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Introduction

S. David Nathanson

The ultimate goal of both basic and clinical scientists 
studying breast cancer (BC) metastases should be to cure 
the disease that kills about 44,000 women per year in the 
United States [1]. Until the latter part of the twentieth cen-
tury, doctors could only stand by and watch the devasta-
tion of stage IV BC. There was little in their arsenal to treat 
these patients. Although the situation began to improve with 
more accurate, appropriate, and less drastic surgical and 
radiotherapeutic procedures, the truly major advances have 
evolved only as research uncovered disease mechanisms at 
the genetic, molecular, and cellular levels. A better under-
standing of an individual tumor’s molecular genetics guides 
decisions about prevention, diagnosis, and treatment of BC. 
By characterizing each BC by microscopic subtypes and 
their associated molecular fingerprints, we are better able 
to keep more patients from developing systemic metastases 
and to treat stage IV BC more effectively.

Breast surgery (lumpectomy or mastectomy plus axil-
lary lymph node (LN) biopsy/dissection), often with adju-
vant locoregional radiation and well-tolerated hormonal 
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Abstract
This paper is a cross fertilization of ideas about the importance of molecular aspects of breast cancer metastasis by basic 
scientists, a pathologist, and clinical oncologists at the Henry Ford Health symposium. We address four major topics: 
(i) the complex roles of lymphatic endothelial cells and the molecules that stimulate them to enhance lymph node and 
systemic metastasis and influence the anti-tumor immunity that might inhibit metastasis; (ii) the interaction of molecules 
and cells when breast cancer spreads to bone, and how bone metastases may themselves spread to internal viscera; (iii) 
how molecular expression and morphologic subtypes of breast cancer assist clinicians in determining which patients to 
treat with more or less aggressive therapies; (iv) how the outcomes of patients with oligometastases in breast cancer are 
different from those with multiple metastases and how that could justify the aggressive treatment of these patients with 
the hope of cure.
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manipulation in estrogen receptor positive (ER+) patients 
cures at least three quarters of early BC patients [2]. The 
decision to use more toxic therapies, such as systemic 
chemotherapy, is dependent upon evolving demographic, 
pathologic, molecular, and genetic subtypes. The impor-
tant combined information in every BC patient promotes a 
more precise classification that helps determine which BC 
patients are likely to remain metastasis-free without adju-
vant chemotherapy and other systemic therapies. In the 
ideal situation, we would select only those patients likely 
to develop metastases to receive adjuvant, or neo-adjuvant, 
chemo- and targeted therapy. While there have been sig-
nificant advances in this selection process, we are, unfortu-
nately, not perfect yet.

What prompts BC cells to metastasize to sentinel lymph 
nodes (SLNs) and distant sites? This important question, 
addressed by scientists and clinicians in the past, has excited 
the interest of the authors of this paper. The more we know 
about the mechanisms of BC metastases, the more likely we 
are to find better ways to treat BC. Reynaud and Dieterich 
summarize and discuss the interaction of BC cells with lym-
phatic endothelial cells (LECs), molecular excitatory and 
inhibitory molecules, in the breast primary tumor leading to 
invasion of neighboring lymphatic vessels, and then LECs 
and parenchyma in SLNs to which they have metastasized. 
BC cells in SLNs may gain access to the systemic circu-
lation via nodal blood vessels, finally colonizing organs 
primed to receive these wandering cells by the creation of a 
pre-metastatic niche (PMN). Wu and Zhang focus on bone, 
one of the more common sites of BC systemic metastases, 
explaining their important observations of molecular and 
cellular events at that site using a unique animal model and 
in vitro techniques. They also show how bone metastases 
may themselves metastasize to other organs. Chitale high-
lights the association of certain molecular characteristics 
with pathologic morphologic variants of BC, vital infor-
mation for clinicians wishing to treat patients in the most 
appropriate ways. Ríos-Hoyo and Pusztai make the case 
that stage IV BC patients with synchronous oligometastases 
might justify more aggressive treatment than the average 
patient with recurrent metastases, expecting that they might 
be cured of the disease.

Multifaceted roles of the lymphatic system 
in BC metastasis

Emma Reynaud, Lothar C. Dieterich

Lymphatic remodeling in BC

The lymphatic vasculature is a unidirectional transport sys-
tem essential for recycling interstitial fluids, provision of 
immunosurveillance and absorption of dietary lipids [3]. 
Lymphatic vessels are composed of a single layer of LECs 
with distinct characteristics depending on their localization 
along the lymphatic tree. LECs from peripheral capillary 
lymphatic vessels are connected by discontinuous junctions 
that allow immune cells and interstitial fluid to cross the 
endothelial layer into the lymphatic lumen. LECs from col-
lecting lymphatic vessels form tight junctions and valves to 
efficiently transport the lymph to LNs and the bloodstream 
[3].

Lymphangiogenesis, the growth of new lymphatic ves-
sels, either by new growth or expansion of pre-existing 
ones [3–5], generally does not occur in a healthy, full-
grown organism, but can be induced in pathologic condi-
tions, including cancer [4]. The most prominent drivers of 
this process, secreted by tumor cells, stromal and immune 
components of the tumor microenvironment (TME), are 
vascular endothelial growth factor-C (VEGF-C) and -D 
(VEGF-D) that bind to the receptor tyrosine kinase VEGF 
receptor-3 (VEGFR-3) on LECs. Multiple additional lym-
phangiogenesis-stimulating molecules have been identified, 
including angiopoietin 2, basic fibroblast growth factor, 
hepatocyte growth factor, adrenomedullin and sphingosine-
1-phosphate (reviewed in [3]).

In contrast to many other solid cancer types, the extent 
of lymphangiogenesis and lymphatic expansion in BC has 
been controversial [6]. Several studies evaluating lymphatic 
vascular density and LEC proliferation using double stain-
ing for a lymphatic and a proliferation marker concluded 
that tumor lymphangiogenesis may be absent or rare in 
BC [7–9], whereas others found clear evidence of prolif-
erating LECs in BC [10]. These divergent results probably 
reflect technical aspects (varying use of molecular markers 
and quantification methods) but also biological differences 
between BC subtypes and stages. For example, lymphatic 
vascular density tends to be elevated in inflammatory BC 
[11, 12], postpartum BC [13], human epidermal growth fac-
tor receptor 2 (HER2/neu+) and triple-negative BC [14, 
15]. Lymphangiogenesis can be observed at distant meta-
static sites as well, such as in the SLN and in the lung in 
a mouse model of triple-negative BC [16–18]. Lymphan-
giogenesis in experimental cancer models may even pre-
cede metastatic colonization in SLNs and systemic sites, 
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indicating that an increased lymphatic vascular network is a 
constituent of the PMN and may promote metastatic growth 
and secondary metastases [16, 19–22]. While the precise 
signals that induce PMN lymphangiogenesis in BC are not 
known, growth factors such as VEGFs and midkine as well 
as tumor cell derived extracellular vesicles (EVs) have been 
identified as drivers of this process in various other cancer 
models [20, 22–25].

Lymphatic metastases in BC (see Fig 1)

The first site of BC metastases is usually the SLNs in the 
axilla. While molecular and cellular changes in the primary 

site in the breast can be associated with SLN metastases, 
BC cells must invade lymphatics at the primary site to gain 
access to the SLNs. Lymphovascular invasion, visible as 
tumor cells in the lumens of lymphatic capillaries at the 
primary tumor site, is a crucial step within the metastatic 
cascade. Correspondingly, lymphovascular invasion is asso-
ciated with an increase in SLN and systemic metastases in 
clinical studies of BC [26, 27] and with poor progression-
free and overall survival (Table 1) [28–34]. BC cells may 
invade vessels as single cells or cell clusters, potentially 
reflecting distinct molecular and cellular invasion mecha-
nisms (reviewed in [35]). For example, transforming growth 
factor-β-induced upregulation of CCR7 can direct invading 

Fig. 1 Schematic representa-
tion of the lymphatic system, its 
remodeling in breast cancer, and 
its involvement in metastatic dis-
semination. Further information 
can be found in the text
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The lymphatic system as conduit and barrier for tumor 
derived EVs

Circulating, tumor derived EVs have been shown to induce 
PMN formation in various body sites and to regulate tumor 
immunity in melanoma and other cancer types as they inter-
act with distant cells and tissues [50–53]. Tumor derived 
EVs may follow interstitial fluid flow away from blood ves-
sels and towards lymphatic vessels where specific button-
like LEC junctions at initial lymphatic vessels promote 
intravasation of particles 20–100 nm in diameter [3]. EVs 
derived from cultured cancer cells are rapidly taken up by 
lymphatic vessels upon interstitial injection in mice [50, 
51]. Similarly, EVs released by primary tumors specifically 
homed to SLNs in mice [52] where they interacted with 
LN LECs and macrophages, mediated at least in part by 
integrins on the EV surface. The resulting PMN formation 
via induction of VEGF-C and nerve growth factor recep-
tor increased lymphatic metastases [23, 25, 54]. On the 
other hand, if SLNs act as efficient barriers for EVs, they 
would likely limit their access to the blood circulation and, 
thus, metastasis-inducing functions in potential metastatic 
sites. Most of these studies were done using melanoma and 
colorectal carcinoma animal models. We do not yet know if 
tumor derived EVs similarly drain via the lymphatic system 
and act in SLNs in BC patients.

The lymphatic system in BC immunity

Besides its well-documented role in BC metastases, the 
lymphatic vascular system is highly relevant for the gen-
eration of endogenous and therapy-induced, cancer-specific 
immune responses. The somatic mutational burden of BC 
is moderate compared to other cancer types [55], which has 
been linked to a limited pool of neo-antigens, low immu-
nogenicity, and immunotherapy responsiveness in BC. 
Nonetheless, tumor-infiltrating lymphocytes and immune-
associated gene expression signatures have prognostic value 
in BC, particularly in triple-negative BC and BC with a 

BC cells into lymphatic vessels [36]. Inflammatory cyto-
kines and growth factors released in the TME have been 
found to reduce junctional vascular endothelial-cadherin in 
lymphatic vessels in BC models [37, 38], thus making these 
vessels more permissive for cellular intravasation, whereas 
expression of the lipoxygenase ALOX15 in BC cells has 
been reported to induce lymphatic defects allowing invasion 
of entire cell clusters [39]. Of note, in a rat BC model, lym-
phatic vessels predominantly contained tumor cell clusters 
that had a high metastatic capacity [40].

While the extent of tumor-associated lymphangiogenesis 
in the various subtypes of BC is still not clear, its relevance 
for metastases has been demonstrated in cancer models 
where tumor cell overexpression of the lymphangiogenic 
growth factors VEGF-C and -D is sufficient to increase 
lymphatic metastases [37, 38, 41]. Clinical support in sev-
eral (but not all) comprehensive meta-analyses representing 
thousands of BC cases (Table 1) observed tumor lymphatic 
vascular density and the expression of VEGF-C (and -D) to 
correlate with poor outcome in BC.

The presence of SLN metastases is valuable in BC stag-
ing [42, 43]. While the contribution of different routes to 
systemic BC metastases is still debated [44], animal, genetic, 
and human studies seem to favor an orderly anatomic route 
of LN metastases leading to systemic dissemination. Ani-
mal models have demonstrated that cancer cells in the LN 
can enter directly into the nodal blood circulation and sub-
sequently seed to distant sites, such as the lung [43, 45]. 
Genetic analyses of human prostate and colorectal cancer 
metastases support a direct contribution of LN metastases-
derived cell clones to systemic spread [42, 46–48]. Recently, 
similar findings have been reported in a small cohort of ER+ 
BC cases [49], whereas clinical studies suggest that many, 
if not most, primary BCs gain access to the visceral blood 
vasculature by way of SLNs [26, 27].

Table 1 Meta-studies of the association between LVD, expression of VEGF-C/-D, LVI, and outcome in breast cancer
Studies No. patients Correlation
Zhang et al., 2017 [28] 1336 [LVD]

3070 [LVI]
Both LVD and LVI correlate with poor PFS and OS

Chen et al., 2013 [29] 1044 LVD correlates with LNM
Wang et al., 2012 [30] 1532 [LVD]

1778 [VEGF-C]
1114 [VEGF-D]

LVD and VEGF-C expression correlate with poor PFS and OS.
VEGF-D expression correlates with poor PFS only.

Liang et al., 2014 [31] 1573 VEGF-C expression correlates with LNM, poor PFS and OS.
Zhang et al., 2016 [32] 2828 VEGF-C expression correlates with poor PFS and OS.
Wang et al., 2016 [33] 7830 VEGF-C expression does not correlate with neither PFS nor OS.
Gao et al., 2014 [34] 1357 VEGF-C expression does not correlate with neither PFS nor OS.
LNM, lymph node metastases; LVD, lymphatic vessel density; LVI, lymphovascular invasion; PFS: progression-free survival; OS: overall 
survival; VEGF-C, vascular endothelial growth factor-C; VEGF-D, vascular endothelial growth factor-D
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T cells, and we currently do not know the relative contribu-
tion of individual cell types and the precise stage at which T 
cells are sensitive to those. For example, antigen-presenting 
cells are known to upregulate PD-L1 expression upon acti-
vation and may thereby inhibit T cells already during the 
priming phase [59]. Additionally, LN stromal cells, includ-
ing LECs, have been implicated in the regulation of T cell 
responses [64]. LN LECs not only present peripheral tissue 
self-antigens but also scavenge and cross-present exogenous 
antigens from the lymph on MHC-I [65, 66]. In a melanoma 
mouse model, these included tumor-derived antigens, which 
can be transferred directly from primary tumor cells to LN 
LECs via tumor cell derived EVs [25, 67]. Antigen-present-
ing LECs induce a dysfunctional, apoptotic state in CD8 + T 
cells recognizing these antigens upon co-culture ex vivo, 
suggesting these cells are by default T cell-inhibitory and 
tolerogenic [65, 66]. However, it is not entirely clear how 
exactly LN LECs restrain T cell responses. In steady-state, 
LN LECs lack co-stimulatory molecules and constitutively 
express PD-L1, particularly in LECs populating the subcap-
sular sinus floor (fLECs) and medullary sinuses (mLECs) 
[68–70]. This expression pattern of PD-L1 is maintained in 
SLNs in melanoma and BC models in mice [19, 71, 72] and 
is conserved in humans [73]. In addition, deletion of lym-
phatic PD-L1 resulted in reduced apoptosis of tumor-spe-
cific CD8 + T cells with a memory phenotype in SLNs [74], 
a finding that is consistent with LN LECs acting as inhibi-
tors of TTSM, most likely of those exiting the LN microen-
vironment via medullary sinuses and efferent lymphatic 
vessels. Further studies are needed to better understand the 
molecular interactions between LN LECs and tumor-spe-
cific T cells and their impact on tumor immunity and immu-
notherapy to precisely define the role of lymphatic PD-L1 
and any other potential immune-inhibitory signals during 
the process of tumor-specific T cell activation.

Finally, LECs within the TME in tumor models have 
also been shown to inhibit T cell-mediated, tumor-specific 
immune responses. While peripheral LECs typically do not 
express PD-L1 at steady-state, its expression is induced 
within the TME by interferon-γ [71, 75]. Furthermore, 
tumor associated LECs may induce regulatory T cells [76] 
and mediate egress of effector T cells from the TME, all of 
which facilitate tumor immune evasion.

Conclusion

The lymphatic system exerts multifaceted functions that 
may both enhance and impair BC progression. Lymphatic 
vessels are conduits for regional and systemic BC metas-
tases, but also for tumor cell derived EVs and for tumor 
antigens that are essential for the activation of TTSM cells 
in SLNs. At the same time, LN and TME-associated LECs 

high rate of proliferation [56, 57]. Recently, the US Food 
and Drug Administration approved pembrolizumab (a PD-
1-blocking antibody) in combination with chemotherapy for 
locally recurrent, unresectable, or metastatic PD-L1 + tri-
ple-negative BC and for Stage II-III triple negative breast 
cancer as neoadjuvant (preoperative) therapy concurrent 
with chemotherapy regardless of PD-L1 status [54]. After 
neoadjuvant PD-1 blockade in BC [58], irrespective of the 
subtype, one-third of the patients exhibited expansion of 
T cell clones that could be detected within the TME even 
before treatment. Expanded CD8 + T cells showed expres-
sion of effector (granzyme B) and exhaustion markers (PD-
1, LAG-3) [58]. These data indicate that tumor cells are 
subject to immune surveillance and that immune-inhibitory 
checkpoint pathways are active in BC.

LNs are essential secondary lymphoid organs that sup-
port and orchestrate interactions between antigen-pre-
senting cells and lymphocytes, resulting in the generation 
(or inhibition) of adaptive immune responses. To achieve 
this goal, LNs are highly organized spatially, with distinct 
zones or structures for entry, activation and exit of T- and 
B-lymphocytes, various types of dendritic cells and macro-
phages, as well as stromal cells such as lymphatic and blood 
endothelial cells and fibroblastic reticular cells. All these 
cell types need to interact optimally to enable activation of 
adaptive immune responses. SLNs are one of the first sites 
receiving tumor antigens and immune cells from the TME, 
implying that they exert a key role in anti-tumor immunity 
[59]. Naïve, tumor-specific CD8 + T cells are indeed primed 
and activated in SLNs acquiring an activated, memory and 
stem-like phenotype (TCF1 + TOX- TTSM) [60–62]. These 
cells have the capacity to undergo massive proliferation, 
display true memory capacity and may turn into exhausted 
progenitor T cells (TCF1 + TOX + TPEX) within SLNs. Upon 
migration to the tumor, co-stimulatory signals finally drive 
these cells into effector T cells with a terminally exhausted 
phenotype (TCF1- TOX + TEX) [60, 62].

SLNs are not only sites where tumor-specific T cells are 
activated but also where active immune suppression takes 
place. PD-L1/PD-1 interactions occur frequently in SLNs 
and correlate with checkpoint blockade responsiveness in 
cancer patients [59]. Similarly, local checkpoint blockade 
therapy in SLNs enhanced the migration of tumor-specific 
T cells to the TME and was at least equally efficient in con-
trolling tumor growth as systemic therapy in several cancer 
models, including BC [59–61, 63]. Moreover, lymphad-
enectomy impaired the efficiency of checkpoint blockade, 
demonstrating the importance of SLNs in tumor immunity 
by providing a reservoir of CD8 + TTSM cells that directly 
respond to PD-L1/PD-1 blocking therapies [60].

Multiple cell types within the SLN environment may 
provide inhibitory signals such as PD-L1 to tumor-specific 
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clinically valid model. Therefore, neither model is appropri-
ate for our study. To mimic the early dissemination of bone 
metastases, we have developed an intra-iliac artery injection 
model, which specifically delivers tumor cells to the hind 
limb bones without causing harm to the local tissue. Using 
the bloodstream to transport the cells to bone, we can more 
accurately replicate the process by which disseminated 
tumor cells (DTCs) colonize bone [84]. Besides in vivo 
models, we have evolved an ex vivo bone-in-culture array 
platform, where we coculture bone pieces with tumor cells. 
This allows us to mimic the growth of tumor cells in the 
bone microenvironment (BME) to study the mechanisms of 
tumor cell colonization and conduct rapid drug screening 
[85, 86].

Dormancy, DTCs and NG2+ cells in BC metastases to bone

Metastases start from single cells or cell clusters that sepa-
rate from the original tumor and migrate to distant areas. 
In most cases of BC, the dissemination of tumor cells to 
other tissues occurs early on, concomitant with the progres-
sion of the primary tumor [87, 88]. Despite this, it is pos-
sible for DTCs to remain inactive for many years or even 
decades before visible metastases emerge. The perivascular 
niche (PN) serves as a habitat for DTCs and controls the 
state of micro-metastases, whether dormant or active [89, 
90] (Fig. 2a). We have demonstrated that the PN and osteo-
genic niche work together to trigger the activation of DTCs, 
leading to the development of osteolytic bone metastases 
[91]. Recent studies have shown that bone formation is cou-
pled with angiogenesis, which occurs at the PN. Several cell 
types with distinct functional roles are involved in the PN, 
and these cells play important roles regulating hematopoi-
esis, osteogenesis, and vascular homeostasis [92]. Among 
these cell types, neuroglial antigen-2 positive (NG2+) bone 
mesenchymal stem/stromal cells (MSCs) have been found 
to be important participants in metastasis progression. It has 
been indicated that dormant DTCs colocalized with NG2+ 
cells in the PN [89, 93].

Our study confirmed that NG2+ cells participate in osteo-
genic differentiation and play an important role in bone 
remodeling, as supported by lineage-tracing experiments. 
Under the homeostatic condition, depletion of NG2+ cells 
resulted in a significant decrease in osteoblast and osteo-
clast activities and in the rate of new bone formation. On 
the other hand, NG2+ cells are recruited to the site of injury 
when there is a pathologic fracture, and they take part in the 
production of new bone. In short, the involvement of NG2+ 
cells is crucial in both maintaining homeostasis and wound 
healing in bone tissue. We provided evidence suggesting the 
existence of N-cadherin-mediated cell-cell direct contact 
between DTCs and NG2+ cells, which may facilitate the 

appear to restrain tumor immunity through multiple direct 
and indirect mechanisms. Consequently, therapeutic target-
ing of specific, tumor progression-promoting functions of 
LECs could be synergistic with current targeted and immu-
notherapeutic approaches in BC and other cancer types.

Bone metastases: from disseminated Tumor 
cells to the source of further dissemination

Yi-Hsuan Wu, Xiang H.-F. Zhang

Introduction

Bone is one of the most common sites of cancer systemic 
metastases in several cancer types, including breast, pros-
tate, lung, thyroid, and kidney cancer. The distinctive 
microenvironment within bone offers an ideal habitat for 
the proliferation of tumor cells. In the advanced stage of 
bone metastases, tumor growth is driven by a vicious cycle. 
These tumor cells secrete parathyroid hormone-related 
peptide and stimulate the expression of receptor activator 
of nuclear factor-kB ligand (RANKL) which leads to the 
proliferation of osteoclasts and bone resorption. This pro-
cess also releases additional growth factors [77]. Moreover, 
osteoblasts also secrete pro-tumorigenic growth factors in 
osteoblastic lesions [78]. The reciprocal interaction between 
cancer and bone cells causes a positive-feedback cycle that 
facilitates tumor expansion. To date, treatments for bone 
metastases mainly focus on reducing osteoclast activity in 
the vicious cycle, such as with bisphosphonate [79] and 
denosumab [80]. Unfortunately, these therapeutic interven-
tions often have limited efficacy in late stage metastases and 
only modest impact on reducing bone metastases in early 
stage disease with adjuvant therapy [81]. Consequently, 
there is an urgent need to create therapeutics that specifi-
cally target early micro-metastases and prevent the develop-
ment of overt bone metastases.

A clinically appropriate bone metastasis model

Intra-cardiac and intra-tibial injections are the commonly 
used preclinical models for bone metastasis research [82, 
83]; however, they both have limitations and drawbacks. 
The intra-cardiac injection model leads to tumor cells dis-
seminating throughout various organs in the mouse, but only 
a restricted number of cancer cells reach the bone. On the 
other hand, the intra-tibial injection model can effectively 
deliver most cells to the bone, but it can result in localized 
damage and inflammation of bone tissue. Since our research 
primarily focuses on the early stage of bone metastases, 
these models do not adequately meet the conditions for a 
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between cancer cells and osteogenic cells is facilitated by a 
dendritic spine-like structure of the cancer cells, mediating 
this distinct migration process [94] (Fig. 2c). We discov-
ered an osteogenic niche, mediated by heterotypic adherens 
junctions (hAJs)-involving cancer-derived E-cadherin and 
osteogenic N-cadherin in the early stages of BC bone metas-
tases. The hAJs activate the mTOR pathway in cancer cells, 
which leads to the progression of DTCs to micro-metastases 
(Fig. 2d). In addition, disrupting this hAJs showed inhibi-
tion on bone metastasis outgrowth [95]. Besides the mTOR 
pathway, calcium signaling cooperates to mediate the osteo-
genic niche’s metastasis promoting effects. Due to the low 
efficiency of calcium uptake from the BME by cancer cells, 
they rely on direct interaction with osteogenic cells to obtain 
a sufficient influx of calcium [96] (Fig. 2d). Based on these 
studies, we know the mechanisms of how the cancer cells 
travel from PN to osteogenic niches together with MSCs, 

proliferation and movement of cancer cells toward osteo-
genic signals. NG2+ MSCs and DTCs could co-migrate 
from the PN to the osteogenic niche. Moreover, DTCs 
would be recruited to the pathologic fracture sites, lead-
ing to increased metastases colonization by the surround-
ing area of the injury (Fig. 2b). Upon depleting NG2+ cells 
or knocking out N-cadherin, we noticed that the metastatic 
colonization in bone was diminished. This study revealed 
how the outgrowth of DTCs occurs due to pathologic repair 
and elucidated the role of NG2+ MSCs in this process [91].

Co-colonization of molecules and cells in bone metastases

Several of our previous studies showed evidence to sup-
port that cancer cells might colocalize with MSCs. We 
observed that DTCs in BME would relocate between differ-
ent niches via migration-by-tethering. The physical contact 

Fig. 2 Schematic diagram for the BC bone colonization and micro-
metastases. [a] Tumor cells remaining dormant in the perivascular 
niche. [b] NG2+ MSCs and tumor cells would be co-recruited to the 
pathologic fracture sites and initiate micro-metastases. [c] Tumor cells 
adhering to osteoblasts and migrate with them via a “migration-and-
tethering” mechanism. [d] The interaction of hAJs triggering the pro-
liferation of tumor cells in the bone by inducing mTOR and calcium 

influx. [e] The upregulation of EZH2 by hAJs, causing transient loss of 
ER and resistance to endocrine therapy, and [f] leading to an increase 
in the stemness and plasticity of the tumor cells, facilitating secondary 
metastases. Abbreviations: BC, breast cancer; ER, estrogen receptor; 
EZH2, enhancer of zeste homolog 2; hAJs, heterotypic adherens junc-
tions; metastases, metastasis; MSCs, mTOR.
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site of secondary metastases rather than merely a destina-
tion in the metastatic cascade [98].

Potential targeting of early-stage BC metastases

The findings described above encouraged us to develop 
antibody-based therapeutics that specifically target early-
stage BC bone metastases. However, systemic treatments 
face a significant obstacle in that only a small quantity of the 
antibody can reach the bone to target tumor cells. To address 
this limitation, we have conjugated the HER2/neu antibody, 
Herceptin, with bone-targeting molecules-Alendronate. Our 
research demonstrates that the bone-targeting Herceptin is 
more effective than the wildtype Herceptin antibody at treat-
ing bone metastases. Moreover, we observed a reduced inci-
dence of secondary metastases [100]. This study provides a 
great therapeutic strategy. For example, generating antibody 
drug conjugates with a bone-targeting mechanism, targeting 
the crucial factors promoting metastases in the bone DTCs 
or micro-metastases. This might eliminate the bone metas-
tases before entering the osteolytic stage. Bone-targeting 
treatments would enhance the site-specificity of the drugs, 
reducing the risk of adverse off-target effects. Furthermore, 
by enriching the concentration of antibody drug conjugates 
in the bone, we could potentially reduce the required dosage 
of the drug.

Future directions

Although some of the pathways and mechanisms of BC 
bone metastases are being defined, our understanding of 
this topic remains incomplete. To gain a better insight into 
bone metastases, we need to address some missing links. 
First, the presence of pre-metastatic effects in the BME of 
mammary tumors remains unclear. Studies support the con-
cept that EVs released from primary BC transfer miR-21 
to osteoclasts, creating an environment that facilitates bone 
metastasis progression [101]. Gaining a better understand-
ing of the underlying molecular mechanisms of PMNs 
could potentially benefit BC patients in preventing bone 
metastases. Second, studies have shown that the niches har-
bor cancer cells with distinct cell fates, as the PN shelters 
dormant cells while the osteogenic niche contains tumor 
cells with a high proliferation rate [89, 95]. However, other 
studies suggest that osteoblasts in the osteogenic niche may 
be involved in cancer cell dormancy [102]. Therefore, the 
role of different niches might vary depending on the cancer 
types. Specifically, we should explore the distinct functions 
and connections between the perivascular and osteogenic 
niches across various cancers. Third, it is crucial to elucidate 
the progression from micro-metastases to osteolytic bone 
metastases. Currently, little is understood about the factors 

and hAJs in the osteogenic niches promote micro-metasta-
ses by several pathways. Furthermore, we provide ideas for 
potential therapeutics for early metastases to prevent tumor 
progression to osteolytic metastases.

When DTCs arrive at the bone, the BME boosts their 
plasticity, leading to the reprogramming of ER+ breast 
tumor cells. Specifically, we found that the osteogenic niche 
drives the enhancer of zeste homolog 2 (EZH2)- mediated 
epigenetic reprogramming process, which changes the can-
cer cells to a stem-like and ER-dependent state. During this 
process, tumors that are ER+ would experience a temporary 
loss of ER expression, resulting in resistance to endocrine 
therapy (Fig. 2e). The partial restoration of ER expression 
in cancer cells was observed in bone-in-culture array when 
either gap junction or calcium signaling was suppressed. We 
observed the highest fold-change in the FGFR and PDGFR 
pathways when comparing bone-entrained to un-entrained 
cells and determined that these pathways are epigenetically 
regulated and are responsive to EZH2 inhibition. Treat-
ing tumors with an EZH2 inhibitor can restore endocrine 
sensitivity and even prevent spontaneous bone metastases 
[97]. Most of all, EZH2 inhibitors are currently available for 
clinical use, which could facilitate their application in future 
therapeutic approaches.

Secondary metastases from bone

The common perception is that metastases represent the 
final stage of tumor progression in clinics. However, our 
study challenges this notion by showing that certain BC 
metastases may originate from the metastasized tumor, 
which means those metastasized tumors can further pro-
duce secondary metastases [98] (Fig. 2f). This is consistent 
with clinical observations, which show that the bone is the 
most common site for the initial occurrence of metastases 
in BC and that more than two-thirds of these cases will end 
up with metastases to multiple different organ sites [99]. In 
this study, we used an evolving barcode system along with 
parabiosis to demonstrate that the BME can facilitate metas-
tases-to-metastases seeding [98]. Based on another study 
showing that BME upregulates EZH2 expression in ER+ 
cancer cells and enhances their stem-like properties [97], we 
also observed ER− breast tumors exhibited similar upregu-
lated stem-like properties as ER+ cancer cells. We hypoth-
esized that EZH2 might be the key factor responsible for 
facilitating tumor cells’ secondary metastases in both ER+ 
and ER− tumors. We show that using EZH2 inhibitors or 
inducible knockdown could affect downstream expression 
of stem cell markers. It is important to note that inhibiting 
EZH2 expression would only reduce secondary metasta-
ses, without any effect on the primary bone lesions. Taken 
together, this suggests that bone may function as a launch 
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over 90%; selecting the minority who are at risk for recur-
rence should be the aim for more aggressive treatment and 
is a continued prognostic challenge. Approximately 7% of 
early BC patients have stage IV BC at presentation, and 
~ 30% of women with early-stage BC at diagnosis eventu-
ally develop metastatic BC. With 5-year relative survival 
rates of ~ 25-30% of metastatic BC and a median overall 
survival of ~ 2–4 years depending on molecular subtype, 
patients at high risk for recurrence must be identified and 
treated early with the appropriate systemic and local thera-
pies to avoid development of metastatic disease [105, 108].

Specific pathologic characteristics are typically associ-
ated with a higher likelihood of local recurrence and metas-
tases to regional LNs and distant sites. These include larger 
tumor size, higher histologic grade, certain histological sub-
types (such as inflammatory carcinoma -T4D), lymphovas-
cular invasion, margin status, infiltration of local structures 
(such as chest wall-T4a, skin-T4b), and presence of exten-
sive ductal carcinoma in-situ. Importantly, patients with 
favorable clinical pathologic features might safely avoid 
toxic therapies.

The metastatic potential of invasive BCs-no special type 
(IDC-NST), correlates with tumor grade and other micro-
anatomic findings and includes the accurate diagnosis of 
cancer, histologic grade, and type. The histologic diagnosis 
of invasive BC involves a combination of architectural and 
cytological features of the tumor cells, stroma, TME, and 
lack of basal myoepithelial cells in the infiltrating epithelial 
cells (in most cases).

The Nottingham grading system determines tumor differ-
entiation and includes the degree of tubule or gland forma-
tion, nuclear pleomorphism, and mitotic rate. Multivariate 
analyses showed that histologic grade independently pre-
dict BC-specific and disease-free survival in operable BCs 
[109].

Some histologic types of BC often independently predict 
a low likelihood of metastases. For example, pure low-grade 
adenosquamous carcinoma, fibromatosis-like metaplastic 
carcinoma, mucoepidermoid carcinoma, adenoid cystic car-
cinoma, and secretory carcinoma, despite all being triple 
negative (negative ER/PR/HER2/neu) are very indolent 
[110]. A special morphological pattern under IDC-NST 
included medullary/medullary-like carcinomas, glycogen-
rich, lipid-rich, sebaceous, and oncocytic carcinomas, as 
their biological behavior correlated with the grade and stage 
of IDC-NST [111].

The patterns of metastases in invasive lobular carcinoma 
(ILC) are highly dependent upon histologic variations. 
The classic ILCs are typically grade 2, and their metastatic 
potential is like IDC-NST when matched with grade and 
stage. However, the pleomorphic ILC variant has high-
grade cytological features and a poor prognosis. In contrast, 

that trigger cancer cells to exit the dormant phase and initi-
ate the vicious osteolytic cycle. Patients with BC frequently 
experience a delayed onset of bone metastases, which can 
occur even decades after the removal of the primary tumor 
[103]. Understanding the molecular mechanisms might cre-
ate novel therapeutics targeting DTCs or micro-metastases. 
Last but not least, after uncovering the presence of second-
ary metastases, some questions still need to be answered 
[98]. For example, considering that BC metastasizes rela-
tively early and remains dormant in the bone, the mecha-
nisms that initiate secondary metastases and the timing of 
their onset both hold importance as clinical references for 
medication.

Anatomic and molecular characteristics 
Associated with BC Metastases

Dhananjay A. Chitale

Malignant tumor cells acquire the hallmarks of cancer from 
a premalignant transformed state to a widely metastatic dis-
ease through a multistep process [104]. These neoplasms 
are a mixture of heterogeneous cells that start from ‘clonal’ 
progeny of a single cell that acquires, or less commonly 
inherits, mutations, thus gaining survival advantage through 
natural selection.

Microscopic features, including nuclear size, shape, 
pleomorphism, mitosis, necrosis, infiltration, lymphatic, 
and vascular invasion, often predict tumor aggressiveness 
when correlated with clinical outcomes. When combining 
grade (tubule formation, nuclear pleomorphism, and mitotic 
counts) and more than 20 histologic subtypes, it is clear 
that BC is highly heterogeneous. Modern staging classifi-
cations require an accurate histologic diagnosis before any 
molecular classification can be of use in predicting metas-
tases [105].

This section describes correlations of complex anatomic 
features of BC with multifaceted molecular underpinnings. 
Standard anatomic histopathologic features and hormone 
receptor status can be associated with cancer metastases in 
BC subtypes. We also describe the biological, biochemi-
cal, and molecular associations between tumor growth, as 
described under the framework of hallmarks of cancer by 
Hanahan and Weinberg [104, 106, 107], as they relate to BC 
metastases.

Anatomic pathologic characteristics of BC metastases

Clinical oncologists depend highly on synoptic pathologic 
checklists for invasive BC based on core biopsies and surgi-
cal specimens. Early-stage BC has 10-year survival rates of 
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cytokeratins (CK), such as CK5 or CK5/6, CK14, CK17, 
and epidermal growth factor receptor, CKIT, P63, P-Cad-
herin, and SMA, as the profile characteristic of this tumor 
and are most often triple-negative [116]. Both HER2/neu 
and basal-like BC have higher rates of locoregional recur-
rence and distant metastases, with basal-like BC having the 
worst overall and disease-specific survival [111, 117].

Based on the expression profiles, many prognostic and 
predictive multigene classifier signature assays are offered 
commercially using technologies such as complementary 
DNA microarray, real-time polymerase chain reaction, 
immunohistochemistry, and DNA single nucleotide poly-
morphism array-based gene copy number. These typically 
stratify tumors into low- vs. high-risk groups predict-
ing locoregional and distant recurrence; some are part of 
national guidelines and are used in clinical decision-mak-
ing, especially in small-localized tumors.

Despite advances in understanding BC at the genomic 
level, gene signatures have not replaced the currently used 
prognostic and predictive factors in BC management. They 
provide valuable complementary information to traditional 
clinicopathologic parameters in the clinically intermedi-
ate risk group of patients, particularly those with ER+, 
HER2/neu−, early-stage BC. The prognostic value of these 
tests in ER− and HER2/neu+ BC remains limited [105].

Hallmarks of cancer metastases and histopathologic 
correlates

The past 4-plus decades of cancer research have given deep 
insights into the molecular characteristics and underpin-
nings that drive tumor biology and the propensity toward 
metastases. This large body of knowledge further under-
scores the heterogeneity and complexity of BCs, character-
ized as a disease driven by dynamic changes in the genome 
through a sequential acquisition of large numerical or struc-
tural changes to the chromosomal complement or subtle 
point mutations in oncogenes leading to gain of function 
and tumor suppressor genes with loss of function [118].

Malignant breast tumors are mixtures of different types 
of cells, including cancer, immune, stem, and supporting 
stromal cells, blood and lymphatic vessels, and the stro-
mal matrix, all working together as an autonomous organ. 
Defined as the ‘Hallmarks of Cancer,‘ Hanahan and Wein-
berg [104, 106] described ten biological components that 
cancer cells and the TME acquire and maintain during growth 
and metastases. The key hallmarks include sustaining pro-
liferative signaling, evading growth suppressors, resisting 
cell death, enabling replicative immortality, inducing angio-
genesis, activating invasion and metastasis, reprogramming 
of energy metabolism, and evading immune destruction. 
The enabling characteristics included genomic instability 

the alveolar and tubulo-lobular variants of ILC have a good 
prognosis [112].

Molecular characteristics that predict BC metastases

Morphologic characteristics of BC in predicting locore-
gional and distant metastases have limitations, especially in 
the early-stage tumors where there is no evidence of local 
or distant spread of the tumor. It is often difficult to pre-
dict the biological potential of the malignant tumor based 
purely on histologic and radiologic parameters. Therefore, 
the knowledge of molecular programs of these tumors is 
fundamental to predicting the potential of cancer metasta-
ses and thus guiding therapies. The current transformation 
of the staging checklists from purely anatomic pathology-
driven items to a combination of anatomic and molecular 
biomarkers (prognostic and predictive) introduced in the 
recent 8th AJCC staging classifications to further fine-tune 
tumor stages directed to targeted therapeutics, is a testament 
to that concept. These stratification approaches help sepa-
rate more aggressive tumors within the same anatomic stage 
for optimal treatments and outcomes. BC AJCC staging 
[113, 114] now includes biomarker status such as ER, PR, 
HER2/neu expression status along with multigene signature 
panels such as the 21-gene Oncotype Dx Recurrence Score, 
70-gene MammaPrint, the 12-gene EndoPredict, or the 
PAM50 test making its way into clinical decision-making.

Molecular classification of BCs

In a seminal article on molecular portraits of BC, Perou et 
al. [115] described 5 distinct intrinsic molecular subgroups 
using complementary DNA-based microarray messenger 
RNA expression profiling of BCs. After further study, the 
ER+ normal breast-like subgroup was removed, leaving 4. 
Luminal BC constituting 50-65% of cases, displays a pattern 
of gene expression dominated by genes that are regulated by 
estrogen. Morphologically, this group has the most variable 
distribution of histologic grades. Out of this group, lumi-
nal-B BC [~ 15-20%] have lower ER expression and higher 
expression of proliferation-associated genes and are associ-
ated with higher histologic grade and metastatic potential. 
HER2/neu+ tumors typically are of high histological grade, 
high proliferation rate, apocrine morphology in some, and 
infiltrative growth pattern. They are frequently associated 
with background high-grade comedo ductal carcinoma in-
situ. Basal-like BC (~ 15%), named as such due to their gene 
expression profile related to basal myoepithelial cells, have 
a high mitotic rate, and often present as a large tumor with 
distinct, geographic, central cellular zones and large zones 
of necrosis. These tumors also have high tumor-infiltrating 
lymphocytes. Basal-like BCs express high molecular weight 
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tissues. In many high-grade ductal carcinoma in-situ, micro-
invasion is noted as an outpouching or budding of the tumor 
cells or single cells, often cuffed by a dense desmoplastic 
stroma and inflammatory cells (Fig. 3).

Invasive BC cells move through connective tissues and 
access lymphovascular spaces. This is facilitated by the loss 
of adhesion molecule E-cadherin encoded by the CDH1 
gene through epithelial-mesenchymal transition (EMT), 
similar to that observed in ILC. EMT, considered an inte-
gral part of metastases, especially in BCs, is controlled by a 
combination of Snail, Slug, Twist, and Zeb1/2 transcription 
factors, favoring promigratory properties. In the first step, 
the invading tumor cells become dis-cohesive (“loosening 
up” of tumor cells) as morphologically evidenced by single 
cell infiltration or nests of tumor cells at the leading edge 
of the invasive BC (Fig. 4). This is followed by degrada-
tion of the extracellular matrix, attachment to “remodeled” 
extracellular matrix components, and migration facilitat-
ing the invasion of tumor cells. The basement membrane 
and interstitial connective tissue degradation is achieved 
by autocrine or paracrine secretions, proteolytic enzymes 
such as matrix metalloproteinase, cathepsin D, and uroki-
nase plasminogen activator. The final step of invasion is the 
mechanical migration of cancer cells by locomotion through 
basement membranes and areas of proteolysis by the con-
tractile actin cytoskeleton.

and mutation, tumor-promoting inflammation, deregulat-
ing cellular metabolism, and avoiding immune destruction. 
Unlocking phenotypic plasticity and senescence were added 
to the hallmarks of cancer, and non-mutational epigenetic 
reprogramming and polymorphic microbiomes as enabling 
characteristics were recently added to the list [107].

The following paragraphs summarize how these hall-
marks correlate with morphologic features of BC and cancer 
invasion, metastases, phenotypic plasticity, and disrupted 
differentiation.

Invasion and metastasis One of the most aggressive prop-
erties of cancer cells is the invasion and destruction of local 
tissues and the development of metastases. Stephen Paget’s 
“seed and soil” hypothesis [119, 120] identified patterns of 
BC metastases, suggesting a propensity for cancer to spread 
only to host organs (the ‘soil’) supportive of their growth. 
More than a century later, extensive research has upheld this 
concept with the “seed” now identified as the cancer stem 
cell [121]. This hallmark of cancer occurs through a com-
plex progression, the invasion-metastasis cascade.

The major steps in this process include invasion of the 
extracellular matrix, angiolymphatic dissemination, tissue 
homing and extravasation at a metastatic site, and coloni-
zation. Noninvasive BC cells first breach the supporting 
basement membrane and infiltrate surrounding connective 

Fig. 3 High-grade ductal carcinoma in-situ with microinvasion and periductal dense desmoplastic and inflammatory cellular cuffing. Arrows and 
inset highlight areas of microinvasion
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During the process of EMT, invasive BC cells change 
morphology to spindled mesenchymal phenotype. These 
de-differentiated cells gain more migration and invasion 
capability, typically at the leading edge of the tumor, while 
at the center of the tumor mass, the cells re-differentiate, 
become smaller, and often go into senescence mode. This 
might help them to escape from host immunity or thera-
peutic pressures. Thus, BC cells are not fixed entities but 
a dynamic population of cells that can undergo genetic 
and epigenetic changes in response to TME signals such 
as hypoxia, nutrient deprivation, and immune surveillance. 
Cancer stem cells are a subpopulation of cancer cells pos-
sessing stem cell-like properties, including self-renewal and 
differentiation capacity, and may be responsible for tumor 
initiation, maintenance, and recurrence.

There still is much to know and learn about the tumor 
progression biology and plasticity that molds the tumor at 
different time points. TME plays a significant role in tumor 
progression in BC. I leave you with an example to support 
the above statement and ponder. A well-differentiated inva-
sive tubular carcinoma of the breast has the best long-term 
prognosis [124] while a well-differentiated pancreatic ade-
nocarcinoma with tumor cells forming well-formed tubules/
ducts and “similar” dense desmoplastic stroma has dismal 
outcomes.

Once in the bloodstream, most circulating tumor cells die 
but surviving cells home to and colonize specific sites, such 
as bone or internal viscera (most commonly lung, liver, or 
brain), showing organ tropism. The invasion process at the 
primary site in the breast is reversed in the end organ. The 
underlying molecular mechanism is thought to be through 
the expression of adhesion or chemokine receptors, whose 
ligands are expressed by endothelial cells at the metastatic 
site [122].

Tumor phenotypic plasticity and disrupted differentiation 
[107]: During primary site invasion and metastases and at 
the metastatic sites, BCs change their molecular programs 
and transform dynamically, adapting to fluctuating environ-
mental conditions and therapeutic pressures. Tumor plastic-
ity plays a critical role in tumor progression, metastases, and 
therapeutic resistance and is driven by a complex interplay 
between genetic, epigenetic, and environmental factors 
within the BC cell and TME.

Plasticity is thought to be achieved through genetic het-
erogeneity, clonal evolution, EMT, and cancer stem cells 
[123]. A tumor may consist of multiple distinct clones, each 
with genetic alterations that can confer selective advantages 
in response to environmental pressures. During clonal evo-
lution, genetic alterations are selectively acquired through 
stepwise acquisition, leading to aggressive subclones. 

Fig. 4 Single cell infiltration and nests of tumor cells at the leading edge of the tumor. Arrows highlight LVI, and inset highlights the infiltrating 
edge. Abbreviations: LVI, lymphovascular invasion
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genomic similarities to the primary tumors, presumably due 
to shorter divergence time, than asynchronous metastases 
that arise after years of dormancy as in recurrent metastatic 
disease [126–128, 130, 136]. This observation suggests that 
synchronous metastases may have similar treatment sensi-
tivities to the primary tumor. This hypothesis is consistent 
with clinical observations. When stage II-III BC patients 
with synchronous LN metastases receive preoperative che-
motherapy, the response rates in the breast and LNs are sim-
ilar. High rates of complete pathologic response (CPR) of 
the primary BC are accompanied by similarly high rates of 
CPR from biopsy proven positive LNs [137, 138].

Oligometastatic cancer

The extent of metastatic disease at the time of diagnosis can 
vary from a single or few metastatic lesions to extensive 
metastatic disease with many lesions in multiple organs. 
Oligometastasis refers to the subset of metastatic cancers 
(either recurrent or de novo stage IV) as low volume meta-
static disease involving up to 5 lesions in different organs 
[139]. Approximately 40-60% of newly diagnosed meta-
static BCs are oligometastatic [140]. Multiple studies in 
many different cancer types show patients with oligometa-
static disease have longer survival than patients who present 
with extensive metastatic disease [140]. This is likely due to 
a combination of more indolent biology (i.e., slower growth 
rate or maybe more limited metastatic ability), lead time 
bias (i.e., being diagnosed at an earlier time point during the 
course of the disease), and different treatment approaches 
towards oligometastatic cancers. It is often possible to radi-
ate or surgically resect all metastatic lesions in oligometa-
static disease. One could hypothesize that surgical resection 
and radio-ablation of all detectable cancer will reduce the 
rate of metastases-to-metastases spread. Eliminating bil-
lions of cells also reduces cancer cell heterogeneity that 
could delay or even prevent development of drug resistance. 
Because of these considerations, some oligometastatic 
cancers are treated with multi-modality therapy involving 
surgery, radiation, and systemic chemotherapy, endocrine 
therapy, and immunotherapy, whereas non-oligometastatic 
cancers usually receive systemic therapies only. Several 
small nonrandomized clinical studies and retrospective 
database analyses document 20-year disease free survival in 
up to 26% of patients who received systemic therapy com-
bined with local treatment that eliminated all macroscopic 
metastatic lesions [141–144]. Unfortunately, results from 
non-randomized studies and retrospective database analyses 
are susceptible to selection bias. Patients selected for more 
aggressive multimodality therapy are likely to be younger, 
healthier, and have overall better prognosis to start with and 
therefore, these studies cannot prove that the multimodality 

Can we cure Stage IV BC?

Alejandro Ríos-Hoyo, Lajos Pusztai

Clinical presentations of metastatic BC and its molecular 
underpinnings

Metastatic BC can present either as recurrence of a stage 
I-III disease, or as de novo stage IV BC with distant metas-
tases at the time of diagnosis. Recurrent metastatic disease 
that becomes apparent years after the initial diagnosis arises 
from clinically undetectable micro-metastases that were 
already present at the time of diagnosis and have survived 
the systemic therapies (such as chemotherapy, immuno-
therapy, and targeted therapy) that a patient received as part 
of her initial treatment. A fundamental clinical difference 
between recurrent metastatic cancers and de novo stage IV 
disease is exposure to prior therapies. Recurrent metastatic 
cancers are composed of cells that survived or descended 
from survivors of prior treatments, whereas de novo stage 
IV cancers are treatment naïve. Systemic therapies admin-
istered before or after surgery for stage I-III cancers have 
become increasingly more effective at eradicating micro-
metastatic disease. Consequently, recurrence rates for stage 
I-III BCs are steadily decreasing and the proportion of de 
novo stage IV cancers among metastatic cancers is increas-
ing. Historically, about 20% of newly diagnosed metastatic 
BCs were de novo stage IV disease, and 80% were recur-
rences. The contemporary ratio is closer to 40–60% [125].

Molecular analysis of metastatic lesions reveals clini-
cally important observations. Data from phylogenetic 
analysis of DNA sequences of paired primary tumors and 
metastases reveals 3 distinct paths to metastases formation 
[126–128]. Metastatic dissemination may occur early from 
a common ancestor of both the primary tumor and meta-
static lesions which may explain why some small primary 
tumors already have micro-metastases at diagnosis. Metas-
tases may also arise from a small subpopulation of cells 
within the primary breast tumor, which might explain why 
tumors left untreated for months to years will eventually 
metastasize. Thirdly, metastatic lesions can also give rise to 
new metastases, which contributes to the relentless spread 
of metastatic disease to new organ sites. All 3 types of dis-
semination can be observed in the same patient. Molecular 
analysis of BC tissues obtained at different time points dur-
ing the course of the disease show that genomic features 
of cancer change over time. Metastatic lesions acquire new 
genomic alterations spontaneously or due to selective pres-
sure from therapies (Table 2) [126–135]. Comparison of 
primary tumors and metastatic lesions in the same patient 
reveal that synchronous metastases, as in stage IV disease or 
regional LN metastases at the time of diagnosis, have more 
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Study Study 
characteristics

Findings from PTs and M

Siegel et al. 
[129]

Matched PT and 
M from 16 pts

IHC: HR+/HER2-: 9, HER2+: 4, TNBC: 3,
CN amplifications in PT were maintained in the M
TP53 mutation present in 13/16 pts in PT an M
In M there was an upregulation of genes associated with hypoxia, cellular metabolism, fatty acid beta-
oxidation, and a downregulation of genes related to nucleic acid-processing genes.

Yates et al. 
[130]

PT, M and germ-
line DNA samples 
from 17 pts

There was a telomere length variation between tumors and germline samples, however no consistent 
pattern between PT and M
Most driver mutations occurred in the PT
Local relapse carried 63% more mutations that PT
Mutations in SWI-SNF complex and inactivated JAK-STAT signaling enriched at relapse
ER and PR expression loss, as well as ESR1 mutations in M

García-Recio et 
al. [128]

55 pts with M BC IHC: HR+/HER2-: 38.6%, HER2+: 20.4%, TNBC: 40.9%
Intrinsic subtype: luminal A 9.3%, luminal B 25.6%, HER2-E 18.6%, Basal 39.5%, Normal 6.9%
Conservation of methylation profiles within most PT-M pairs
Luminals and HER2-E PT and M showed a higher TMB and MHC class I neoantigens, Luminals A and 
B, and HER2E showed a low expression of fibroblast and endothelial signatures
In M, basal-like had lower expression of adaptive immune features, as well as a decreased expression of 
an HLA metagene signature
In the TNBC subtyping there was a decrease of the immunomodulatory subtype from PT to M

Brown et al. 
[126]

Matched PT and 
M from 10 pts

PT at diagnosis may not represent correctly the advanced M BC
Contralateral breast tumors were considered to be derived from PT
Positive correlation between overall survival and the average normalized phylogenetic branch lengths

Fimereli et al. 
[127]

Matched PT and 
M lobular breast 
cancer lesions 
from 38 pts

IHC: ER+: 100%, PGR+: 74%, HER2+: 5%
Alterations shared in PT and M: deletions in CHD1, TP53, RB1 and MAP2K4, gains in MYC, CCND1, 
ZNF217 and MDM2
In most pts the M samples clustered separately from the primary samples
In M deletions in FGFR2, PTEN, NCOR1, gains in AKT2, ZNF217, CCND1 and EGFR
In 57% of cases M had a higher number of aberrations than the PT
In 64% of the pts there was a separate clustering of the M and the PT, indicating an early divergent point

Ng et al. [131] Matched PT and 
M from 9 pts

IHC: HR+/HER2-: 2, HER2+: 5, TNBC: 2,
62% of amplifications and homozygous deletions were found in PT an M: MYC, ERBB2, EGFR, AKT1, 
FGFR1 and MAP2K3
Heterogeneity between PT and M, affected passenger genetic alterations
Likely pathogenic mutations in FLT4, PSIP1, SMAD4 and TCF712 restricted to M

Ullah et al. 
[132]

Matched PT, local 
recurrences, LN, 
and M from 20 pts

IHC from PT: TNBC: 5, HR+/HER2-: 7 HER2+: 4, not available: 4
Intrinsic subtype from PT: Luminal A: 2, Luminal B: 4, Luminal A or B: 1, HER2-E: 2, basal-like: 6, 
not available: 5
Metastatic spreading was associated with metastatic subclones originating from the PT and/or other 
distant M
Aging signature decreased during cancer progression; HRD and APOBEC-associated signature showed 
an increase in M
Ipsilateral synchronous axillary LN M were genetically diverse compared to distant organ M across all 
patients leading to the idea that distant metastases are seeded without involvement of the synchronous 
axillary LN M

Brastianos, et 
al. [133]
[Multitumor]

Paired brain M, 
PT and normal 
samples from 86 
pts (21 from BC)

IHC: HR+/HER2- 6, HER2 + 12, TNBC 3
Out of the whole population 53% patients harbored a potential clinically actionable alteration in the 
brain M, not detected in the PT

Table 2 Studies involving genomic comparison of primary tumor and metastatic lesions from BC patients
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therapies leading to cure for the majority of these patients. 
Oligometastatic de novo stage IV BCs are a unique subset 
of metastatic cancers that share several important features 
with stage II-III cancers. These include lack of exposure to 
prior systemic therapies, technical feasibility of resecting 
or ablating all detectable cancer, and genomic similarities 
between the primary tumor and synchronous metastases in 
regional LNs or at distant organ sites. This raises the ques-
tion if the difference in outcome, high rates of cure in one, 
no-cure in the other, are driven by differences in the treat-
ment approach. Despite the unique clinical and molecular 
features of de novo stage IV oligometastatic BCs, current 
United States oncology practice guidelines do not make 
specific treatment recommendations for this disease sub-
set [147]. Several clinical trials evaluated whether surgical 
excision of the primary BC in stage IV patients improves 
survival or not; these trials included both oligometastatic 
and non-oligometastatic cancers and radio-ablation of dis-
tant metastatic lesions was not required. Systemic therapies 
also varied and were given with palliative intent (i.e., single 
agent therapies rather than multi-drug treatment regimens 
that are administered with curative intent in stage I-III BCs). 
The majority of these trials demonstrated no benefit from 
resection of the primary BC [148–150], which dampened 
enthusiasm for aggressive multimodality therapy of de novo 

therapy made patients live longer. Randomized clinical tri-
als yield conflicting results regarding the importance of 
ablative therapy to metastatic sites in addition to standard of 
care systemic therapies. The SABR-COMET trial accrued 
both recurrent and de novo stage IV metastatic disease of 
various cancer types (including 18 BC patients) and showed 
improved 5-year overall survival in the arm that received 
radio-ablation to all known metastatic sites plus standard of 
care systemic therapy compared to systemic therapy alone 
[145]. In contrast, another randomized clinical trial, NRG-
BR002, that included recurrent or de novo stage IV oligo-
metastatic BC patients showed no improvement in survival 
in the radio-ablation arm [146]. An important limitation of 
this trial is that 80% of patients had recurrent metastatic 
disease. It is uncertain to what extent these results can be 
extrapolated to de novo stage IV disease.

De novo, stage IV oligometastatic BCs, a unique subset of 
metastatic cancers

With current treatment strategies, both recurrent and de 
novo stage IV BCs remain incurable and almost all patients 
succumb to their disease. This is in sharp contrast with our 
ability to eradicate micro-metastatic disease that is present 
in many stage II-III BCs with multi-drug systemic adjuvant 

Study Study 
characteristics

Findings from PTs and M

Spanish study 
by Cejalvo, et 
al. [134]

Matched PT and 
M lesions from 
123 pts

IHC from PT: HR+: 73.17%, HER2+: 15.45%, TNBC: 9.76%
Intrinsic subtype from PT: Luminal A: 39%, Luminal B: 26%, HER2-E: 9.8%, Basal-like: 9.8%
Expression of luminal-related biological processes related to better outcome
IHC from M: HR+: 69.92%, HER2+: 19.51%, TNBC: 9.76%,
Intrinsic subtype from M: Luminal A: 26%, Luminal B: 35.8%, HER2-E: 12.2%, Basal like: 12.2%
Switch from Luminal A to B: 40.7%, and Luminal A to HER2-E: 14.9%
Liver M highest intrinsic subtype conversion rate, and lung M had the lowest
In M there was an upregulation of FGFR4, CDC6, CCNB1, TYMS, and downregulation of BCL2, 
PGR, GATA3 and CXXC5
High expression of MYC, CCNE1, CCNB1, etc., associated with worse outcome
Higher expression of proliferative and lower expression of luminal-related genes compared to PT

AURORA EU, 
by Aftimos et 
al. [135]

Matched PT and 
M from 379 pts.

IHC: HR+/HER2-: 247/389, HER2+: 60/389, TNBC: 72/389,
Intrinsic subtype: luminal A: 22%, luminal B: 38%, HER2-E: 11%, Basal: 25%, Normal: 4%
Most prevalent mutations in PT and M were in TP53, PIK3CA, ESR1, CDH1, and GATA3
88% of point mutations were shared between PT and M
Most common CNA were in MYC, CCND1, FGFR1, KAT6A, MDM4, ERBB2, TP53 and RB1
High TMB in PT was associated to shorter time to relapse, and a shorter overall survival
M had a higher TMB than PT [and higher in not de novo] cases
Point mutations in ESR1, PTEN, CDH1, PI3CA, and RB1 were enriched in M
CNA in MDM4, MYC, MSD3, FGF31, AXIN1, TSC2, FLT4, NTRK1, N4BP2, ARHGEFL10L, CASP9, 
RB1, ARID1A, PBRM1, were more frequent in M
M showed a higher prevalence of HRD signature
36% cases of intrinsic subtype switching [most of them Luminal A]
Immune signal is lower in M [except LN]
At least one mutation was detected in cfDNA in 60% of cases

BC, breast cancer; cfDNA, circulating free DNA; CN, copy number; CNA, copy number alterations; ER, estrogen receptor; HRD, homolo-
gous recombination deficiency; IHC, immunohistochemistry; LN, lymph node; M, metastasis; PR, progesterone receptor; PT, primary T; pts, 
patients; TNBC, triple-negative breast cancer
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american women with equal diagnostic and therapeutic manage-
ment. Eur J Surg Oncol 49:583–588. https://doi.org/10.1016/j.
ejso.2022.11.101

3. Dieterich LC, Tacconi C, Ducoli L, Detmar M (2022) Lym-
phatic vessels in cancer. Physiol Rev 102:1837–1879. https://doi.
org/10.1152/physrev.00039.2021

4. Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen 
MG (2014) Lymphangiogenesis and lymphatic vessel remodelling 
in cancer. Nat Rev Cancer 14:159–172. https://doi.org/10.1038/
nrc3677

5. Dieterich LC, Detmar M (2016) Tumor lymphangiogenesis and 
new drug development. Adv Drug Deliv Rev 99:148–160. https://
doi.org/10.1016/j.addr.2015.12.011

6. Chen JM, Luo B, Ma R, Luo XX, Chen YS, Li Y (2021) Lym-
phatic endothelial markers and tumor lymphangiogenesis assess-
ment in human breast cancer. Diagnostics (Basel) 12:4. https://
doi.org/10.3390/diagnostics12010004

7. Agarwal B, Saxena R, Morimiya A, Mehrotra S, Badve S 
(2005) Lymphangiogenesis does not occur in breast cancer. 
Am J Surg Pathol 29:1449–1455. https://doi.org/10.1097/01.
pas.0000174269.99459.9d

8. van der Schaft DW, Pauwels P, Hulsmans S, Zimmermann M, van 
de Poll-Franse LV, Griffioen AW (2007) Absence of lymphangio-
genesis in ductal breast cancer at the primary tumor site. Cancer 
Lett 254:128–136. https://doi.org/10.1016/j.canlet.2007.03.001

9. Williams CS, Leek RD, Robson AM, Banerji S, Prevo R, Har-
ris AL, Jackson DG (2003) Absence of lymphangiogenesis and 
intratumoural lymph vessels in human metastatic breast cancer. J 
Pathol 200:195–206. https://doi.org/10.1002/path.1343

10. Van der Auwera I, Colpaert C, Van Marck E, Vermeulen P, 
Dirix L (2006) Lymphangiogenesis in breast cancer. Am J Surg 
Pathol 30:1055–1056 author reply 1056–1057. https://doi.
org/10.1097/00000478-200608000-00021

11. Van der Auwera I, Van den Eynden GG, Colpaert CG, Van Laere 
SJ, van Dam P, Van Marck EA, Dirix LY et al (2005) Tumor 
lymphangiogenesis in inflammatory breast carcinoma: a histo-
morphometric study. Clin Cancer Res 11:7637–7642. https://doi.
org/10.1158/1078-0432.CCR-05-1142

12. Van der Auwera I, Van Laere SJ, Van den Eynden GG, Benoy I, 
van Dam P, Colpaert CG, Fox SB et al (2004) Increased angio-
genesis and lymphangiogenesis in inflammatory versus nonin-
flammatory breast cancer by real-time reverse transcriptase-PCR 
gene expression quantification. Clin Cancer Res 10:7965–7971. 
https://doi.org/10.1158/1078-0432.CCR-04-0063

13. Lyons TR, Borges VF, Betts CB, Guo Q, Kapoor P, Martinson 
HA, Jindal S et al (2014) Cyclooxygenase-2-dependent lym-
phangiogenesis promotes nodal metastasis of postpartum breast 
cancer. J Clin Invest 124:3901–3912. https://doi.org/10.1172/
JCI73777

14. Niemiec J, Adamczyk A, Ambicka A, Mucha-Malecka A, 
Wysocki W, Mitus J, Rys J (2012) Lymphangiogenesis assessed 
using three methods is related to tumour grade, breast cancer sub-
type and expression of basal marker. Pol J Pathol 63:165–171. 
https://doi.org/10.5114/pjp.2012.31500

15. Niemiec JA, Adamczyk A, Ambicka A, Mucha-Malecka A, W 
MW, Rys J (2014) Triple-negative, basal marker-expressing, and 
high-grade breast carcinomas are characterized by high lymphatic 
vessel density and the expression of podoplanin in stromal fibro-
blasts. Appl Immunohistochem Mol Morphol 22:10–16. https://
doi.org/10.1097/PAI.0b013e318286030d

16. Ma Q, Dieterich LC, Ikenberg K, Bachmann SB, Mangana J, 
Proulx ST, Amann VC et al (2018) Unexpected contribution of 
lymphatic vessels to promotion of distant metastatic tumor spread. 
Sci Adv 4:eaat4758. https://doi.org/10.1126/sciadv.aat4758

17. Van den Eynden GG, Van der Auwera I, Van Laere SJ, Huygelen 
V, Colpaert CG, van Dam P, Dirix LY et al (2006) Induction of 

stage IV BCs. Unfortunately, no trial addressed whether 
complete eradication of all detectable disease (i.e., primary 
tumor and distant metastatic sites), coupled with the most 
aggressive molecular subtype-appropriate multidrug sys-
temic therapy, identical to that deployed against stage III 
BC, could improve survival in de novo stage IV oligometa-
static BC. How to optimally treat de novo stage IV cancers 
is an increasingly relevant clinical question due to the grow-
ing absolute number and proportion of these patients among 
metastatic cancers. New clinical trials are being planned 
for this unique patient population to test if the same treat-
ment strategy that reduced recurrence rates and improved 
survival in locally advanced stage III BC might also cure 
at least some oligometastatic de novo stage IV BCs. Until 
2003, supraclavicular LN involvement at presentation was 
considered stage IV metastatic disease by the clinical stag-
ing system and these patients were considered incurable and 
often received systemic therapies only with palliative intent. 
However, clinical data indicate that these groups of patients 
when treated with combined modality therapy had long-
term survival similar to stage III BCs [149, 150], eventually 
leading to reclassification to stage IIIC disease, and today 
they all receive multimodality therapy with curative intent. 
Might we someday consider de novo oligometastatic BC 
stage IIID disease treating aggressively with intent to cure?
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