β is the transfer time per
byte or reciprocal of network bandwidth. We altered Hock-
ney model such that α and β are functions of message size.
Congestion cannot be modeled using this model.

LogP/LogGP models

LogP model [4] describes a network in terms of latency, L,
overhead, o, gap per message, g, and number of nodes in-
volved in communication, P . The time to send a message
between two nodes according to LogP model is L + 2o.
LogP assumes that only constant-size, small messages are
communicated between the nodes. In this model, the net-
work allows transmission of at most �L/g� messages si-
multaneously. LogGP [5] is an extension of the LogP model
that additionally allows for large messages by introducing
the gap per byte parameter, G. LogGP model predicts the
time to send a message of size m between two nodes as
L + 2o + (m − 1)G. In both LogP and LogGP model, the
sender is able to initiate a new message after time g.

130 Cluster Comput (2007) 10: 127–143

Table 2 Analysis of different broadcast algorithms

Broadcast Model Duration Related work

Linear Hockney T = ns · (P − 1) · (α(ms) + ms · β(ms)) [10, 11]

Linear LogP/LogGP T = L + 2 · o − g + ns × (P − 1) × ((ms − 1)G + g)

Linear PLogP T = L + ns · (P − 1) · g(ms) [14, 18]

Pipeline Hockney T = (P + ns − 2) × (α(ms) + ms · β(ms))

Pipeline LogP/LogGP T = (P − 1) × (L + 2 · o + (ms − 1)G)+
(ns − 1) × (g + (ms − 1)G)

Pipeline PLogP T = (P − 1) × (L + g(ms)) + (ns − 1) × g(ms) [14]

Binomial Hockney T = �log2(P)� × ns × (α(ms) + ms · β(ms)) [10, 11]

Binomial LogP/LogGP T = �log2(P)� ×
(

L + 2 · o + (ms − 1)G+
(ns − 1) × (g + (ms − 1)G)

)
[4, 5]

Binomial PLogP T = �log2(P)� × (L + ns × g(ms)) [14, 18]

Binary Hockney T = (�log2(P + 1)� + ns − 2) × (2 × α(ms) + ms · β(ms))

Binary LogP/LogGP T = (�log2(P + 1)� − 1) × (L + 2 × (o + (ms − 1)G + g))+
2 × ((ms − 1)G + g)

[4, 5]

Binary PLogP T = (�log2(P + 1)� − 1) · (L + 2 · g(ms))+
(ns − 1) × max{2 · g(ms), or (ms) + g(ms) + os(ms)}

[14, 18]

Splitted-binary Hockney T = (�log2(P + 1)� + � ns

2 � − 2) × (2 × α(ms) + ms · β(ms))+
α(m

2) + m
2 · β(m

2)

Splitted-binary LogP/LogGP T =
(�log2(P + 1)� − 1) × (L + g + 2 · (o + (ms − 1)G))+
2 × (� ns

2 � − 1) × (g + (ms − 1)G)+
L + 2 · o + (m

2 − 1)G

Splitted-binary PLogP T = (�log2(P + 1)� − 1) × (L + 2 · g(ms))+
(ns

2 − 1) · max{2 · g(ms), or (ms) + g(ms) + os(ms)}

PLogP model

PLogP model [6] is an extension of the LogP model. PLogP
model is defined in terms of end-to-end latency L, sender
and receiver overheads, os(m) and or(m) respectively, gap
per message g(m), and number of nodes involved in com-
munication P . In this model sender and receiver overheads
and gap per message depend on the message size. Notion
of latency and gap in the PLogP model slightly differs from
that of the LogP/LogGP model. Latency in the PLogP model
includes all contributing factors, such as copying data to and
from network interfaces, in addition to the message transfer
time. Gap parameter in the PLogP model is defined as the
minimum time interval between consecutive message trans-
missions or receptions, implying that at all times g(m) ≥
os(m) and g(m) ≥ or(m). Time to send a message of size
m between two nodes in the PLogP model is L + g(m). If
g(m) is a linear function of message size m and L excludes
the sender overhead, then the PLogP model is equivalent to
LogGP model which distinguishes between sender and re-
ceiver overheads.

3.2 Modeling computation

We assume that the time spent in computation on data in a
message of size m is γm, where γ is computation time per
byte. This linear model ignores effects caused by memory
access patterns and cache behavior, but is able to provide a
lower limit on time spent in computation.

4 Optimized collective communication

We have developed a framework for functional method
verification and performance testing known as the Opti-
mized Collective Communication library (OCC). OCC is an
MPI collective library built on top of point-to-point oper-
ations. OCC consists of three modules: methods, verifica-
tion, and performance-testing modules. The methods mod-
ule provides a simple interface for addition of new col-
lective algorithms. The verification module provides ba-
sic verification tools for the existing methods. The perfor-
mance module provides a set of micro-benchmarks for the

Cluster Comput (2007) 10: 127–143 131

Table 3 Analysis of different reduce algorithms

Reduce Model Duration Related work

Flat Tree Hockney T = ns × (P − 1) × (α(ms) + β(ms)ms + γms) [10, 11]

Flat Tree LogP/LogGP T = o + (ms − 1)G + L+
ns × max{g, (P − 1) × (o + (ms − 1)G + γms)}

Flat Tree PLogP T = L + (P − 1) × ns × max{g(ms), or (ms) + γms} [18]

Pipeline Hockney T = (P + ns − 2) × (α(ms) + β(ms)ms + γms)

Pipeline LogP/LogGP T = (P − 1) × (L + 2 × o + (ms − 1)G + γms)+
(ns − 1) × max{g,2 × o + (ms − 1)G + γms}

Pipeline PLogP T = (P − 1) × (L + max{g(ms), or (ms) + γms})+
(ns − 1) × (max{g(ms), or (ms) + γms} + os(ms))

Binomial Hockney T = ns × �log2(P)� × (α(ms) + β(ms)ms + γms) [10, 11]

Binomial LogP/LogGP T = �log2 P � × (o + L + ns × ((ms − 1)G + max{g,o + γms})) [4, 5]

Binomial PLogP T = �log2 P � × (L + ns × max{g(ms), or (ms) + γms + os(ms)})
Binary Hockney T = 2 · (�log2(P + 1)� + ns − 2) × (α(ms) + β(ms)ms + γmS) [10, 11]

Binary LogP/LogGP T = (�log2(P + 1)� − 1) × ((L + 3 × o + (ms − 1)G + 2γms)+
(ns − 1) × ((ms − 1)G + max{g,3o + 2 × γms}))

[4, 5]

Binary PLogP T = (�log2(P + 1)� − 1) × (L + 2 × max{g(ms), or (ms) + γms})+
(ns − 1) × (os(ms) + 2 × max{g(ms), or (ms) + γms})

Table 4 Analysis of different alltoall algorithms

Alltoall Model Duration Related work

Linear Hockney T =
P × (α(ms) + β(ms)ms)+
(P − 1) × (ns × P + 1 − P

2) × α(ms)
[10]

Linear LogP/LogGP T = P × (L + 2 × o)+
(P − 1) × (ns × P + 1 − P

2) × (g + (ms − 1)G)
[4]

Linear PLogP T = P × L + (P − 1) × (ns × P + 1 − P
2) × g(ms)

Pairwise exchange Hockney T = (P − 1) × (α(m) + β(m)m) [10]

Pairwise exchange LogP/LogGP T = (P − 1) × (L + o + (m − 1) × G + g)

Pairwise exchange PLogP T = (P − 1) × (L + g(m))

library. A method is defined by an algorithm and parame-
ters it needs, such as virtual topology and segment size.3

Currently, the methods module contains various implemen-
tations of the following subset of MPI collective operations:
MPI_Barrier, MPI_Bcast, MPI_Reduce, MPI_Scatter, and
MPI_Alltoall. These particular routines were chosen as rep-
resentative of the commonly used collective operations in
MPI programs [1].

3Even though the definition of method is precise, in this paper, we will
sometimes refer to method as algorithm: instead of referring to “gen-
eralized broadcast method with binary topology and 32 KB segments,”
we may abbreviate long name to “binary algorithm with 32 KB seg-
ments”.

4.1 Virtual topologies

MPI collective operations can be classified as either one-to-
many/many-to-one (single producer or consumer) or many-
to-many (every participant is both producer and consumer)
operations. For example, broadcast, reduce, Scatter(v), and
Gather(v) follow the one-to-many communication pattern,
while barrier, alltoall, Allreduce, and Allgather(v) employ
many-to-many communication patterns.

Generalized version of the one-to-many/many-to-one
type of collectives can be expressed as (i) receive data from
preceding node(s), (ii) process data, if required, (iii) send
data to succeeding node(s). The data flow for this type of
algorithm is unidirectional. Virtual topologies can be used

132 Cluster Comput (2007) 10: 127–143

to determine the preceding and succeeding nodes in the al-
gorithm.

Currently, the OCC library supports five different vir-
tual topologies: flat-tree(linear,) pipeline (single chain), bi-
nomial tree, binary tree, and k-chain tree. Our experiments
show that given a collective operation, message size, and
number of processes, each of the topologies can be benefi-
cial for some combination of input parameters.

4.2 Available algorithms

This section describes the currently available algorithms in
OCC for barrier, broadcast, reduce and alltoall operations.
Due to space constraints and since it is outside the scope of
this paper, we will not discuss the algorithms in great details.

Barrier

Barrier is a collective operation used to synchronize a group
of nodes. It guarantees that by the end of the operation,
all processes involved in the barrier have at least entered
the barrier. We implemented four different algorithms for
the barrier collective: flat-tree/linear fan-in-fan-out, double
ring, recursive doubling, and Bruck [17] algorithm. In flat-
tree/linear fan-in-fan-out algorithm all nodes report to a pre-
selected root; once every node has reported to the root, the
root sends a releasing message to all participants. In the dou-
ble ring algorithm, a zero-byte message is sent from a pres-
elected root circularly to the right. A node can leave barrier
only after it receives the message for the second time. Both
linear and double ring algorithms require O(P) communi-
cation steps. Bruck algorithm requires �log2 P � communi-
cation steps. At step k, node r receives a zero-byte mes-
sage from and sends message to node (r − 2k) and (r + 2k)

node (with wrap around) respectively. The recursive dou-
bling algorithm requires log2 P steps if P is a power of 2,
and �log2 P � + 2 steps if not. At step k, node r exchanges
message with node (r XOR 2k). If the number of nodes P is
not a power 2, we need two extra steps to handle remaining
nodes.

Broadcast

The broadcast operation transmits an identical message from
the root process to all processes of the group. At the end of
the call, the contents of the root’s communication buffer is
copied to all other processes. We implemented the following
algorithms for this collective: flat-tree/linear, pipeline, bino-
mial tree, binary tree, and splitted-binary tree. All of these
algorithms support message segmentation which potentially
allows for overlap of concurrent communications. In flat-
tree/linear algorithm root node sends an individual message
to all participating nodes. In pipeline algorithm, messages

are propagated from the root left to right in a linear fashion.
In binomial and binary tree algorithms, messages traverse
the tree starting at the root and going towards the leaf nodes
through intermediate nodes. In the splitted-binary tree algo-
rithm,4 the original message is split into two parts, and the
“left” half of the message is sent down the left half of the
binary tree, and the “right” half of the message is sent down
the right half of the tree. In the final phase of the algorithm,
every node exchanges message with their “pair” from the
opposite side of the binary tree. In the case when the tree has
even number of nodes, the leaf without the pairwise partner,
receives the second half of the message from the root.

Reduce

The reduce operation combines elements provided in the in-
put buffer of each process within a group using the speci-
fied operation, and returns the combined value in the out-
put buffer of the root process. We have implemented a gen-
eralized reduce operation that can use all available virtual
topologies: flat-tree/linear, pipeline, binomial tree, binary
tree, and k-chain tree. At this time, the OCC library works
only with the predefined MPI operations. As in the case
of broadcast, our actual implementation overlaps multiple
communications with computation.

Alltoall

Alltoall is used to exchange data among all processes in a
group. The operation is equivalent to all processes execut-
ing the scatter operation on their local buffer. We have im-
plemented linear and pairwise exchange algorithms for this
collective. In the linear alltoall algorithm at step i, the ith

node sends a message to all other nodes. The (i + 1)th node
is able to proceed and start sending as soon as it receives
the complete message from the ith node. We allow for seg-
mentation of messages being sent. In the pairwise exchange
algorithm, at step i, node with rank r sends a message to
node (r + i) and receives a message from the (r − i)th node,
with wrap around. We do not segment messages in this algo-
rithm. At any given step in this algorithm, a single incoming
and outgoing communication exists at every node.

5 Modeling collective operations

For each of the implemented algorithms we have created
a numeric reference model based on a point-to-point com-
munication models previously discussed in Sect. 3. We as-
sume a full-duplex network which allows us to exchange

4To the best of our knowledge, no other group implemented or dis-
cussed this algorithm so far.

Cluster Comput (2007) 10: 127–143 133

and send-receive a message in the same amount of time as
completing a single receive.

Tables 1, 2, 3, and 4 show formulas for barrier, broad-
cast, reduce, and alltoall collectives respectively. If applica-
ble, the displayed formulas account for message segmenta-
tion. Message segmentation allows us to divide a message of
size m into a number of segments, ns , of segment size ms . In
the Hockney and PLogP models parameter values depend on
the message size. The LogP formulas can be obtained from
LogGP by setting the gap per byte parameter, G to zero.
The specified tables also provide references to relevant and
similar work done by other groups.

The model of the flat-tree barrier algorithm performance
in Table 1 requires additional explanation. The conservative
model of flat-tree barrier algorithm would include time to re-
ceive (P −1) messages sent in parallel to the same node, and
the time to send (P − 1) messages from the root. In the first
phase, the root process posts (P − 1) non-blocking receives
followed by a single waitall call. Our experiments show that
on our systems, all MPI implementations we examined were
able to deliver (P −1) zero-byte messages sent in parallel to
the root in close to the time to deliver a single message. Thus
we model the total duration of this algorithm as the time it
takes to receive a single zero-byte message plus the time to
send (P − 1) zero-byte messages.

6 Results and analysis

6.1 Experiment setup

The measurements were obtained on two dedicated5 clus-
ters provided by the SInRG project at the University of
Tennessee at Knoxville. The first cluster, Boba, consists of
32 Dell Precision 530s nodes, each with Dual Pentium IV
Xeon 2.4 GHz processors, 512 KB cache, 2 GB memory,
connected via Gigabit Ethernet. The second cluster, Frodo,
consist of 32 nodes, each containing dual Opteron proces-
sor, 2 GB memory, connected via 100 Mbps Ethernet and
Myrinet. In the results presented in this paper, we did not
utilize the Myrinet interconnect on the Frodo cluster.

Model parameters

We measured the model parameters using various MPI im-
plementations. Most of the collected data was obtained us-
ing FT-MPI [8], MPICH-1.2.6, and MPICH-2.0.97 [19]. Pa-
rameter values measured using MPICH-1 had higher latency
and gap values with lower bandwidth than both FT-MPI
and MPICH-2. FT-MPI and MPICH-2 had similar values
for these parameters on both systems.

5The micro-benchmark was the only user process executing on either
cluster during the measurement.

Hockney model parameters were measured directly using
point-to-point tests. To measure PLogP model parameters
we used the logp_mpi software suite provided by Kiel-
mann et al. [6]. Measured parameter values were obtained
by averaging the values obtained between different com-
munication points in the same system. For this model we
also experimented with directly fitting model parameters to
the experimental data, and applying those parameter values
to model other collective operations. Parameter fitting was
done under the assumption that the sender and receiver over-
heads do not depend on the network behavior, and as such
we used values measured by the log_mpi library. In this
paper, we obtained fitted PLogP parameters by analyzing the
performance of the non-segmented pipelined broadcast and
flat-tree barrier algorithm over various communicator and
message sizes. We chose to fit model parameters to these
algorithms as the communication pattern of non-segmented
pipelined broadcast’s data algorithm (linear sending and re-
ceiving message) is the closest match to the point-to-point
tests used to measure model parameters in the logp_mpi
and similar libraries. At the same time, flat-tree barrier for-
mulas in Table 1 provide the most direct way of comput-
ing the gap per message parameter for zero-byte messages
for PLogP and LogP/LogGP models. Results obtained using
these values matched more closely the overall experimental
data, thus all PLogP model results in this paper were ob-
tained using fitted parameters. Values of LogP and LogGP
were obtained from the fitted PLogP values as explained by
Kielmann et al. in [6].

Figure 1 shows parameter values for Hockney and PLogP
models on both clusters. Table 5 summarizes the parameter
values for LogP/LogGP model.

Performance tests

Our performance measuring methodology follows the rec-
ommendations given by Gropp et al. in [20] to ensure the
reproducibility of the measured results. We minimize the ef-
fects of pipelining by forcing a “report-to-root” step after
each collective operation. Each of the collected data points
is a minimum value of 10–20 measurements in which the
maximum value is excluded, and the standard deviation was
less than 5% of the remaining points.

6.2 Performance of different collective algorithms

We executed performance tests on various algorithms for
barrier, broadcast, reduce, and alltoall collective operations
using FT-MPI, MPICH-1, and MPICH-2. We then analyzed
the algorithm performance and the optimal implementation
of various collective operations using parallel communica-
tion models, Hockney, LogP/LogGP, and PLogP. When pre-
dicting performance of collective operations that exchanged

134 Cluster Comput (2007) 10: 127–143

(a) Hockney, Boba (b) PLogP, Boba

(c) Hockney, Frodo (d) PLogP, Frodo

Fig. 1 Hockney and PLogP parameter values on the Boba and Frodo clusters. The Boba cluster utilized GigE interconnect, while the Frodo we
utilized 100 Mbps Ethernet. On PLogP parameter graphs (b) and (d), (m) denotes measured values while (f) denotes fitted values of gap and
latency

Table 5 LogP/LogGP model parameters on both clusters

LogP/LogGP Boba cluster Frodo cluster

Latency L 30.40 [μs] 61.22 [μs]
Overhead o 8.15 [μs] 8.2 [μs]
Gap g 8.683 [μs] 23.8 [μs]
Gap-per-byte G 0.015 [μs] 0.084 [μs]

byte byte

actual data (message size >0) we did not consider pure
LogP predictions, but used LogGP instead (see Sect. 3.1).

In our experiments, we found that the model of worst
case performance of an algorithm is often too pessimistic,
as in the case of the flat-tree/linear fan-in-fan-out barrier
algorithm. Our experience with the MPI implementations
was that the algorithms performance was generally closer to
the best case scenario. Thus, where applicable we chose to
model algorithm performance using the best case scenario.

Barrier performance

Figure 2 illustrates measured and predicted performance of
Bruck, recursive doubling, and linear fan-in-fan-out barrier
algorithms on Boba cluster.

Cluster Comput (2007) 10: 127–143 135

(a) Bruck (b) Recursive Doubling

(c) Flat-tree

Fig. 2 Performance of barrier algorithms: experimentally measured values are indicated by circles. (MPICH-2, Boba cluster, GigE)

Experimental data for both Bruck and recursive dou-
bling algorithms, while exhibiting trends, is not uniform.
The reasons for this could be both our measurement pro-
cedure and the lock-step communication pattern of these al-
gorithms. The “report-to-root” step in the performance mea-
surement procedure takes time comparable to the time taken
by Bruck and recursive doubling barrier algorithms. Thus,
the reported measurement is affected more significantly by
the variations in this step then it would be for longer run-
ning collectives. Moreover, as these algorithms communi-
cate with different processes in lock-step manner, delay on
a single process would affect whole operation. At the same
time, the flat-tree/linear fan-in-fan-out barrier which takes
slightly longer to complete and has a more regular commu-
nication pattern does not exhibit this problem.

The measured data for the flat-tree barrier algorithm dis-
plays some unexpected behavior. Based on the PLogP and
LogP/LogGP models of performance showed in Table 1,
the duration of this algorithm grows linearly with commu-
nicator size and the slope of the line is equal to the zero-
byte gap. However, the experimental data implies that the
slope decreases around 16 nodes. The results displayed in
Fig. 2 were obtained using MPICH2, but the behavior was
consistent with results obtained using FT-MPI on the Frodo
system (see discussion on optimal broadcast decision func-
tion). This implies that the underlying system (MPI library,
TCP/IP, or hardware) were able to further optimize commu-
nication when sending and receiving zero-byte messages to
multiple nodes. Since the Hockney model assumes that the
minimum time between sending two messages is equal to

136 Cluster Comput (2007) 10: 127–143

(a) Binomial reduce, 8 nodes (b) Binomial reduce, 24 nodes

(c) Pipeline reduce, 8 nodes (d) Pipeline reduce, 24 nodes

Fig. 3 Performance of Segmented binomial and pipelined reduce methods on 8 and 24 nodes. Fitted parameter values were used to make predic-
tions for LogP/LogGP and PLogP models (MPICH-2, Boba cluster, GigE)

the latency, the prediction for this model for flat-tree barrier
is largely overestimated.

However, even accounting for all known discrepancies,
the models captured relative performance of these barrier
algorithms sufficiently correctly.

Reduce performance

Figure 3 displays measured and predicted performance of
non-segmented and segmented versions of binomial and
pipeline reduce algorithms for two communicator sizes
on the Boba cluster. Results indicate that for small mes-
sage sizes, non-segmented binomial algorithm outperforms

pipeline algorithm, while for large message sizes, the seg-
mented pipeline algorithm would have best performance.

Experimental data for non-segmented binomial and pipe-
line reduce algorithms exhibits non-linear increase in dura-
tion for the message sizes in the range from 1 KB to 10 KB.
The similar increase can be observed for large message sizes
(>100 KB) on non-segmented binomial algorithm. All three
models were able to capture relative performance of non-
segmented algorithms in question. However, LogP/LogGP
failed to capture non-linear increase in duration for the inter-
mediate sized messages. PLogP was the only model which
captured non-linear increase in duration of non-segmented
binomial algorithm for large message sizes. We can ex-

Cluster Comput (2007) 10: 127–143 137

(a) Hockney (b) PLogP
Fig. 4 Segmentation and binomial reduce algorithm. Figure displays necessary conditions under which segmentation of binomial reduce algo-
rithm would improve algorithm performance using Hockney and PLogP models. LogP/LogGP models do not have condition under which the
segmentation of this algorithm would improve performance. In this figure we use parameters from Fig. 1 and assume segment size of 1 KB

plain these shortcomings by considering the model parame-
ters. The LogP/LogGP model assumes linear dependence
between the time to send/receive a message and message
size. However, the results in Fig. 3 show that in general, this
is certainly not the case. The Hockney model is able to cap-
ture the first non-linear behavior because its parameters are
function of message size. However, once the message size
exceeds 100 KB, the transfer rate, β parameter, reaches its
asymptotic value and effectively becomes an constant, thus
preventing the Hockney model to capture the non-linear be-
havior in that message size range. The gap and parameters
of PLogP model are a function of message size, so some of
the nonlinear effects can be accounted for. We believe that
non-linear changes in values of sender and receiver over-
heads (Fig. 1) enabled PLogP to capture performance of
these methods.

In the experiments in Fig. 3, segmentation using 1 KB
segments improved performance of both pipeline and bi-
nomial reduce algorithms. While segmentation incurs over-
head for managing multiple messages, it also enables higher
bandwidth utilization due to increased number of concurrent
messages; provides opportunity to overlap multiple commu-
nications and computation; and limits the size of internal
buffers required by the algorithm. The models of pipeline
reduce in Table 3 dictate that as the number of segments,
ns , increases (total message size increases), the algorithm
should achieve asymptotically optimal performance. In the
asymptotic case, the segmented pipeline reduce algorithm
should take a constant amount of time for message of size
m and should not depend on number of processes, P . The
results in Fig. 3 (c) and (d) are consistent with this observa-
tion: the duration of segmented pipeline reduce on 8 and 24

nodes takes around 4 × 104 μs. All three models correctly
captured the relative performance of segmented pipeline al-
gorithm, and the PLogP model had best estimate of the ab-
solute duration of the operation.

Modeling performance of segmented binomial reduce al-
gorithm proved to be a challenge for all three models. Con-
trary to the measured results, the formulas in Table 3 seem to
indicate that with increased number of segments the duration
of binomial reduce operation should increase and model pre-
dictions in Fig. 3 agree with that. However, to determine if
models are capable of recognizing the benefit of segmenta-
tion for binomial reduce algorithm we have to analyze these
formulas in more detail.

According to the Hockney model of segmented bino-
mial reduce algorithm, the segmentation should improve op-
eration performance when (α(m) + β(m) · m + γ · m) >

ns × (α(ms) + β(ms) · ms + γ · ms). Taking in account that
m = ns · ms , we conclude that under the Hockney model,
segmentation of binomial reduce algorithm would improve
performance when (

α(m)
m

+ β(m)) > (
α(ms)

ms
+ β(ms)). Fig-

ure 4a shows how do the left- and right-hand sides of this
condition depend on message size. On systems we consid-
ered, measured Hockney model parameter values were such
that according to the model, segmentation should not im-
prove the performance of binomial reduce.

In LogP/LogGP model of segmented binomial reduce al-
gorithm, we can see that only condition under which seg-
mentation would be beneficial is (max{g, (o + γ · m)}) >

((ns − 1) · (ms − 1) · G + ns · max{g, (o + γ · ms)}), or
equivalently (max{g, (o + γ · m)}) > ((ns − 1) · (ms −
1) · G + max{ns · g, (ns · o + γ · m)}). Noting that all
LogP/LogGP parameters are positive numbers, as well as

138 Cluster Comput (2007) 10: 127–143

(a) (b)

Fig. 5 Performance of Pairwise Exchange alltoall algorithm: a Measured performance and predictions for 24 nodes, and b Measured performance
on 2 to 24 nodes. The message size represents the total send buffer size (FT-MPI, Boba cluster, GigE)

message size, segment size, and number of segments, we
conclude that this condition is not possible to obtain. Thus,
under LogP/LogGP model it is impossible to get result in
which the message segmentation would improve perfor-
mance of binomial reduce algorithm.

The PLogP model of segmented binomial reduce al-
gorithm shows that the following condition is necessary
for segmentation to improve performance of this algo-
rithm: (max{g(m), (or (m) + os(m) + γ · m)}) > max{(ns ·
g(ms)), [ns · (or (ms) + os(ms)) + γ · m]}). Figure 4b il-
lustrates this condition as function of message size. In case
of fitted parameters on both clusters (see discussion from
Sect. 6.1), the non-segmented version of binomial reduce
algorithm always outperforms the one with 1 KB segments.
However, when the directly measured PLogP parameters on
Boba cluster are used to evaluate the condition, the seg-
mented version outperforms non-segmented version by a
slight margin. Thus, using the measured parameters the
PLogP model of binomial reduce algorithm would capture
segmentation effect correctly.

The analysis of model parameters and effect of segmen-
tation on binomial reduce shows that the models are fairly
sensitive to parameter values. As observed in the case of
the flat-tree barrier algorithm, the gap between messages
depends on number of nodes we are communicating with,
and for communicator sizes greater than 16 nodes it de-
creased in comparison to smaller communicator sizes. How-
ever, PLogP and LogP/LogGP models cannot include this
dependence, and Hockney model does not even have notion
of the gap. Additionally, MPI libraries in our experiments
used the TCP/IP stack. The TCP window size on our sys-
tems is 128 KB. This means that sending messages larger

than the TCP window could require resizing the window
and an extra memory copy operation per pair of communi-
cating parties (which in this case is log2(P) times). Only
PLogP model considers sender and receiver overheads to
depend on message size, LogP/LogGP and Hockney do not
have this notion.

Alltoall performance

Figure 5 demonstrates the performance of the pairwise-
exchange alltoall algorithm. The alltoall type of collectives
can cause network flooding even when we attempt to care-
fully schedule communication between the nodes. Hockney
model does not have the notion of network congestion and
this is one of the possible reasons why it significantly under-
estimates the completion time of collective operation. While
we did not explicitly include a congestion component in the
PLogP and LogGP model formulas, they were able to pre-
dict measured performance with reasonable accuracy. This
indicates that in the test, the communication was scheduled
correctly and we did not over-flood the switch.

6.3 Analysis of optimal broadcast implementation

Figure 6 shows the optimal implementation of the broad-
cast collective using measured data and model predictions
on the Frodo cluster. The optimal implementation of the col-
lective is described by a decision function. Given the col-
lective operation, message and communicator size, the de-
cision function determines which algorithm, topology, and
segment size combination should be used.

Cluster Comput (2007) 10: 127–143 139

Fig. 6 Broadcast decision
function. Graphs in this figure
should be read in the following
way: the color at point (m,P)

represents the best broadcast
method for message size m and
communicator size P . Label
with 0 KB segment size denotes
a non-segmented version of the
algorithm. (FT-MPI, Frodo
cluster, 100 Mbps)

The measured decision function was derived from ex-
haustive testing on the Frodo cluster. We considered sam-
ple message sizes from 1 byte up to 8 Megabytes and every
communicator size from 3 to 32 nodes. We examined linear,
binomial, binary, splitted-binary, and pipeline algorithms
with and without segmentation, with segment sizes of 1 KB
and 8 KB. The model decision functions were computed by
analyzing predicted performance of the measured methods
on the identical message and communicator sizes. Then the
best method according to the model was chosen, and the
model decision function was constructed.

Examining the optimal measured broadcast method for
small messages and larger communicator sizes (above 16
nodes) we observe that the non-segmented linear algorithm
is the best option. Contrary to this, for smaller communi-
cator sizes and small messages non-segmented binomial al-
gorithm executed in the least time. This result is surprising
but possible if we take in account the decrease in the gap
per message parameter when communicating to more than
16 nodes. Not surprisingly, all models mispredict the op-
timal method for that section of the parameter space. For
message sizes close to 1 KB measured data suggests that
all tree-based non-segmented algorithms can be optimal, i.e.
binomial, binary, and splitted binary trees. Once the mes-
sage size increases to a couple of kilobytes, splitted-binary
method with 1 KB segments outperforms the other two al-
gorithms, and for large message sizes segmented pipeline
methods dominate. It is important to notice that the switch-
ing points between methods for large message sizes appears
to depend on communicator size.

The Hockney model broadcast decision function, Fig. 6b,
reflects the fact that in the Hockney model we must wait a

full latency before being able to send another message. For
small messages, binomial tree algorithm is the algorithm of
choice for all communicator sizes. Except for a message size
range around 10 KB where the splitted-binary method with
1 KB segments is optimal, 8 KB segment is used for send-
ing larger messages either using splitted-binary or pipeline
method.

The LogP/LogGP model broadcast decision function uti-
lizes non-segmented versions of linear, binomial, and bi-
nary algorithms for small messages. For intermediate size
messages, depending on communicator size, either splitted-
binary with 1 KB segments or pipeline with 1 KB seg-
ments method should be used. For really large messages,
pipeline with 8 KB segments is the best performing method.
While this captures the general shape of the measured deci-
sion function, the points at which we switch from 1 KB to
8 KB segments differ. The LogP/LogGP decision function
switches “too early.”

The PLogP model broadcast decision function uses non-
segmented binomial method for small message sizes. This
is the only model decision function which recognizes that
the binary algorithm with 1 KB segments can be beneficial
for intermediate size messages. For larger messages, as in
the case with the LogP/LogGP model and measured deci-
sion function, it utilizes splitted-binary algorithm with 1 KB
segments, followed by segmented pipeline with 1 KB and
8 KB segment sizes. However, the PLogP decision function
switches from splitted-binary to pipeline and between 1 KB
and 8 KB segments even “earlier” than the LogP/LogGP de-
cision function.

Deciding the correct switching point is ultimately related
to understanding the exact behavior of the gap parameter in

140 Cluster Comput (2007) 10: 127–143

(a) Hockney (b) LogP/LogGP

(c) PLogP

Fig. 7 Performance penalty from using decision functions generated by models. Graphs in this figure should be read in the following way: the
shade at point (m,P) represents the percent of the relative performance cost. The color-bar at the right of every graph shows the percentage range:
from 0 to 300%, white color means less than 5%. (FT-MPI, Frodo cluster, 100 Mbps)

the underlying model, since gap determines whether it will
be more cost effective to have a longer pipeline or a wider
tree. The Hockney model which has no notion of gap pa-
rameter, favors tree-based algorithms as they decrease the
latency term, and larger segment size because they lower
the overall number of messages. However, the experimental
results clearly show that in case of broadcast and reduce col-
lectives segmented pipeline algorithms should be considered
for large message sizes.

Given the limitations of our models, it is reasonable to
ask how useful are their predictions in building decision
functions for real collective implementation. Additionally,
what is the performance penalty the user will pay by us-
ing the model generated decision function instead of using a

measured one? Figure 7 addresses this question. The perfor-
mance penalty of not using the linear algorithm for broad-
casting small messages on 16 through 32 nodes is largest
with more than 300% performance penalty. For small num-
bers of nodes with small messages, Hockney and PLogP
vary between 0% and 15% performance degradation, except
in case when communicator size is 5. For messages of inter-
mediate size (up to 10 KB) the model decision functions pay
a performance penalty between 0% and 50%, with Hockney
model decision performing worst. For larger messages the
performance penalty of LogP/LogGP decision function for
mispredicted switching points does not go above 25%. But
the PLogP decision function does pay higher performance
penalty (up to 50% for bordering points) for it switches al-

Cluster Comput (2007) 10: 127–143 141

gorithms even earlier. The fact that Hockney model would
utilize splitted-binary broadcast algorithm with 8 KB seg-
ments over the pipeline algorithm with 1 KB segments
would cost around 30% in performance over that part of pa-
rameter space. Still, one needs to be careful when interpret-
ing the relative performance of decision functions, since the
measured performance in this case was only the result of a
micro-benchmark. Individual, real-world applications’ per-
formance and their performance losses or gains, could vary
greatly depending on application communication patterns.

7 Discussion and future work

We compare the Hockney, LogP/LogGP, and PLogP paral-
lel communication models applied to inter-cluster MPI col-
lective operations on two systems at the University of Ten-
nessee. Our results indicate that all of the models can pro-
vide useful insights into various aspects of the collective
algorithms and their relative performance. We also demon-
strate the importance of accurate modeling of the gap be-
tween sending consecutive messages to a single destination
and to a set of different destination processes. Experiments
show that the value of gap between consecutive send oper-
ations depends on the number of unique destination nodes.
Unfortunately, neither of the models is able to capture this
behavior correctly. This shortcoming is reflected in under-
estimating the benefit of using segmentation for binomial
reduce algorithm and the inaccurate prediction of switch-
ing points between available broadcast methods for large
messages. Additionally, neither of the point-to-point models
used in this paper, considers network congestion directly.
Nonetheless, for the communicator and the message size
range we consider, PLogP and LogP/LogGP models are able
to model pairwise-exchange alltoall algorithm successfully.

We believe that parallel communication models can still
be used to perform focused tuning of collective operations.
Based on measured parameter values coupled with small
number of test runs which would be used to verify predic-
tions and adjust model parameters, one could use the mod-
els to decrease the number of physical tests needed to con-
struct semi-optimal decision function for a particular collec-
tive. The work in this paper could be further improved by
extending existing models to include gap parameter which
depends on both message size and number of nodes we are
communicating with, as well as the contention.

The performance analysis of different collective methods
presented in this paper was used to implement and optimize
the collective operation subsystem of the FT-MPI library by
changing the static method-selecting decision function, but
can be used as a library for any MPI implementation. For ex-
ample, this work is currently being used to produce decision
function within the tuned collective module in the Open MPI
library [21]. In FT-MPI experimental and analytical analysis

of collective algorithm performance was used to determine
switching points between available methods. At run time,
based on a static table of values, a particular method is se-
lected depending on the number of processes in the commu-
nicator, message size, and the rank of the root process.

We plan to extend this study in the following direc-
tions: addition of new algorithms and collective operations
to the OCC library; making the algorithm selection process
at run-time fully automated rather than hard-coded at com-
pile time6; and building decision function refinement capa-
bility which would use a parallel computation model deci-
sion function as a starting point to generate a list of physical
tests to be executed on a given system.

Additionally, this analysis can be extended to hierarchical
systems consisting of multiple clusters. In order to model
performance of collective operations in such environments,
we would have to include additional information about the
underlying network topology.

Acknowledgements This material is based upon work supported by
the Department of Energy under Contract No. DE-FG02-02ER25536.
The infrastructure used in this work was supported by the NSF CISE
Research Infrastructure program, EIA-9972889.

References

1. Rabenseifner, R.: Automatic MPI counter profiling of all users:
First results on a CRAY T3E 900-512. In: Proceedings of the Mes-
sage Passing Interface Developer’s and User’s Conference, 1999,
pp. 77–85

2. Vadhiyar, S.S., Fagg, G.E., Dongarra, J.J.: Automatically
tuned collective communications. In: Proceedings of the 2000
ACM/IEEE conference on Supercomputing (CDROM), IEEE
Computer Society, 2000, p. 3

3. Hockney, R.: The communication challenge for MPP: Intel
Paragon and Meiko CS-2. Parallel Comput. 20(3), 389–398
(1994)

4. Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K.E., San-
tos, E., Subramonian, R., von Eicken, T.: LogP: Towards a realistic
model of parallel computation. In: Proceedings of the fourth ACM
SIGPLAN symposium on Principles and practice of parallel pro-
gramming, pp. 1–12. ACM Press, New York (1993)

5. Alexandrov, A., Ionescu, M.F., Schauser, K.E., Scheiman, C.:
LogGP: Incorporating long messages into the LogP model. In:
Proceedings of the seventh annual ACM symposium on Parallel
algorithms and architectures, pp. 95–105. ACM Press, New York
(1995)

6. Kielmann, T., Bal, H., Verstoep, K.: Fast measurement of LogP
parameters for message passing platforms. In: Rolim, J.D.P. (ed.)
IPDPS Workshops, Cancun, Mexico. Lecture Notes in Com-
puter Science, vol. 1800, pp. 1176–1183. Springer-Verlag, London
(2000)

7. Culler, D., Liu, L.T., Martin, R.P., Yoshikawa, C.: Assessing fast
network interfaces. IEEE Micro 16, 35–43 (1996)

8. Fagg, G.E., Gabriel, E., Chen, Z., Angskun, T., Bosilca, G.,
Bukovsky, A., Dongarra, J.J.: Fault tolerant communication li-
brary and applications for high performance computing. In:
LACSI Symposium, 2003

6This is already included in tuned collective module in Open MPI.

142 Cluster Comput (2007) 10: 127–143

9. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction
to Parallel Computing, second edn. Pearson Education Limited,
Addison-Wesley Logman, Boston (2003)

10. Thakur, R., Gropp, W.: Improving the performance of collective
operations in MPICH. In: Dongarra, J., Laforenza, D., Orlando, S.
(eds.) Recent Advances in Parallel Virtual Machine and Message
Passing Interface.
LNCS, vol. 2840, pp. 257–267. Springer Verlag, ??? (2003), 10th
European PVM/MPI User’s Group Meeting, Venice, Italy

11. Chan, E.W., Heimlich, M.F., Purkayastha, A., van de Geijn, R.M.:
On optimizing of collective communication. In: Cluster. (2004)

12. Rabenseifner, R., Träff, J.L.: More efficient reduction algorithms
for non-power-of-two number of processors in message-passing
parallel systems. In: Proceedings of EuroPVM/MPI. Lecture
Notes in Computer Science. Springer-Verlag, Berlin (2004)

13. Kielmann, T., Hofman, R.F.H., Bal, H.E., Plaat, A., Bhoedjang,
R.A.F.: MagPIe: MPI’s collective communication operations for
clustered wide area systems. In: Proceedings of the seventh ACM
SIGPLAN symposium on Principles and practice of parallel pro-
gramming, pp. 131–140. ACM, New York (1999)

14. Barchet-Estefanel, L.A., Mounié, G.: Fast tuning of intra-
cluster collective communications. In: Proceedings, 11th Euro-
pean PVM/MPI Users’ Group Meeting, Budapest, Hungary, 2004,
pp. 28–35

15. Bell, C., Bonachea, D., Cote, Y., Duell, J., Hargrove, P., Husbands,
P., Iancu, C., Welcome, M., Yelick, K.: An evaluation of current
high-performance networks. In: Proceedings of the 17th Interna-
tional Symposium on Parallel and Distributed Processing, p. 28.1.
IEEE Computer Society, Washington (2003)

16. Bernaschi, M., Iannello, G., Lauria, M.: Efficient implementation
of reduce-scatter in MPI. J. Syst. Archit. 49(3), 89–108 (2003)

17. Bruck, J., Ho, C.T., Kipnis, S., Upfal, E., Weathersby, D.: Efficient
algorithms for all-to-all communications in multiport message-
passing systems. IEEE Trans. Parallel Distributed Syst. 8(11),
1143–1156 (1997)

18. Kielmann, T., Bal, H.E., Gorlatch, S., Verstoep, K., Hofman, R.F.:
Network performance-aware collective communication for clus-
tered wide-area systems. Parallel Comput. 27(11), 1431–1456
(2001)

19. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance,
portable implementation of the MPI message passing interface
standard. Parallel Comput. 22(6), 789–828 (1996)

20. Gropp, W., Lusk, E.L.: Reproducible measurements of MPI per-
formance characteristics. In: Proceedings of the 6th European
PVM/MPI Users’ Group Meeting on Recent Advances in PVM
and MPI, pp. 11–18. Springer-Verlag, London (1999)

21. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J.,
Squyres, J.M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine,
A., Castain, R.H., Daniel, D.J., Graham, R.L., Woodall, T.S.: Open
MPI: Goals, concept, and design of a next generation MPI im-
plementation. In: Proceedings, 11th European PVM/MPI Users’
Group Meeting, Budapest, Hungary, 2004, pp. 97–104

Jelena Pjesivac-Grbovic is a Graduate Research Assistant at the In-
novative Computing Laboratory at the University of Tennessee at
Knoxville, working toward Ph.D. degree in Computer Science. She re-
ceived M.S. in Computer Science from the University of Tennessee at

Knoxville, and B.S. degrees in Computer Science and Physics from
Ramapo College of New Jersey. Her research interests are parallel
communication libraries and computer architectures, scientific and grid
computing, and modeling of biophysical systems. She is developer on
Harness / FT-MPI project.

Thara Angskun received his Bachelor and Master degree in Com-
puter Engineering from Kasetsart University, Thailand. Currently, he
is a PhD student and graduate research assistance at the Innovative
Computing Laboratory, Department of Computer Science, University
of Tennessee, Knoxville. His major research interests are in parallel
and distributed environment, message passing, high performance com-
puting, computer networking, cluster and grid computing. He was a
technical leader of an open source Beowulf cluster distribution project
called OpenSCE. He is also a developer of several projects including
KSIX, ACI, CAMETA, Harness / FT-MPI and Open MPI.

George Bosilca is a Senior Research Associate at the Innovative Com-
puting Laboratory (ICL). He received a Ph.D. degree in parallel archi-
tectures from the Université de Paris XI. He was the main developer of
the channel memory subsystem for MPICH-V. Dr. Bosilca is currently
working on the Open MPI project.

Graham Fagg received his B.Sc. in Computer Science and Cybernet-
ics from the University of Reading (UK) in 1991 and a Ph.D. in Com-
puter Science in 1998. From 1996 to 2001 he worked as a senior re-
search associate and then a Research Assistant Professor at the Univer-
sity of Tennessee. From 2001 to 2002 he was a visiting guest scientist at
the High Performance Computing Center Stuttgart (HLRS). Currently
he is a Research Associate Professor at the University of Tennessee.
His current research interests include distributed scheduling, resource
management, performance prediction, profiling, benchmarking, clus-
ter management tools, parallel and distributed IO and high speed net-
working. He is currently involved in the development of a number of
distributed, metacomputing and GRID middle-ware systems including

Cluster Comput (2007) 10: 127–143 143

SNIPE/2, HARNESS, fault tolerant MPI (FT-MPI) and Open MPI. He
is a member of the IEEE.

Edgar Gabriel is an Assistant Professor in the Department of Com-
puter Science at the University of Houston, Texas, USA. Before that,
he was leader of the working group ‘Clusters and Distributed Units’ at
the High Performance Computing Center Stuttgart (HLRS), Germany
and a post-doctoral research at the Innovative Computing Laboratory
(ICL) at the University of Tennessee, Knoxville, USA. His research
interests are Message Passing Systems, High Performance Computing,
Parallel Computing on Distributed Memory Machines, and Grid Com-
puting.

Jack Dongarra holds an appointment as University Distinguished Pro-
fessor of Computer Science in the Computer Science Department at the
University of Tennessee and holds the title of Distinguished Research
Staff in the Computer Science and Mathematics Division at Oak Ridge
National Laboratory (ORNL), and an Adjunct Professor in the Com-
puter Science Department at Rice University. He specializes in numer-
ical algorithms in linear algebra, parallel computing, use of advanced-
computer architectures, programming methodology, and tools for par-
allel computers. His research includes the development, testing and
documentation of high quality mathematical software. He has con-
tributed to the design and implementation of the following open source
software packages and systems: EISPACK, LINPACK, the BLAS, LA-
PACK, ScaLAPACK, Netlib, PVM, MPI, NetSolve, Top500, ATLAS,
and PAPI. He has published approximately 200 articles, papers, reports
and technical memoranda and he is coauthor of several books. He is a
Fellow of the AAAS, ACM, and the IEEE and a member of the Na-
tional Academy of Engineering.

	Performance analysis of MPI collective operations
	Abstract
	Introduction
	Related work
	Summary of related models and parameters
	Modeling network performance
	Hockney model
	LogP/LogGP models
	PLogP model

	Modeling computation

	Optimized collective communication
	Virtual topologies
	Available algorithms
	Barrier
	Broadcast
	Reduce
	Alltoall

	Modeling collective operations
	Results and analysis
	Experiment setup
	Model parameters
	Performance tests

	Performance of different collective algorithms
	Barrier performance
	Reduce performance
	Alltoall performance

	Analysis of optimal broadcast implementation

	Discussion and future work
	Acknowledgements

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

