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Abstract. Modern biological and chemical studies rely on life science databases as well as sophisticated software tools (e.g., homology search
tools, modeling and visualization tools). These tools often have to be combined and integrated in order to support a given study. SIBIOS
(System for the Integration of Bioinformatics Services) serves this purpose. The services are both life science database search services
and software tools. The task engine is the core component of SIBIOS. It supports the execution of dynamic workflows that incorporate
multiple bioinformatics services. The architecture of SIBIOS, the approaches to addressing the heterogeneity as well as interoperability of
bioinformatics services, including data integration are presented in this paper.
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1. Introduction

The recent availability of high throughput technologies has re-
sulted in a large amount of data. Knowledge is extracted from
this data by using various multi-step computational methods.
Several tools are available to support knowledge extraction.
Example tools include database search tools, homology search
tools (e.g. PSI-BLAST [2]) and clustering tools. In the re-
mainder of this paper, the name services will be used to refer
to these software tools. Marshalling these services in order
to construct a complete biological study remains a challenge
because of the lack of interoperability among the services.
Consider the example given in [29] describing the steps in-
volved in determining the protein family of a protein that cor-
responds to a given DNA sequence. This task requires a series
of elementary steps (figure 1). First, the sequence that corre-
sponds to the unknown DNA fragment is processed through a
translator such as Transeq [4] in order to extract the six pos-
sible reading frames. The second step consists of identifying
the correct reading frame by searching a composite database
such as OWL database [28], and using each of the six possible
reading frames as input until a hit is found. Once the appropri-

ate peptide is identified, the corresponding sequence is used
to search a protein database such as PIR [30] in order to re-
trieve the entire protein sequence. During the fourth step, the
protein family is identified by using a homology search ser-
vice such as PSI-BLAST. The fifth step consists of obtaining
the function of the sequence by searching several databases
such as Prosite [31], Profiles [32], Pfam [33], eMOTIF [15]
and BLOCKS [10] in order to locate information about the
target protein. These databases can be searched concurrently.
Currently, the process underlying this example is performed
manually by scientists. In addition, the output of one service
has to be manually manipulated in order to be used as input
for another service. Finally, data from two or more services
may have to be semantically integrated by resolving hetero-
geneities in the output of the various services. These factors
make the execution of tasks involving more than one service
time consuming and error prone.

One of the major obstacles in the integration of ser-
vices is their heterogeneity. When services are limited to
database searches, several successful approaches [4,13,16,37]
to the integration of life science databases have been pro-
posed. Addressing the more general case of service integration
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Figure 1. Searching for protein family information for an unknown DNA
fragment.

is more challenging. Several service integration approaches
[14,16,17,35,38,45,46] have been proposed. There are three
main aspects that distinguish these approaches: service dis-
covery, workflow capabilities and heterogeneity resolution.

Service discovery allows the user to select the service that
can perform a given task. For example, a homology search
can be performed by using Blast [2] or Fasta [34] among oth-
ers. Furthermore, there may be several different versions of a
given tool. For instance, Blastn and Blastp are two versions
of Blast that can perform homology searches for nucleotide
sequence and for protein sequence, respectively. Service dis-
covery capabilities vary from a simple predefined list from
which the user can select the desired service [35,38], to more
enhanced capabilities which discover the appropriate service
based on properties specified by the user [26,45]. Examples
of descriptive properties include the name of the task the ser-
vice is performing and the type of the input it accepts. The
more intelligence is built in the service discovery the better
because of the large number of available services and the lack
of familiarity that the scientists may have with these services.

The second feature that characterizes service integration
systems is the level of workflow capabilities or adaptability
supported by the system. An integration system with workflow
capabilities allows the specification of the services that com-
pose a biological task and their sequence of execution a priori.
Systems such as SRS [13] are not workflow-based systems.
SRS allows the specification of one service at a time. Based on
the results generated by a service, the following service can be
selected in SRS. A workflow can either be static or dynamic.
Static workflows are fully automated, whereas dynamic work-
flows are partially automated. In the latter case, user can in-
tervene during the workflow execution and the workflow is
highly adaptable. Almost, all service integration systems that

include workflow capabilities such as [21, 42, 44] only support
static workflow execution.

The third feature of service integration systems is whether
semantic and syntactic data heterogeneities are addressed or
not. Resolving data heterogeneities among the input and out-
put data of the services increases the flexibility of the service
integration system. Furthermore, in the life science domain
and because of the extreme variances in the data representa-
tions and the semantic definitions of concepts adopted by the
various services, ignoring this issue will render any workflow
management system impractical.

SIBIOS, a System for the Integration of BIO-informatics
Services, is proposed in this paper. It integrates both web-
based and standalone services. Examples of services inte-
grated by SIBIOS include database search services (e.g.,
Swiss-Prot database search [39]) as well as other software
tools (e.g., BLAST). SIBIOS is based on client-server archi-
tecture. On the server side, the task engine supports the in-
vocation of the distributed services as well as mitigates any
interoperability issues among the services.

Section 2 presents the research issues addressed in this pa-
per. The architecture of SIBIOS is presented in Section 3. The
dynamic workflow model supported by SIBIOS is discussed
in Section 4 and implementation details of the system are pro-
vided in Section 5. Related work is discussed in Section 6.
Section 7 includes a summary of the features of SIBIOS and
directions for future work.

2. Research challenges

SIBIOS is an integration system for bioinformatics services
and as such its design raises several unique research issues
that are related to the features of bioinformatics services and
the conditions of their deployment in a workflow. This section
explains these issues and highlights the solutions adopted by
SIBIOS.

2.1. Service discovery

SIBIOS is an integration system for bioinformatics services
and as such its design raises several unique research issues
that are related to the features of bioinformatics services and
the conditions of their deployment in a workflow. This section
explains these issues and highlights the solutions adopted by
SIBIOS.

Services are the basic components used to build a workflow.
The process of finding the right service that can accomplish
a given task in a workflow is called service discovery. This
process is particularly challenging, as the number of avail-
able databases and bioinformatics tools is very large. Classi-
fication, which consists of arranging the services into related
groups, becomes a necessary step in order to facilitate the
process of service discovery. The use of service functionality
for service classification has been widely adopted by existing
bioinformatics service integration systems (e.g., EMBOSS
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[35] and VIBE [21]). Other systems support additional ser-
vice discovery options; and taxonomies are used within each
option to hierarchically structure services and therefore facil-
itate service discovery [45,47]. For example, in Biomoby [45]
searching for services can be based on the input type or the
output type of a service. The availability of different classifi-
cations, which are based on the descriptive features of the ser-
vices, clearly provides more alternatives when searching for
a service. Additional flexibility can be gained by allowing the
combination of several of the service discovery options. This
will allow a more refined service discovery process, which is
particularly important when the number of services is large,
as in the case of the bioinformatics field.

SIBIOS exploits the properties used to describe services
for service discovery, thus supporting very refined and flexi-
ble service discovery. For example, the description of a service
such as Blastn includes the type of input parameters that it ac-
cepts (i.e. nucleotide sequence) and the task it performs (i.e.
homology search). These two properties, namely has input
and performs task, are provided, and can be used by the user
for service discovery. The domain of each property is also hi-
erarchically structured to further refine the service discovery
process. For example, Nucleotide sequence is hierarchically
classified under sequence, which in turns is classified under
physical structure. Therefore, when a service with has input
sequence is desired by the scientist, all the services whose in-
put falls under the classification sequence such as nucleotide
sequence will also be retrieved. Each service property is used
independently from the others to classify services. However,
they can be used individually or combined to specify the de-
sired service.

The classification of service in order to facilitate service
discovery can be either static or dynamic. Static service clas-
sification is used in Biomoby [45] while dynamic discovery
classification has been introduced by Mygrid [47] and in Kep-
pler [1]. In a static classification, services that share the same
property are grouped and stored together. This information is
redundant because it is derived from the information used to
describe the services in a service integration system. Addi-
tional redundancy can also be due to the fact that a service
may belong to more than one classification. For example, the
service Blastn, which was described earlier, will belong to at
least two classifications, one associated with the property has-
input and the other associated with the property perform task.
In addition to redundancy, another drawback of static clas-
sification is that each time a new service is added various
classifications may need to be reorganized.

In a dynamic classification, there is no redundancy since
during the service discovery process, the description of ser-
vices is directly used to infer the name of the services that
match a given property. SIBIOS uses dynamic service classi-
fication to support service discovery. The description of the
input, output and capability of each service in SIBIOS is in-
cluded in a service schema file. Each service is associated
with a schema file. The descriptions used in the schema files
are based on concepts extracted from ontology. The ontology
in SIBIOS does not include any service specific information

and is therefore relatively stable. The service schema file in
conjunction with the ontology is used to infer service classi-
fication dynamically. This approach compared to the classifi-
cation of service is scalable, flexible and easily maintainable.
For example, adding a new service descriptive property will
automatically generate a new service classification. Further-
more, the addition of new services does not necessitate any
rebuilding of the service classification because this classifica-
tion is generated dynamically during service discovery.

2.2. Workflow capabilities

The complexity of biological studies is often based on a pro-
cess that consists of multiple services [5,21,38]. In traditional
workflows, the objective is to automate a process according to
a set of procedural rules [43]. Scientific workflows are differ-
ent from traditional workflows because they are exploratory-
based. The experimental nature of bioinformatics services
requires an iterative workflow construction procedure. The
workflow specification may be iteratively adjusted by chang-
ing the services in the workflow and by manipulating the
output of one service before feeding it into the input of an-
other service. The importance of adaptive workflows that can
rapidly respond to context-sensitive information changes or
external events in scientific domains is discussed in details in
[24]. Once the workflow becomes stable, it can become part
of the laboratory procedure and used in a way similar to other
experimental protocols. The distinctions between the experi-
mental phase and the production phase result in two different
modes of execution for the workflow. Both of these modes
are supported in SIBIOS and the support for this adaptability
is dictated by a survey of a wide range of real life science
applications.

Most of the previously proposed workflow systems are also
subject specific such as a workflow for protein-protein inter-
action [24]. SIBIOS provides a general framework that can be
easily adapted to any given subject, such as the studies of sys-
tem biology, pathway, protein structure, proteomics, etc. Fur-
thermore, traditionally, workflow systems ignore the issues
related to data integration when enacting multiple services.
SIBIOS addresses this issue and thus, provides a comprehen-
sive data and service integration solution.

2.2.1. Dynamic workflow execution
In order to enable the exploratory workflow construction, it is
important to allow the user to interact with the system during
the execution of the workflow. For example, it can eliminate
the unnecessary execution of services subsequent to a service
that is deemed not to deliver the required output. In the ex-
ample of figure 2, the user has no a priori knowledge of the
sequence(s) to be selected as the input for the Pfam service.
The workflow can be executed without interruption until it
reaches the Pfam service. User intervention will then allow
the selection of the appropriate sequences from the result set
produced by the Swiss-Prot service that will be used as the
input to Pfam. Additional actions that the user may undertake
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Figure 2. Example of a dynamic workflow.

during an intervention include adding and dropping services
as well as modifying the data or the flow control among the
services.

2.2.2. Data filtering capabilities
Data filtering allows the selection of a subset of the output
data from one service to be used as the input of a subse-
quent service. It is particularly important for bioinformatics
for two reasons: elimination of unneeded output fields in an
output record and elimination of irrelevant records. In tradi-
tional applications such as a business application, the output
of a service is generally limited to a small number of output
types (e.g., a currency exchange service executed on two cur-
rencies delivers one type of output - the currency exchange
rate). Whereas bioinformatics services produce a large num-
ber of output types, including cross-references to information
of other services. Consider for example a workflow where the
BLASTN service follows a Swiss-Prot search service. The
results output from the latter service include Swiss-Prot entry
name, Swiss-Port accession number, protein name and protein
sequence. However, only the protein sequence is used as input
to BLASTN. Unnecessary information can be eliminated by
filtering the output data from Swiss-Prot, which is referred to
by projection in relational database area.

The elimination of irrelevant records is also important in the
integration of bioinformatics services, which tend to be based
on heuristics that may return false positives. Data filtering
conditions can be used to automatically select a subset of
the records, similar to selection in relational databases area.
Consider for example the execution of an NCBI Entrez search
[32] on a set of GI numbers produced by a previous service
(figure 2). Among the records returned, only those related to
the “ras” species and for which the author of the publication
is “Smith King” are of interest to the scientist. A selection
condition that specifies that protein name should include “ras”
and author should include “Smith King” will extract these
records.

2.2.3. Support for logical expressions
Most database search services (e.g., PIR, Swissprot, and NCBI
entrez) support queries that include logical operators. More-
over, in a typical workflow scenario, the input query to a
database search service is automatically determined by using
the output of one or more preceding services. Thus, workflow
specification should support logical expressions. For example,
consider the execution of a Swissprot search service on the
output produced by a GenBank [33] search service. This out-

put includes the NCBI accession number and organism name,
which can be combined by a logical expression (e.g., “NCBI
accession number OR organism name”) and fed to the Swis-
sprot search service. Specifically, if one of the records gener-
ated by GenBank has an accession number = NC 001136 and
an organism name = Saccharomyces cerevisiae, the query that
will be submitted to the Swissprot search service will be based
on the following URL which includes a Boolean expression:
http://us.expasy.org/cgi-bin/ sprot-searchful?makeWild = &
SEARCH = NC 001136%20or%20Saccharomyces%20or%
20cerevisiae

2.2.4. Iterative execution of services
In a workflow model, an iterative (i.e., recursive) service may
be executed until a termination condition is satisfied. For ex-
ample, consider the execution of the FASTA service [34] on
a protein sequence. A homologous sequence returned by the
service is considered for further analysis only if its corre-
sponding expectation value is less than a certain value “v”.
The FASTA service allows the user to set a threshold value
“v” for the expectation value. However, if the service returns
an empty result, FASTA needs to be iteratively invoked on the
same input sequence until the expected value condition is met.
For this iterative procedure to work properly, each time when
the service is invoked, certain environment parameters such
as the gap penalty or the scoring matrix need to be changed
(e.g., the gap penalty can be halved at each iteration until the
threshold value condition is met).

2.2.5. Join and Union of service results
In a workflow, the result of more than one service can be
combined either by a join or a union operation and used as
the input of next service. In figure 3(a), two homology search
services (i.e., FASTA and BLASTP) produce different results
starting from the same input protein sequence. Performing the
homology search by using different tools is useful because
different homology search services may have different levels
of sensitivity (i.e., ability to detect distant homologies). More

Figure 3. Examples of workflows with union (a) and join (b) operations.
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importantly, the homology search services may operate on dif-
ferent databases and it is not known a priori which database
may include the important homologues [36]. Therefore, mul-
tiple homology search services can be run concurrently and
their results can then be combined by using a union, which
will result in a list of unique sequences generated by all the
services.

Figure 3(b) shows a different way in which the results
from two services can be combined using the join operator.
The NCBI genome database search service [20] provides the
record ID (GenBank ID) of genes located within human chro-
mosome region 4q21-4q23, whereas Enzyme database search
service [6] provides the enzyme class ID (EC-number) of al-
cohol dehydrogenases. Therefore, the Cartesian product of
the above two result sets can identify all the alcohol dehydro-
genases located within the human chromosome region 4q21-
4q23 in Swiss-Prot database search service. Specifically, if
one of the records generated by the Enzyme database search
has an EC-number = 1.1.1.1 and one of the records gener-
ated by NCBI genome database search has a GenBank ID
= M12963, then the query that is submitted to the Swiss-
Prot search service will be based on the following URL:
http://us.expasy.org/cgi-bin/sprot-search-ful?SEARCH = M
12963 + AND + 1.1.1.1 &S = on.

2.3. Data integration

It is necessary for a workflow system to resolve interpretabili-
ties among heterogeneous services regardless of service types
and input/output format. In order to support data exchange,
data has to first be extracted from the service and then mapped
to a uniform semantic data model.

2.3.1. Data extraction
In business domain, web service description languages such
as WSDL [7,12] are widely employed to facilitate data ex-
traction. However, no such acceptance has been observed in
the biomedical research field. Although it counts web-based
applications in the hundreds, the large majorities are not de-
fined as web services. Many integration systems construct
service specific wrappers for data extraction. This approach
has several disadvantages: (1) domain expertise is required
for wrapper construction and maintenance. (2) a large num-
ber of wrappers has to be written to accommodate the large
number of available bioinformatics services (3) wrappers are
very sensitive to small changes that occur in the web pages
which require wrappers be updated regularly.

SIBIOS adopts an approach that attempts to reduce these
challenges. This approach was successfully used in BACIIS
[11], a system that integrates life science web databases. The
main idea is to separate individual service description from
the wrapper engine. The service description is stored in a file
called the service schema. This file includes domain specific
knowledge described by using ontology and a set of rules that
describe how the data can be extracted from the services. The

wrapper engine reads these service schema files and generates
data source specific wrappers dynamically. More information
about service schema locates in the Section 4.4.

2.3.2. Semantic integration
Bioinformatics services are highly heterogeneous in data for-
mat, terminology, concept semantics, content structure, etc.
[39]. Ontologies are widely used for the semantic integra-
tion of heterogeneous services. For example, MyGrid [47]
describes bioinformatics web services in an ontology by us-
ing the DAML + OIL language. MyGrid is a framework for
service integration. SIBIOS uses a similar approach where the
ontology serves as a common data model for the services.

The problem of semantic heterogeneities is resolved at two
levels in SIBIOS: during workflow construction and during
workflow execution. The workflow construction ensures the
input of each service in the workflow matches the output of
its preceding services. It is achieved by describing the in-
put/output data type of each service through ontology. Two
services can be connected if their input/output data correspond
to the same ontology term. Semantic heterogeneity is also re-
solved during workflow execution. The schema file, which
is used by the wrapper engine, describes the corresponding
service using the ontology concepts. Data is extracted from a
given service and mapped to this common data model before
it is processed and passed to the next service.

3. SIBIOS architecture

SIBIOS uses client-server architecture as shown in figure 4.
On the client side resides two modules: Workflow Builder and
Result Manager. The rest of the modules are located on the
server side.

The user accesses the system through a user interface,
which accepts the user query, displays the workflow, the re-
sults, as well as the status of the services during execution. The
workflow builder communicates with the service discovery
component to assist the user for service discovery. It also in-
teracts with the schema wrapper (i.e. handler) engine to obtain
detailed description of new services added to the workflow.
Other functions of the workflow builder include the specifica-
tion of how services are connected and what data processing
is to be performed on the output of the services. Workflow
information is displayed in a diagram on the client side, and
converted by the workflow manager to an internal representa-
tion called workflow object on the server side. The workflows
are executed by the task engine, and processing status is mon-
itored by the process manager module. Remote services are
specified by service schema wrapper. The results of each ser-
vice are available to the user as soon as the service finishes
execution. Users can manipulate the data set (e.g. filter) fed
to the next service using the result manager.

Users may update a workflow during its execution. In this
case, the task engine relinquishes the control back to the work-
flow builder. The execution will be resumed after the workflow
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Figure 4. SIBIOS client-server architecture.

modifications are reflected on both the server and the client
side. The internal representations of workflows are stored in
a workflow repository. This feature allows the user to exe-
cute the same workflow multiple times or to use previously
constructed objects to generate new workflow objects. The
implementation details of the SIBIOS workflow component
and the task engine are described in Section 5.

4. SIBIOS Dynamic Workflow Model (SDWM)

The standard components of a workflow process described by
the WfMC’s WPDL [30] are tasks (i.e., services) and transi-
tions between tasks. In SDWM the specification of a service
s is based on four parameters: input attributes I (s), output
attributes O(s), environment parameters E(s) and logical op-
erators L(s). The environment parameters are optional (e.g.,
the scoring matrix to be used by a BLAST service). The set
of logical operators that can be used to form a logical input
expression when executing s is denoted by L(s). Formally a
service is defined as follows:

Definition 1. a service s is the quadruplet (I(s), O(s), E(s),
L(s))

If L(s) is empty then only one element from I (s) can be used
as input during the invocation of s. In addition, we assume
without loss of generality that the input data or the output
data can be organized into records with multiple attributes
following the relational database model where an attribute
represents a data field in the input or the output.

Definition 2. The transition between two services s1 and s2
in S is defined by the function f such that f (s1) = s2 if O(s1)
and I (s2) have at least one attribute in common.

The main features that support SDWM fall into three classes:
filtering operators, connector operators, and service execution
modes.

4.1. Filtering operators

Filtering operators, including selection, projection operators,
or their combinations, are used for filtering service output in
SIBIOS.

Definition 3. Let s be a service and oi be an attribute in O(s).
A selection condition applied on oi is a logical expression of
the form “oi op v”, where op is an operator in {<, >, ≤, ≥
, = , contains, not-contain} and v is a value in the domain of
oi.For example, “protein-name contains ‘ras’ ” is a selection
condition.

Definition 3 shows a primitive selection condition. More
complex selection conditions can be obtained by combining
multiple primitive selection conditions using Boolean opera-
tors. The selection operation applies the selection condition
to the output of s and generates only the records that satisfy
this condition.

The other filtering operation is projection, which will re-
strict the output of a service s to a subset of the attributes in
O(s):

Definition 4. Projectu(s) = s1 where u ⊂ O(s) and
O(s1) = u.
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A project operation selects data types that are only of interest
to the user. Among the output types O(s), only the set u is
selected as the input types of a subsequent service.

4.2. Connector operators

Connector operator specifies the input of the service s through
a logical expression based on the exported output of previous
services. The exported output refers to the output after all fil-
tering operations are performed and the purpose of the logical
expression is to define the connection between two or more
services.

There are three types of connectors: primitive connector,
union connector and join connector. The primitive connector,
which is depicted by the arrow between BLASTP and NCBI
Protein Search in figure 2, is used when a service s has only
one antecedent service. The join and union connectors, as
illustrated in figure 3(a) and (b) respectively, are used when a
service has more than one antecedent service.

4.3. Service execution modes

Services can be executed in three different execution modes:
regular, dynamic and iterative. In the regular execution mode
the service is to be executed once and its results are to be
fed to the next service automatically without any interruption
from the user. When the dynamic execution mode is set prior
to a given service, workflow execution will pause before the
execution of this service, thus allowing for user intervention.
Execution will resume after the intervention.

When the iterative execution mode is associated with a
given service, it will be executed more than once on the same
input until a certain condition is satisfied. An example of an
iterative execution mode is given in Section 2.2.4. In some
cases, as in the example, it is necessary to change the en-
vironment parameters from one iteration to the next. This
change can be done either automatically or manually. In a
manual approach, the user needs to intervene each time the
condition is not satisfied whereas the automatic approach re-
lies on the specification of the changes that need to occur for
each environment parameter. In the current model, only the
first approach is used. Future work will investigate the second
approach.

4.4. Service schema

Each service supported by SIBIOS has an entry in the ontol-
ogy and an associated service schema file. The entry in the
ontology is a high level description of the service that is used
only during service discovery process. A more detailed de-
scription is included in the service schema, which is used by
the workflow builder during workflow building and by the task
engine during workflow execution. Workflow builder uses ser-
vice schema to extract service input types and default values
and the service output types. The former information is used

to help the user set the service execution parameters (e.g. gap
penalty for blastn is set to −14), while the latter information
is used to specify the data filtering conditions (e.g. EC num-
ber contains “1.14.17.1”). The task engine uses the service
schema during the execution of the remote service and during
the processing of the output data.

The service schema is expressed in XML format. Service
parameters are described using ontology concepts as XML
tags, whereas tag values are service specific information about
how the service is invoked and how the desired data can be
extracted from the data record pages. Using the ontology con-
cepts to describe the service helps in addressing syntactic and
semantic variances among the services and thus, facilitates
service integration.

Figure 5 shows part of the FASTA service schema. The
information inside the SERVICE APPLICATION section in-
cludes general information such as the service name (i.e.
<service name>), and the extraction rules that are used to re-
trieve the result pages (i.e. <path page>). The URL STRING
section includes ontology concepts that are used to describe
the input data (e.g., database type), including the default
values for optional parameters; and the basic URL used to
invoke the (http://www.ebi.ac.uk/cgi-bin/fasta/submit). The
next section contains ontology concepts that describe the out-
put data (e.g., alignment data) and their corresponding ex-
traction rules. Ontology terms such as data store are mapped
onto service specific terms such as database. Figure 5 also in-
cludes hierarchically structured ontology terms such as sum-
mary output and alignment details. The last section (i.e. IN-
TERFACE PARAMETER>) includes information necessary
for building the interface for entering the input data.

5. Implementation details

The SIBIOS architecture follows the client-server model. A
fat client approach has been adopted, which delegates some of
the processing capabilities to the client in order to improve per-
formance. The construction of the workflow accomplished by
the Workflow Builder, for instance, resides on the client side
since it is a graphically-oriented task which requires user’s
intervention. This approach reduces the communication over-
head between the clients and the server.

From the user point of view, SIBIOS is a web-enabled ap-
plication, which allows the user to launch the software from a
web browser by using the Java Web Start technology [22]. The
system does not suffer from the security restrictions associ-
ated with an applet or the interactivity restrictions associated
with JavaScript [23] embedded web page.

SIBIOS adopts a distributed architecture where web ser-
vice technologies are used for communications among com-
ponents [8]. This feature increases the modularity of the sys-
tem at the component level and promotes the utilization of
standard technologies such as SOAP [9], WSDL [12], and
UDDI [10]. The Glue [25] software is used to implement the
communication among the components of SIBIOS, which can
themselves be regarded as web services.
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Figure 5. Extracts from FASTA service schema.

5.1. Workflow builder

The role of the workflow builder is to support the users in
building the workflow and if necessary in modifying it dur-
ing execution. It implements all the workflow capabilities de-
scribed in Section 4. The result of the workflow specification
is a workflow diagram. An example is shown in figure 6. Six
services are connected by edges; some of them have filters (as
indicated by small square boxes on the edges). When results
from multiple services are input into a service, a connector
(i.e., rectangular boxes) is added to combine the data using a
union or a join operation. The second GenBank [19] service
instance in this example is iterative, as shown by the iterative
edge and the termination condition (i.e., also a small square
box). The workflow diagram is stored on the client side in case
the user may manipulate it later.

To add a new service to the workflow, the workflow builder
combines the current workflow information (figure 7(a)) to-
gether with the user service specification (figure 7(b)) to sub-

mit a query to the service discovery component [21]. The list
of matching services is displayed to the user and the selected
service is added to the workflow diagram.

Once a service is added to the workflow, its specification is
fetched from service schema wrapper. The specification lists
the inputs, outputs, and environment parameters, as well as
the other properties of a given service, and whether it can
take multiple inputs. This information is used to generate a
customized query interface for the service (figure 8(a)). In
the interface, the values of most input and environment pa-
rameters have been provided based on service specification.
Users are allowed to modify the environment parameter val-
ues (e.g., gap penalty for BLASTP service), or to specify the
input expression based on the antecedent services.

Before execution, the workflow diagram is converted into
an XML file and submitted to the server. The workflow builder
periodically queries the workflow web services to obtain the
current execution status, and reflects it on the workflow di-
agram. Intermediate results are also fetched, thus, allowing
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Figure 6. Workflow diagram example.

the user to inspect partial result before the entire workflow
execution is completed (figure 8(b)).

5.2. Task engine

The role of the task engine is to execute the workflow based on
its internal representation called workflow object. Workflow
objects contain the execution dependency information (e.g.
the set of services that immediately precede a given service in
the workflow execution) so that multiple services within one
workflow can be executed in parallel. Moreover, new instances
of the workflow object and the task engine are created for each

Figure 7. Service discovery interface.

user session; therefore multi-user sessions can be executed
concurrently.

The task engine (figure 9) executes the workflow by
launching multiple services (tasks) in parallel where each ser-
vice is associated with a task unit. The task unit is spawned by
a centralized coordinating component, the task coordinator.
The task coordinator is created as the main thread of the task
engine and it works as the master process responsible for cre-
ating slave threads (task units), coordinating and allocating the
jobs to the task units, maintaining the message passing, and
managing the shared data objects. It performs in the following
steps: (1) accommodate the workflow object and dependen-
cies from the workflow manager; (2) schedule and trigger the
execution of the tasks by acknowledging the dependencies;
(3) create, communicate with the task unit through the task
communicator; and (4) terminate or resume the execution of
the workflow in case of user intervention.

The task unit is the actual service executor. As shown in
figure 10, there are six sequential steps in each task unit: data
filtering, data combination, URL construction, web service
invocation, result parsing and result uploading.

Result filtering performs the data filtering based on the
filters defined in the edge (flow control) and input expres-
sions associated with the services. Once this step is com-
pleted, Data combination is performed when a service has
more than one preceding service. The results of antecedent
services are combined either by Join or Union connector. In
the URL construction step, the URL of the web service is
build, based on the input expression, the result data generated
from the first two steps, and the service information (e.g., basic
URl, default parameters, etc.) defined in the service schema.
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(a) Default values from FASTA Nucleotide service (b) Tree-viewed representation for partial results

Figure 8. Workflow building interface for (a) input data entry and (b) output presentation.

Figure 9. Global view of task engine architecture.

Next step is the Web service invocation, where the web ser-
vice is invoked by using the URL built in the previous step.
Result parsing refers to the extraction of information from
the result pages by applying the extraction rules defined in
the service schema (i.e., EXTRACTION RULES shown in
figure 5).

Parallelism within a given task unit occurs when more than
one input need to be sent to the corresponding web service,
thus a number of threads are forked and each thread is in
charge of one input instance. The threads are running in par-
allel and are independent of each other. When the task unit
finishes the execution, it sends a termination signal to the task
coordinator through the task communicator channel. The task

unit will (1) terminate normally if all the steps are executed
successfully, (2) terminate early if the processing of the first
two steps (data filtering and data combination) does not pro-
duce any result, or (3) terminate with failure if the service
invocation is not successful (e.g., web service unavailable).
Under a normal termination, two types of termination signals
can be produced. The first signal indicates that the termination
condition for an iterative service was not satisfied and there-
fore user intervention is necessary. In this case, a new task
unit will be created after user intervention. The second type
of signal is reserved for the case where the execution of the
service is completed regardless of whether the service is an
iterative service or not.
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Figure 10. Task unit execution steps.

The task communicator is the communication media be-
tween the task coordinator and the task unit, which is indicated
by the message pipe shown in figure 9. It is constructed fol-
lowing a producer-consumer model. The task unit is the signal
producer which pushes the messages onto the pipe from one
end and the task coordinator is the message consumer which
receives the messages from the other end of the message pipe.
The task communicator eliminates the need for maintaining
a unique communication channel between each task unit and
the task coordinator.

The shared result pool is a memory object that is used to
support the communication between task units. It stores the
results generated by one task unit for later retrieval by another
task unit. Both the shared result pool and the message pipe
provide a shared memory communication paradigm between
the task coordinator (master) and the task units (slaves).

The results returned from the execution of remote services
are classified and integrated under corresponding result types
and stored in the internal data structure for the system to gen-
erate result trees for the user interface, further result manip-
ulation and disk file storage. Figure 8(b) shows a sample UI
representation in tree view of the results returned from Swiss-
Prot database search.

6. Related work

The integration of bioinformatics tools is the focus of several
ongoing academic and industrial projects [1,4,13,16,17,21,37,
42,44,46]. Early approaches [4,13,16,25,37] focused on the
integration of databases. New approaches have been tack-

ling the more general problem of service integration
[14,17,21,35,38,44,45]. Some of these approaches, such as
SRS, augmented database integration systems to include soft-
ware tools. In addition to its database integration component,
SRS allows the user to perform sequence analysis tasks using
tools such as BLAST. However, the system is not workflow
oriented. The system uses the results of each step to determine
possible services for the next step. Also, the system assumes
that the first step of any session is always a database search.

Other integration systems departed from considering the
software tools as an add-on to database integration. For ex-
ample, the approach adopted by ISYS [38] allows the user to
execute services in a pipeline fashion. In ISYS, the user can
execute a service, select a subset of the returned results, and
the system will automatically determine the list of services
that can be executed next. However, ISYS does not allow the
user to specify all the steps in a workflow a priori. ISYS inte-
grates both standalone and web services. It also includes rep-
resentative services from various classes, such as sequence
analysis, and database searches. In addition it supports free
text searches using the Google [11] search tool.

The remaining and more recent service integration systems
can be classified under two main categories. The objective
of the systems under the first category is to develop systems
with workflow capabilities. Examples of such systems include
VIBE [21], TurboBench [42], ubertool [44], and Kepler [1].
Some of these systems impose restrictions on the types of
services that can be integrated. They also support filtering
[42,21] and organize the classes of services in a hierarchy
which is based on functional taxonomy [44]. The majority
of these systems lack support for dynamic workflows. Kepler
system supports limited user intervention during workflow
execution.

The second category of service integration systems in-
cludes Biomoby [45], and MyGrid [27]. The objective of these
approaches is to define standards similar to those defined in
the business field such as WSDL and UDDI that can facilitate
the search, location, invocation, and result communication of
services. MyGrid relies on a service specification, which is
an extension of the WSDL specification of services. It also
assumes a registration mechanism similar to the UDDI regis-
tration. To add new services to the system, service providers
are expected to register their service through a registry that
is accessed by the integration system. The registry informa-
tion includes the service name, its URL, and the description
of service using a service description template. Support for
workflow capabilities in the case of the service integration
systems in this category is limited when compared to the in-
tegration systems of the first category.

SIBIOS combines the features of the two service integra-
tion categories by supporting enhanced workflow capabilities
and relying on ontologies for service specification. The main
difference between SIBIOS and workflow based-systems such
as VIBE, for example, is the support for dynamic workflows.
In Kepler system, the workflow generated by the user is an
abstract workflow that includes the task specifications (e.g.
homology search) instead of the exact service names (e.g.
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BLastn). In this sense, SIBIOS provides the user with more
control on the selection of the services that can accomplish
a bioinformatics task. The main difference between SIBIOS
and MyGrid is that SIBIOS does not rely on explicit service
registration by service provider. This aspect renders the ser-
vice execution and service results extraction more difficult
because it has to rely on wrapper-based techniques.

7. Conclusion

This paper presented SIBIOS, a new integration system for
bioinformatics services. The challenges that need to be ad-
dressed to support the integration of distributed and hetero-
geneous bioinformatics services have also been described in
this paper. SIBIOS supports a new dynamic service work-
flow model that allows the specification of several features
rendering automatic execution of bioinformatics workflow
possible while still allowing the user to intervene during
workflow execution. The prototype of SIBIOS is available
at http://sibios.engr.iupui.edu/. User can download SIBIOS
client from this link. Future research will focus on improving
the system performance, fault tolerance as well as supporting
advanced task scheduling and incorporating more sophisti-
cated operators in the workflow.
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