
Vol.:(0123456789)1 3

Clinical & Experimental Metastasis (2022) 39:815–831 
https://doi.org/10.1007/s10585-022-10182-7

RESEARCH PAPER

Metastasis suppressor NME1 in exosomes or liposomes conveys 
motility and migration inhibition in breast cancer model systems

Imran Khan1 · Brunilde Gril1 · Ayuko Hoshino2,3,4 · Howard H. Yang5 · Maxwell P. Lee5 · Simone Difilippantonio6 · 
David C. Lyden2,3 · Patricia S. Steeg1

Received: 15 April 2022 / Accepted: 27 July 2022 / Published online: 8 August 2022 
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022

Abstract
Tumor-derived exosomes have documented roles in accelerating the initiation and outgrowth of metastases, as well as in 
therapy resistance. Little information supports the converse, that exosomes or similar vesicles can suppress metastasis. We 
investigated the NME1 (Nm23-H1) metastasis suppressor as a candidate for metastasis suppression by extracellular vesi-
cles. Exosomes derived from two cancer cell lines (MDA-MB-231T and MDA-MB-435), when transfected with the NME1 
(Nm23-H1) metastasis suppressor, secreted exosomes with NME1 as the predominant constituent. These exosomes entered 
recipient tumor cells, altered their endocytic patterns in agreement with NME1 function, and suppressed in vitro tumor cell 
motility and migration compared to exosomes from control transfectants. Proteomic analysis of exosomes revealed multiple 
differentially expressed proteins that could exert biological functions. Therefore, we also prepared and investigated liposomes, 
empty or containing partially purified rNME1. rNME1 containing liposomes recapitulated the effects of exosomes from 
NME1 transfectants in vitro. In an experimental lung metastasis assay the median lung metastases per histologic section was 
158 using control liposomes and 15 in the rNME1 liposome group, 90.5% lower than the control liposome group (P = 0.016). 
The data expand the exosome/liposome field to include metastasis suppressive functions and describe a new translational 
approach to prevent metastasis.
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Introduction

Tumor metastasis, the process by which tumor cells leave 
a primary tumor to successfully colonize a distant organ, 
is a major contributor to cancer patients’ deaths, either by 
direct organ compromise or side effects of its treatment [1]. 
Despite decades of mechanistic research, a diagnosis of 
metastatic cancer is usually a terminal illness. A known con-
tributor to the metastatic process is tumor-derived exosomes, 
membrane-enclosed vesicles of 30–150 nm diameter, con-
taining proteins, RNAs and other components [2–5]. In vivo, 
exosomes promote the development of a pre-metastatic 
niche, regulate tumor cell interactions with the microen-
vironment, promote angiogenesis, guide target organ colo-
nization, and determine metastatic site specificity [6–13]. 
Exosomes also promote other clinically relevant aspects of 
cancer aggressiveness such as chemoresistance and immune 
responses [14, 15].

In contrast, only sporadic reports have investigated a 
potential metastasis suppressive effect of exosomes or other 
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membranous vesicles. In vitro experiments demonstrated 
inhibition of tumor migration by exosomal miRNAs [16, 
17]. Mesenchymal stem cells overexpressing miR-128 pro-
duced miR-128 containing exosomes that inhibited urothelial 
carcinoma proliferation and invasion in vitro, and inhibited 
tumorigenesis and metastasis in vivo [18]. Synthetic folic 
acid modified exosomes containing hyaluronidase reduced 
murine 4T1 mammary carcinoma migration in vitro and 
lung metastasis in vivo [19]. If more thoroughly understood, 
the existence of metastasis suppressive extracellular vesicles 
could represent a potential new translational advance. Many 
issues remain in this nascent literature including the role of 
other protein and miRNA cargoes in the exosomes, mecha-
nisms of action on target tumor and/or microenvironmental 
cells, optimal delivery doses and schedules, etc. In addition 
to miRNAs, the metastasis suppressor proteins stand as nota-
ble candidates for participation in such processes.

We have asked if the NME1 metastasis suppressor con-
fers motility, migration and metastasis suppressive activity 
through extracellular vesicles. Metastasis suppressors are 
genes, RNAs and/or proteins that, when re-expressed at 
physiological levels in metastatic tumor cells, significantly 
reduce metastasis without affecting primary tumor size. As 
such, they provide a window into metastasis-specific sign-
aling. NME1 was identified by its reduced expression in 
K1735 murine metastatic melanoma sublines as compared 
to related nonmetastatic sublines [20], and reduced NME1 
expression has been associated with aggressive clinical dis-
ease (rev. in [21]). Re-expression of NMEs in model systems 
of breast, hepatocellular, non-small cell lung cancers, mela-
noma established its metastasis suppressor activity [22–30]. 
Opposing these solid tumor findings, NME expression in 
leukemias correlated with advanced disease [31]. NME is 
a family of genes with the human -H1 and -H2 best stud-
ied; in Drosophila, the NME homolog awd regulates dif-
ferentiation from imaginal discs and other organs late in 
development [32, 33]. A unifying functional role for NME/
AWD proteins in cellular endocytosis has been established, 
whereby the signaling of growth factor receptors is modified. 
In Drosophila development, aberrant endocytosis was noted 
in follicle cells, the trachea, and the nervous system in awd 
null mutants resulting in the deregulation of multiple sign-
aling pathways [34–36]. In both Drosophila development 
and human tumor cell motility and metastasis, an interaction 
of NME and dynamin has been causal [34, 37, 38]. NME-
mediated suppression of tumor cell migration and metas-
tasis has been linked to its interaction with, and promotion 
of Dynamin 2 (DNM2) oligomerization and function. This 
interaction facilitated the endocytosis of receptors and other 
proteins, altering their availability for motility signaling and/
or downstream signaling patterns, which in turn affect motil-
ity, migration, and metastasis. A dynamin-based mechanism 
of action has also been reported for the Drosophila homolog 

of NME, AWD, in regulating development and differentia-
tion [34]. NME has been found extracellularly [39], although 
its packaging and functional consequences in solid tumors 
are poorly understood (rev. in [40, 41]).

Herein, we defined several parameters of NME in exo-
somal or liposomal vesicles, asking: (1) Is NME protein 
secreted into exosomes and does its abundance mirror 
intracellular levels? (2) Are NME containing exosomes or 
liposomes taken up by tumor cells and what phenotypes do 
they confer? (3) For tumor cell secreted exosomes, what 
other protein cargoes accompany NME? (4) Is NME an 
active motility, migration and metastasis inhibitory compo-
nent in extracellular vesicles?

Materials and methods

Cell culture conditions and transfection

Human triple-negative breast cancer cell line MDA-MB-
231T (generously provided by Dr. Zach Howard, NCI, 
Bethesda, MD) and MDA-MB-435 were grown in DMEM 
(Invitrogen) supplemented with 10% FBS in a humidified 
5% CO2 incubator maintained at 37 °C. MDA-MB-231T 
cells have been authenticated by our laboratory to the ATCC 
MDA-MB-231 line by short tandem repeat profiling. MDA-
MB-435 cells have been attributed to either melanoma or 
breast carcinoma [42, 43]. MDA-MB-231T (C-Flag) and 
MDA-MB-435 cells overexpressing NME1 were gener-
ated using lentivirus system as described previously [38]. 
NME1 overexpression profiles of each stable cell line was 
confirmed by Western blot analysis. Additional methods for 
cell culture is provided in Supplementary file.

Boyden chamber motility assay

Motility assays were performed as described previously [38, 
44]. Briefly, following trypsinization and counting of cells, 
equal numbers of cells were plated into each upper well of 
Boyden chamber (0.1 million/ml; 56 µl) in DMEM. Upper 
and lower chambers were separated by a coated membrane 
(Polyvinyl membrane 8 µm, coated overnight with 5 μg/
ml of collagen type I and washed in PBS for 30’). Cells 
in the upper wells were allowed to migrate towards chem-
oattractants placed in the lower wells (1% FBS or condi-
tioned medium, either neat or fractionated- 30 μl, per well) 
for 4 h in a humidified chamber maintained at 37 °C and 
5% CO2. Non-migrated cells were wiped off and cells that 
had migrated to the undersurface of the membrane were 
fixed and stained with Diff-Quik solutions (Dade-Behring). 
All the stained and migrated cells were examined micro-
scopically. Representative areas of each well were counted 
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to determine the number of cells that had migrated. Mean 
(± SEM) number of cells migrated are plotted in the graph.

Exosome purification, characterization, 
and analyses

Exosomes were purified by sequential centrifugation as 
described previously [6, 11]. Cells were grown in exo-
stripped serum containing DMEM for 4 days. Conditioned 
medium was collected and centrifuged at 500 × g for 10 min 
to remove any cell contamination and 3000 × g for 20 min at 
4 °C to remove any cell debris. Conditioned media was spun 
at 12,000 g for 20 min at 10 °C to remove any possible apop-
totic bodies and large cell debris. Finally, exosomes were 
collected as a pellet by spinning at 100,000 g for 70 min at 
10 °C while its supernatant was used as cytokine fraction. 
Exosomes were washed in 20 ml PBS and pelleted again by 
ultracentrifugation (100,000 × g, 70 min, 10 °C) using Type 
70 Ti rotor (Beckman Coulter). Exosome size and particle 
number were analyzed using the LM10 Nanoparticle Track-
ing Analysis (NanoSight, Malvern Panalytical). For protein 
quantification, exosome pellets were resuspended in PBS 
and lysed with 10 × RIPA buffer (Cell Signaling Technol-
ogy). Protein quantification of the lysed exosomes was per-
formed using the Micro BCA Protein Assay Kit (#23235, 
ThermoFisher Scientific).

Liposome preparation

Liposomes were prepared using Liposome Kit (L4395, 
Sigma-Aldrich) containing powdered lipids (Total 90 
µmoles/package; Cholesterol, 9  μmol/package, L-α-
Phosphatidylcholine (egg yolk), 63 μmol/package, Stear-
ylamine, 18 μmol/package). Powdered lipid was sequen-
tially dissolved in 32 ml PBS, with or without 1000 μg 
of rNME1, and was incubated for 30 min with rotation at 
room temperature. The liposomes were put through three 
freeze–thaw cycles (− 196 °C for 4 min, 42 °C for 4 min) 
and then extruded 20 cycles through a 100  nm single 
clean track-etched polycarbonate membrane of NanoSizer 
MINI STERILE Extruder (TT-002S-010, T&T Scientific). 
Extruded liposomes were centrifuged (28,000 rpm, 30 min, 
4 °C) for separating bound (pellet) and unbound (superna-
tant) rNME1. Efficiency of rNME1 encapsulation by the 
liposomes was assessed by Western blot, showing NME1 
level at each step of liposome-rNME1 preparation.

Size distribution and zeta potential analysis

Control liposomes and liposomes containing rNME1 were 
assessed for particle size distributions and zeta poten-
tial using ZetaView (Particle Metrix). All samples were 
diluted in PBS to a final volume of 1 ml and measurement 

concentrations were found to be 200–300 particles/frame. 
For every measurement, three cycles were performed 
by scanning 11 cell positions each at the mobility of 
4.38 ± 0.09 µm/sec/V/cm (25 °C). After capture, the videos 
were analyzed by the ZetaView software.

Experimental metastasis assays

All the animal experiments were performed at NCI-Fred-
erick with an approved National Cancer Institute animal 
use agreement. Six-week-old Balb/c athymic nude female 
mice were injected with 7.5 × 105 MDA-MB-231T cells into 
their lateral tail vein. Exosomes/liposomes were injected 
three times on 1st, 4th and 7th week post cell inoculation 
(days 7, 28 and 49). For exosomes, 20 µg exosomes derived 
from either vector or NME1 overexpressing stable cells in 
PBS were used per injection along with PBS control. For 
liposomes, 0.2 mg lipid containing 5 µg rNME1 protein in 
PBS per injection were used along with control liposomes. 
Mice were sacrificed 58 days postinjection (for exosomes 
and 51 days postinjection for liposomes) and the lungs were 
fixed in Bouin's solution followed by hematoxylin and eosin 
(H&E) staining. Lung metastatic lesions were counted, and 
area was measured on H&E step sections using Aperio Ima-
geScope and were reported as a median for each group.

Statistical analyses

All experiments were repeated at least three times unless 
specified. Statistical significance was calculated by a one-
way ANOVA (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, 
P < 0.0001). For metastasis Two tailed t-test (nonparametric) 
was performed comparing median across any two groups, 
with P < 0.05 considered significant (*). ns, nonsignificant.

Results

Extracellular vesicle (EV) fractions from NME1 
overexpressing tumor cell lines preferentially inhibit tumor 
cell motility and migration in vitro

We hypothesized that exosomes from high NME1 express-
ing tumor cell lines would contain greater NME and be 
potent inhibitors of tumor cell motility and migration. Two 
metastatic tumor cell lines were used, MDA-MB-231T and 
MDA-MB-435, either the naïve cell lines or previously 
published sets of vector- and NME1 transfectants [38]. 
Conditioned medium (CM) from each transfectant was 
used as an attractant for naïve MDA-MB-231T or MDA-
MB-435 tumor cell lines in Boyden chamber motility 
assays. Naïve MDA-MB-231T breast cancer cells, when 
exposed to the CM of NME1 transfectants, migrated 
67% and 53% less than with their respective control 
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transfectant-derived CMs, respectively (CM of MDA-
MB-231T p = 0.0008; CM of MDA-MB-435 p < 0.0001) 
(Fig. 1A); similar trends were observed when naïve MDA-
MB-435 tumor cells were exposed to the two sets of CM 
from NME1 and vector transfectants, with migration to 

CM from NME1 transfectant 48.9% and 43.9% less than 
that of their respective control transfectant-derived CMs, 
respectively (both p < 0.0001) (Fig. 1D). When the CMs 
were separated into cytokine and extracellular vesicle 
(EV) fractions by ultracentrifugation [45], the motility 
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inhibitory activity of the NME1 transfectant-derived CM 
resided in the EV fraction (Fig. 1B, C, E, F).

We then asked whether treatment of naïve tumor cells 
with EV fractions of CM from vector or NME1 transfected 
cell lines would alter their 2D-migration and motility 
responses to other attractants. Naïve MDA-MB-231T cells 
treated directly with the EV fraction from NME1 transfected 
tumor cell lines migrated less in scratch assays compared 
to cells exposed to EV from the vector control. The per-
cent of scratch area closed by Vector EV vs NME1 EV was 
51.8% vs 24.5% at 12 h, and 78.2% vs 46.3% at 24 h for 
EVs derived from MDA-MB-231. Similarly, the percent of 
scratch area closed by vector vs NME1 EV was 46.9% vs 
15.9% at 12 h, and 66.7% vs 37.7% at 24 h for EVs derived 
from MDA-MB-435 cells (Fig. 1G-I). Similar inhibitory 
results were observed using naïve MDA-MB-435 cells when 
directly treated with EV fraction of NME1 transfectants 
compared to its control at both 12 and 24 h (Supplementary 
Fig. S1A-C). Additionally, each tumor cell line was prein-
cubated for 48 h in the EV fraction of CM, which was then 
washed off, and tumor cell motility was determined to the 
combination of growth factors in fetal bovine serum (FBS) 
using Boyden chamber assays (Supplementary Fig. S1D, 
E). In each case, naïve tumor cells pretreated with exosomes 
from NME1 transfected cell lines moved significantly less to 
FBS compared to those cultured with exosomes from vec-
tor transfectants (p < 0.0001 for all experiments). The data 
indicate a broad in vitro tumor motility inhibitory activity 
of EV fractions of CM from high NME1 expressing tumor 
cell lines.

Several types of EVs have been described [4, 5, 46]. 
Nanoparticle tracking analysis of the EV fraction from two 
sets of NME1 and control transfectants demonstrated char-
acteristics consistent with exosomes with a median size of 
121–128 nm from MDA-MB-231T tumor cells and 99 nm 
from MDA-MB-435 tumor cells (Fig. 2A-B). NME1 over-
expressing cell lines produced more exosomes/ml CM than 
vector controls, a 12.1% increase for MDA-MB-231T tumor 
cells and a 12.6% increase for MDA-MB-435 tumor cells. 
Transmission Electron Microscopy (TEM) confirmed a typi-
cal exosome structure and varying size of approximately 
50–150 nm (Supplementary Fig. S2A, B).

Exosomes from high NME1‑expressing tumor cell lines 
contain greater NME1

We determined NME1 levels in cellular and exosomal 
lysates from two sets of control and NME1 transfectants. 
NME1 levels were elevated in exosomes from the NME1 
transfectants (Fig. 2C-D). As a control for exosome isola-
tion, exosome lysates were enriched in TSG101, a compo-
nent of the endosomal sorting complex required for transport 
(ESCRT) [47], Alix, an ESCRT-associated protein involved 
in exosome budding [4], Rab 27A, involved in exosome 
release [4], and Flotillin 1, which modulates exosome bio-
genesis and cargo [48].

A similar analysis of cellular and exosome lysates of mul-
tiple breast cell lines is shown on Fig. 2E-F. The immortal 
breast cell line MCF-10A exhibited high cellular NME1 
levels but virtually no exosome expression of either NME1, 
RAB27A or ALIX. Six tumorigenic, low-nonmetastatic 
breast cancer lines exhibited relatively high cellular NME1 
levels, with five of the six having exosomes containing 
NME1; ALIX and RAB27A levels tended to covary with 
NME1 in exosomes. Cellular NME1 levels of three meta-
static breast cancer cell lines were lower than that of non-
metastatic lines, but NME1 was appreciably lower in their 
exosomes and covaried with ALIX. RAB27A was low in 
two metastatic cell lines and moderate in the remaining two 
metastatic cell lines. The lack of NME1 in exosomes from 
an immortal breast cell line suggests that exosome sorting 
mechanisms may vary between normal and tumor cells, if 
the findings replicate in additional cell lines. NME1 incor-
poration into exosomes was near universal in tumor cell lines 
and showed a general concordance with cellular levels.

The NME1 content of exosomes from tumor cell lines 
appeared to rely on both cellular NME1 expression level 
and the presence of exosome generating machinery (Fig. 2E-
F). We then asked if the combination of high tumor NME1 
and high exosome biogenesis activity had prognostic sig-
nificance in breast cancer (Fig. 2G and Supplementary 
Fig. S3A-B). Using the TCGA breast cancer database pro-
gression free survival (PFS) was plotted by primary tumor 

Fig. 1   NME overexpressing cells conditioned media causes motility 
suppression (A–C), Motility of the MDA-MB-231T metastatic breast 
cancer cell line was assessed to conditioned medium (CM) collected 
from vector or NME1 overexpressing stable MDA-MB-231T or 
MDA-MB-435 cells grown in 10% serum (exo-stripped) containing 
culture medium for 4 days. CM collected were used as chemoattract-
ant (5% v/v) in Boyden chamber assays to quantify the motility of 
naïve MDA-MB-231T (A). CM from vector or NME1 overexpress-
ing stable MDA-MB-231T or MDA-MB-435 cell line was fraction-
ated into cytokine (B) and extracellular vesicle (EV) (C) fractions and 
were used as chemoattractant (neat) for assessing motility of MDA-
MB-231T cells. (D–F), Similarly, MDA-MB-435 metastatic cancer 
cell motility was assessed to CM collected from vector or NME1 
overexpressing stable MDA-MB-231T or MDA-MB-435 cells. CM 
was collected and used as chemoattractant (5% v/v) in a Boyden 
chamber assays to quantify the motility of naïve MDA-MB-435 cells 
(C). CM from vector or NME1 overexpressing stable cells was frac-
tionated into cytokine (E) and extracellular vesicles (EV) (F) frac-
tions and were used as chemoattractant (neat) for assessing the motil-
ity of MDA-MB-435 cells. (G–I), Extracellular vesicle (EV) fractions 
from vector or NME1 transfected MDA-MB-231T or MDA-MB-435 
tumor cells (20% v/v) were placed in culture with naïve MDA-MB-
231T cells, and their 2D-migration was assessed in scratch assay at 
12 (G–H) and 24 h (G–I). All experiments shown are representative 
of four replicates and statistical significance was calculated by a one-
way ANOVA. ****P < 0.001

◂
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median expression of NME1 and/or Rab27A expression, the 
latter a marker of exocytotic pathways [49] (Fig. 2G, Sup-
plementary Fig. S3A-B). High expression of both NME1 
and Rab27A resulted in the best PFS and, conversely, low 
expression of both genes resulted in the poorest PFS, with 
mixed gene expression combinations in between. Rab27A 
itself was prognostic while NME1 expression showed a 
trend.

Exosomes enter recipient tumor cell lines and alter NME1 
expression

If NME1-containing exosomes were to affect metastasis-
associated functions, they must fuse with tumor cells and 
deploy their contents at sufficient levels. Exosomes from 
the CM of two sets of control- and NME1 transfectants 
were labelled using the ExoGlow-membrane EV labelling 
kit. Labelled exosomes were added to target cell cultures 
(15% v/v) and their cellular uptake was visualized using flu-
orescent microscopy 24 h post-treatment. Red fluorescently 
labelled exosomes derived from vector or NME1 overex-
pressing MDA-MB-435 or MDA-MB-231 stable cells were 
observed in naïve MDA-MB-23T and MDA-MB-435 cancer 
cells (Fig. 3A-B and Supplementary Fig. S4 A-B). There 
was no observable difference in red fluorescence between 
cells treated with exosomes from vector or NME1 transfect-
ants, suggesting no difference in uptake efficiency. Naïve 
cancer cells treated with exosomes derived from NME1 
overexpressing MDA-MB-435 or MDA-MB-231T cells 
showed an increase in NME1 expression on western blots 
compared to vector exosome treated cells (Fig. 3C-D). These 
data argue that exosomal NME is taken up by tumor cells 
and results in discernable increases in cellular levels.

Analysis of the exosome proteome

Exosomes are known to contain thousands of proteins 
and nucleic acids [46]. We asked if NME1 was the only 

differentially expressed protein in exosomes from control- 
and NME1 transfected tumor cell lines. A mass spectroscopy 
analysis of vector and NME1 transfected MDA-MB-435 
tumor cell exosomes identified over 600 proteins (Supple-
mentary Table S1 and S2) of which 392 were differentially 
expressed by ≥ 1.5-fold (Fig. 4A-B). The most abundant 
exosomal protein identified was NME1 (red arrow). Its 
degree of overexpression could not be quantified as it was 
not detected in the vector transfectant exosomes. Exosome-
associated proteins were identified and provide support for 
the specificity of the input (Supplementary Fig. S5A-B). 
Included among the differentially expressed proteins were 
additional metastasis-associated proteins including RAC1, 
RHOA and TSP1. In agreement, an IPA pathway analysis 
of the differentially expressed exosomal proteins identified 
metastasis-associated pathways including integrin signaling, 
epithelial adherens junction, actin cytoskeleton, RhoGDI, 
paxillin, RHO and RAC signaling that could, in themselves, 
influence metastasis (Fig. 4C). Endocytic pathways, known 
to be a target of NME1 action, were also identified by IPA 
pathway analysis including clatherin-mediated endocytosis 
signaling, virus entry via endocytic pathways, and caveolar-
mediated endocytosis signaling (Fig. 4C).

NME‑containing exosomes show only a trend in reducing 
metastatic outgrowth

We hypothesized that exosomes from NME1 overexpressing 
cell lines would be metastasis suppressive. Exosomes from 
vector and NME1 overexpressing MDA-MB-435 tumor cells 
were collected and stored at − 80 °C. Figure 5A demon-
strates that the exosomes from the NME1 transfected line 
contained greater NME1 protein than those from the cor-
responding vector transfectant. An experimental metasta-
sis assay was performed in which MDA-MB-231T tumor 
cells were injected into the tail veins of nude mice on day 
0. Reasoning that exosomes may not produce a permanent 
change in phenotype, three exosome injections were spread 
out over the 9-week experiment (20 µg protein in PBS/injec-
tion, or PBS) (Fig. 5B). Representative formalin-fixed, paraf-
fin embedded (FFPE) sections of lungs at the experimental 
endpoint showed multiple metastases that declined in the 
NME1 exosome treated arm (Fig. 5C). PBS treated mice 
developed a median of 23.5 metastases per lung section. 
Injection of exosomes from the vector transfectant resulted 
in 80 metastases per section, an augmentation of metas-
tasis consistent with prior literature [5, 46]. Injection of 
exosomes from the NME1 overexpressing cell line resulted 
in a median of 31 metastases per section, a 61.25% reduc-
tion from the vector control, although only a statistical trend 
(p = 0.10) (Fig. 5D). Analysis of metastasis size revealed 
similar trends. The median size of metastases from mice 
treated with PBS, exosomes from vector transfectant and 

Fig. 2   Extracellular vesicles from metastatic cell lines have char-
acteristics of exosomes (A–B), Extracellular vesicle (EV) fractions 
isolated from the conditioned medium of vector- and NME1 over-
expressing MDA-MB-231T (A) and MDA-MB-435 (B) cells were 
assessed for particle size distribution analysis and number/ml using 
NanoSight. (C–D), Western blotting analysis of total cell lysates 
and CM-derived EV fractions from MDA-MB-231T (C) and MDA-
MB-435 (D) cells. (E–F), Western blot analysis of exosomes and 
total cell lysates of various breast cancer cell lines with varying meta-
static status: nontumorigenic, green; tumorigenic, poorly or nonmeta-
static, pink; metastatic, blue. (G), Progression free survival (PFS) of 
breast cancer patients (TCGA dataset) was plotted using KM-plot for 
two genes NME1 and RAB27A. High expression of both NME1 and 
Rab27A resulted in the best PFS and, conversely, low expression of 
both genes resulted in the poorest PFS, with mixed gene expression 
combinations in between

◂
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NME1 transfectant were 4,185,752 µm2, 13,865,596.5 µm2 
and 7,527,619 µm2, respectively (p = 0.24) (Fig. 5E).

Liposomes containing rNME1 recapitulate tumor motility 
and migration suppressor functions

The lack of significant metastasis inhibition by exosomes 
from NME1 overexpressing tumor cells, despite robust 
motility and migration inhibition, may have several causes: 
(1) Other components of the exosomes may exert pro-met-
astatic influences, (2) sufficient NME may not have been 
delivered in vivo, or (3) extracellular vesicular NME may 
be motility but not metastasis regulatory. To answer at least 
some of these questions we turned to a larger vesicle capa-
ble of delivering increased cargo loads of a single protein. 
Liposomes are one of several nanomaterial platforms to 
deliver drugs or proteins, and offer the potential advantages 
of higher capacity, biocompatibility, and easy loading [50].

A liposomal vector was developed to deliver NME1 
in vitro and in vivo. A cholesterol, L-α-phosphatidylcholine 
and stearylamine based liposome was used as a protein car-
rier and loaded with partially purified recombinant bacte-
rial NME1 (rNME1) (Supplementary Figs. S6A and S6B). 
Loading efficiency was estimated at > 90% by western blot as 
compared to total protein input (Supplementary Fig. S6C). 
The control- and NME1 loaded liposomes were cationic in 
nature and had comparable diameters (220.9 and 198.6 nm) 
as measured by Zeta View NTA (Fig. 6A, B) and Transmis-
sion Electron Microscopy (TEM) (Fig. 6C, D).

To assess the delivery of rNME1 to target cells using 
liposomes, naïve MDA-MB-231T or MDA-MB-435 cells 
were treated with either control liposomes or liposomes con-
taining a labelled rNME1 and its delivery was confirmed by 
western blot (Fig. 6E, F).In Boyden chamber motility assays, 
the control liposome preparation was 25% and 22% motility 

inhibitory to the MDA-MB-231T and MDA-MB-435 tumor 
cell lines, respectively. This compares to 76% and 72% 
motility inhibition of the same lines by rNME1 containing 
liposomes (both p < 0.0001) (Fig. 6 G–H). The migration of 
naïve MDA-MB-231T and MDA-MB-435 tumor cells after 
incubation with rNME1 containing liposomes was reduced 
by 22% and 29%, respectively (both p < 0.0001) (Fig. 6 I-J 
and Supplementary Fig. S6D-E). The data indicate that a 
rNME1 liposomal preparation recapitulated motility and 
migration suppressive phenotypes of tumor cell derived 
exosome containing NME1.

Liposomes containing rNME1 are metastasis suppressive

In an initial toxicity dose response analysis using liposomes 
loaded with rNME1 protein, a dose of 0.2 mg lipid contain-
ing 5 µg rNME1/mouse was found to be safe (Supplementary 
Fig. S7A and B). A similar experimental metastasis design 
was used for liposome injections as was used for exosomes 
(Fig. 7A). MDA-MB-231T breast cancer cells were injected 
into the tail veins of nude mice, and liposome injections 
spread out over the 7-week experiment (1st, 4th and 7th 
week). Representative photographs of lung sections from 
the two groups are shown on Fig. 7B. Median lung metasta-
ses per histologic section was 158 using control liposomes 
and 15 in the rNME1 liposome group, 90.5% lower than 
the control liposome group (P = 0.016) (Fig. 7C). A similar 
reduction in metastasis size was observed, from a median of 
4.49 x 107 µm2 using control liposomes to 3.63 x 106 µm2 in 
the rNME1 group (P = 0.020) (Fig. 7D).

Lung sections from all three groups were stained by 
immunohistochemistry and presented with H&E and rabbit 
IgG isotype control (Fig. 7E). NME1 protein was cytoplas-
mic in nests of tumor cells and was darker in intensity in 
those animals treated with rNME1-containing liposomes, 
confirming uptake in vivo. Increased NME1 expression was 
also observed in uninvolved lung, suggesting that liposomes 
also fused with normal cells (Fig. 7E). No specific staining 
was observed with rabbit IgG isotype control.

Liposomal and exosomal NME modulates the endocytic 
process

Since the endocytic process has been found to be integral to 
NME phenotypes in both tumor metastasis and Drosophila 
development, we asked if exosomal or liposomal NME1 
delivery followed the same pathway. We previously reported 

Fig. 3   Exosomes enter recipient tumor cell lines and alter total 
NME1 expression (A–B), Naïve MDA-MB-231T cells were incu-
bated with (15% v/v) membrane labelled exosomes from vector- or 
NME1 overexpressing MDA-MB-435 (A) and MDA-MB-231T cells 
(B) and their cellular uptake was visualized using fluorescent micros-
copy 24  h post-treatment. Representative images are shown at  ×40 
magnification. Scale bar, 50  μm. (C), Naïve MDA-MB-231T cells 
were treated with exosomes derived from vector- or NME1 overex-
pressing MDA-MB-435 or MDA-MB-231T cells and total cellular 
NME1 expression was assessed by western blots. (D), Naïve MDA-
MB-435 cells were treated with exosomes derived from vector- or 
NME1 overexpressing MDA-MB-435 or MDA-MB-231T cells and 
NME1 expression was assessed by western blots

◂
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Fig. 4   NME1 is a major component of the exosome proteome (A), 
Mass spectroscopy analysis of vector- and NME1 transfected MDA-
MB-435 tumor cell derived exosomes was performed and a heat map 
depicting the relative abundance of 646 proteins identified across the 
two samples is shown. (B), Heat map depicting the relative abun-
dance of 392 proteins differentially expressed (≥ 1.5-fold change) 

between exosomes of vector- and NME1 overexpressing cells are 
plotted. The color key indicates the relative abundance of each pro-
tein (0 to 1.0) across the two samples. The most abundant exosomal 
protein identified was NME1 (red arrow). (C), IPA pathway analysis 
of the differentially expressed exosomal proteins highlights involve-
ment of several pathways
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that NME1 overexpressing breast cancer cell lines showed 
increased endocytosis of transferrin receptor and EGF recep-
tor (EGFR) due to a NME1-Dynamin2 interaction regulating 
endocytic vesicle scission leading to motility and metastasis 
suppression [38]. In vitro, naïve MDA-MB-231T and MDA-
MB-435 tumor cell lines demonstrated increased endocyto-
sis of EGFR when incubated with exosomes derived from 
NME1 overexpressing cells (Fig. 8A–B and Supplementary 
Fig. S8A-B) or liposomes containing rNME1 (Fig. 8C–D 
and Supplementary Fig. S8C-D), confirming that exosomal 
NME1 initiates known intracellular mechanisms of action.

To determine if EGFR trafficking and activity was altered 
in vivo, lung sections from the liposome experiment were 
stained by immunohistochemistry for total and phospho-
EGFR (Fig.  8E and Supplementary Fig. S9A-B). Total 
EGFR was both cytoplasmic and membranous in tumor cell 
nests, and of variable intensity in the experimental arms. 
For mice treated with rNME1-containing liposomes, lung 
sections expressed less EGFR staining with a heterogenous 
staining pattern. To examine EGFR activation, an antibody 
to pEGFR (1068 + 1092) demonstrated prominent staining 
in lung sections from the control liposome arm but markedly 
lower staining in the lung sections from animals treated with 
rNME1-containing liposomes, consistent with previous data 
that NME1-increased endocytosis resulted in EGFR inacti-
vation. No specific staining was observed with rabbit IgG 
isotype control (Supplementary Fig. S9A).

Discussion

Our data support a role for NME1 protein in extracellular 
vesicles in the regulation of tumor cell motility, migration 
and metastasis, a finding that is potentially translatable. We 
show that many breast cancer cell lines secrete exosomes 
containing NME1 in rough proportion to their intracellular 
levels, as opposed to a single nontumorigenic breast cell 
line. Exosomes from two NME1-transfected cell lines, or 
synthetic liposomes loaded with partially purified rNME1, 
released their contents into naïve tumor cells, altering EGFR 
endocytic functions, and inhibiting tumor cell motility and 
migration in vitro. Only liposomes, containing greater NME 
and devoid of other cell-derived proteins found in exosomes, 
inhibited experimental metastasis at levels comparable to 
NME1 transfection.

The metastasis suppressors stand as optimal candidates 
for vesicle-based therapeutic approaches. The metastasis 
suppressor KAI1 has also been shown to be exported into 
exosomes in colorectal cancer [51]. An extracellular role 
for the NME family of proteins (NME1-8) has been previ-
ously proposed in stem cells, leukemias and solid tumors, 
but issues exist, including whether findings are due to solu-
ble or vesicular protein, the receptor if a soluble protein, 
the participation of other proteins if an exosome, and phe-
notypic consequences. NME proteins lack a signal peptide 
for secretion. For leukemias NME proteins are found in the 
bloodstream, have prognostic ability [31], and recombinant 
NME proteins stimulated tumor proliferation [52]; a recep-
tor has not been identified. In solid cancer models soluble 
NME has been detected [53, 54] as well as NME in extra-
cellular vesicles [55, 56]. Data presented herein confirm the 
incorporation of NME1 into exosomes in breast cancer cell 
lines, and identify their functional consequences in vitro on 
naïve tumor cells.

Exosomes from a high NME1 expressing cell line showed 
only a trend in reduced metastasis numbers and size in vivo. 
Additional testing of other doses and schedules was limited 
by the exorbitant tissue culture requirements for exosome 
collection. NME1 encapsulated in liposomes significantly 
reduced experimental metastasis to levels lower than either 
the PBS or control liposome injected arms, with a corre-
sponding diminution in lesion size. The data suggest the 
hypothesis that liposomal or similar delivery of NME pro-
tein may have a metastasis preventive effect. To date, no 
signs of toxicity have been observed. To our surprise empty 
liposomes increased experimental metastasis. It is possible 
that the lipid composition of liposomes is critical to baseline 
effects on metastasis, as lipids in a variety of forms cause 
increased metastasis [57–59]. Many other variables will be 
tested in future experiments including liposome structure, 
dose and schedule of inoculation, and a metastasis shrinking 
versus preventive effect. NME may be particularly suitable 
for this type of delivery as it is a very long-lived protein. 
Liposomes have been widely tested preclinically to deliver 
drugs and biologicals and several clinical trials are being 
conducted [60] (https://​clini​caltr​ials.​gov/​ct2/​resul​ts?​cond=​
cance​r&​term=​lipos​ome+​or+​lipos​omal&​cntry=​&​state=​&​
city=​&​dist=).

https://clinicaltrials.gov/ct2/results?cond=cancer&term=liposome+or+liposomal&cntry=&state=&city=&dist=
https://clinicaltrials.gov/ct2/results?cond=cancer&term=liposome+or+liposomal&cntry=&state=&city=&dist=
https://clinicaltrials.gov/ct2/results?cond=cancer&term=liposome+or+liposomal&cntry=&state=&city=&dist=
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Fig. 5   Exosomes from NME1 
overexpressing cells showed a 
trend of decreased metastasis 
(A), Western blot analysis of 
exosomes collected from vec-
tor- and NME1 overexpressing 
MDA-MB-435 tumor cells and 
used for in vivo experiments. 
(B), Diagrammatic representa-
tion of experimental metastasis 
assay in which MDA-MB-231T 
tumor cells were injected into 
the tail veins of nude mice on 
day 0. Exosomes were injected 
three times on 1st, 4th and 7th 
week (20 µg protein in PBS/
injection, or PBS) over the 
9-week experiment. (C), Lungs 
from mice 58 d postinjection. 
The lungs were fixed in Bouin's 
solution, sectioned, and stained 
hematoxylin and eosin. A repre-
sentative image of each group is 
presented, with arrows pointing 
to several metastases. (D), Total 
number of lung metastases per 
histologic section through the 
center of the lungs from each 
mouse. (E), Total area of all 
metastases in the lung section 
described above. Data are 
presented as scatter plot show-
ing median with interquartile 
range. Each dot represents a 
single mouse. Two tailed t-test 
(nonparametric) was performed 
comparing median across 
any two groups, with P < 0.05 
considered significant (*). ns, 
nonsignificant
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Fig. 6   Liposomes containing rNME1 suppress tumor cell motil-
ity and migration (A–B), Control (empty) liposomes and liposomes 
containing partially purified recombinant rNME1 were assessed for 
particle size distributions and zeta potential using ZetaView (Parti-
cle Metrix). (C–D), Representative Transmission electron micros-
copy images of control liposomes and liposomes containing rNME1. 
Scale bar: 600  nm. (E–F), Western blot of naive MDA-MB-231T 
and MDA-MB-435 cells treated with increasing doses of liposomes 

containing rNME1 or control liposomes. The mobility of the labelled 
NME1 is shown (arrow). (G-J), Naïve MDA-MB-231T (G) and 
MDA-MB-435 (H) cells were treated with control liposomes and 
liposomes containing rNME1 (250  ng/ml) for 24  h. Following this, 
Boyden chamber motility assays were performed on the treated 
cells using 1% serum as chemoattractant. The treated cells were also 
assessed for 2D migration assay (I and J, respectively) and % area 
closed was plotted
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Fig. 7   Liposomes containing rNME1 are metastasis suppressive (A), 
Diagrammatic representation of experimental metastasis assay in 
which MDA-MB-231T tumor cells were injected into the tail veins 
of nude mice on day 0. Three experimental arms compared control 
liposomes alone, liposomes containing 5 µg rNME1 protein in PBS 
or PBS without any liposomes. Liposome preps were injected three 
times on 1st, 4th and 7th week postinjection (0.2  mg control lipid 
alone or lipid containing-5  µg rNME1 /injection) over the 8-week 
experiment. (B), At 51 days postinjection, the mice were necropsied, 
and the lungs were fixed in Bouin's solution followed by sectioning 
and hematoxylin and eosin staining. A  representative image of each 

group is presented (arrows pointing to several metastases). (C), All 
metastases in a section through the middle of each mouse lung were 
counted. (D), The area of all metastases in lung section described 
above was determined, and the median and interquartile ranges plot-
ted. Each dot represents a single mouse. Two tailed t-test (nonpara-
metric) was performed comparing median across any two groups, 
with P < 0.05 considered significant (*). ns, nonsignificant. (E), 
Immunohistochemical staining was conducted on sections of lungs 
from five mice per experimental arm for NME1 protein. Representa-
tive images showing lung metastases with magnified inserts. Scale 
bar: 200 µm
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Fig. 8   Exosomal or liposomal 
NME1 alter EGFR activity 
in vitro (A–B), Naïve MDA-
MB-231T (A) cells were incu-
bated with exosomes (5% v/v) 
derived from vector- and NME1 
overexpressing MDA-MB-435 
cells for 24 h. Post treatment, 
cells were incubated at 4 °C 
for 10 min, washed with cold 
PBS and then incubated with 
pHrodo Red-EGF for 15 min 
at 37 °C. pHrodo Red-EGF 
will only fluoresce when in an 
acidic environment of intracel-
lular vesicles. Cells were fixed 
in PFA and nuclei stained with 
DAPI (blue). (A), Representa-
tive images are shown at × 63 
magnification. Scale bar, 20 μm. 
(B), Quantification of pHrodo 
Red-EGF endocytosis in the 
MDA-MB-231T target cells was 
performed using Zeiss software 
(ZEN). (C–D), Naïve MDA-
MB-231T cells were incubated 
with control liposomes or 
liposomes containing rNME1 
(~ 250 ng rNME1/ml) for 
24 h. Post treatment cells were 
assessed for pHrodo Red-EGF 
uptake as described above (C). 
(D), Quantification of pHrodo 
Red-EGF endocytosis in the 
MDA-MB-231T target cells. 
(E), Immunohistochemical 
staining was conducted on sec-
tions of lungs from five mice 
per experimental arm for total 
EGFR and pEGFR (1068 and 
1092). Representative images 
are shown with magnified 
inserts. Scale bar: 200 µm. All 
experiments shown are repre-
sentative of three replicates (at 
least) and statistical significance 
was calculated by two tailed 
t-test. *P < 0.05
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