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Abstract
Cancer heterogeneity is a result of genetic mutations within the cancer cells. Their proliferation is not only driven by auto-
crine functions but also under the influence of cancer microenvironment, which consists of normal stromal cells such as 
infiltrating immune cells, cancer-associated fibroblasts, endothelial cells, pericytes, vascular and lymphatic channels. The 
relationship between cancer cells and cancer microenvironment is a critical one and we are just on the verge to understand 
it on a molecular level. Cancer microenvironment may serve as a selective force to modulate cancer cells to allow them to 
evolve into more aggressive clones with ability to invade the lymphatic or vascular channels to spread to regional lymph 
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nodes and distant sites. It is important to understand these 
steps of cancer evolution within the cancer microenviron-
ment towards invasion so that therapeutic strategies can be 
developed to control or stop these processes.
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Palindromic Repeats

Introduction

Stanley P. Leong

Genetic mutation is the basis of cancer heterogeneity, which 
results in heterogeneous clones within the cancer population. 
Obviously, cancer grows within the cancer microenviron-
ment consisting of “normal” stromal cells including infiltrat-
ing immune cells, cancer-associated fibroblasts, endothelial 
cells, pericytes, vascular and lymphatic channels [1]. The 
cancer microenvironment serves as a “natural selection” 

force, a term being borrowed from Darwin [2], over different 
cancer clones. Thus, within the cancer microenvironment, 
the process of cancer evolution is in play against the influ-
ence of the cancer microenvironment. In particular, the host 
immune system within the microenvironment may play an 
active role in its interaction with different clones within the 
cancer population resulting in the development of the “fittest 
clone” to proliferate and invade with acquisition of charac-
teristics to spread to the lymph nodes and distant sites by 
lymphatic and vascular channels respectively. The genomic 
and molecular characteristics of cancer will enable us to 
appreciate genetic mutation relating to the spectrum of het-
erogeneity and molecular mechanisms that allow the cancer 
cells to invade and spread beyond the primary sites [3]. The 
relationship between cancer evolution and the cancer micro-
environment is an important one.

In this review article, Isaac Witz, Orit Sagi-Assif and 
Sivan Izraely discuss the cross-talk between brain-metas-
tasizing melanoma cells and the metastatic microenviron-
ment. Again, using melanoma as a model, Jonathan Slee-
man describes matrix-assisted autocrine signaling as a 
therapeutic target. In order to study cancer microenviron-
ment, Brian Piening, Bernard A. Fox, and Carlo Bifulco use 
multiplex microscopy to analyze different cell populations 
within the cancer microenvironment. Cancer heterogeneity 
from genomic mutations is explained by Rachel Martini, 
Lisa Newman and Melissa Davis with respect to molecular, 
cellular, racial and environmental perspectives using breast 
cancer as a model system. Lauren Sanders, David Haussler, 
and Olena Vaske further analyze the genomic variations and 
mutations from the California Kids Cancer Comparison Pro-
ject. Stanley Leong summarizes the concept and technique 
of CRISPR-Cas9 being extracted from the presentation of 
Christof Fellmann. Marlys Witte gives us the summary and 
future perspectives of the relationship between cancer evolu-
tion and its microenvironment.

The cross‑talk between brain‑metastasizing 
melanoma cells and the metastatic 
microenvironment

Isaac P. Witz, Orit Sagi‑Assif and Sivan Izraely

A high proportion of melanoma, breast and lung cancer 
patients develop brain metastasis. These patients have poor 
survival outcomes and pose serious treatment challenges 
[4]. In view of the fact that neither genomic mutations nor 
epigenomic aberrations are significantly associated with the 
development of melanoma brain metastasis (MBM) [5], we 
hypothesized that the cellular and molecular brain microen-
vironment is involved in the formation of MBM.
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The brain microenvironment contains unique cells such as 
neurons or astrocytes. These microenvironmental brain-spe-
cific cells confer upon the brain metastasizing cancer cells a 
different phenotype from that of cancer cells that metastasize 
to other organ sites [6, 7]. In order to develop unmet and 
critically needed novel treatment modalities for patients har-
boring brain metastasis, it is imperative to unravel the cel-
lular and molecular mechanisms leading to such metastasis.

Aiming to identify and characterize signaling pathways 
that drive or inhibit MBM, we developed human to mouse 
xenograft MBM. Cutaneous and brain metastatic variants 
were generated from single human melanomas. Since each 
variant pair shared a common ancestry, we assume that tran-
scriptomic, proteomic and other differences between these 
variants are linked to their different malignant phenotype. 
By identifying genes that are differentially expressed (up- 
or down-regulated) in MBM variants as compared to the 
matching cutaneous variants, we established a molecular 
signature of MBMs [8].

To identify pathways involved in the progression of cuta-
neous melanomas towards brain metastasis, we performed 
a proteomic profiling of four variant pairs of local and cor-
responding melanoma brain metastasis.

The expression level of several metastasis-associated pro-
teins such as inflammatory cytokines, immune regulators, 
cell adhesion molecules and others, was higher in the four 
brain metastasis variants than in the corresponding cutane-
ous variants. Comparative analyses of eicosanoids and of 
multi parametric morphology yielded similar results. How-
ever, the four metastatic variants did not share any of the 
phenotypic molecular traits that characterize brain metas-
tasis [9].

These results provided a strong indication for individu-
ally distinct patterns of metastasis-associated proteins. The 
results also highlighted the need for meta-analysis in the 
unraveling of the interactive complex pathways leading to 
melanoma brain metastasis.

Interactions of melanoma cells with skin, the microen-
vironment of the primary tumor as well as with the micro-
environment of the brain drive or inhibit the progression of 
brain-metastasizing melanoma cells.

Below is an overview of studies on melanoma-intrinsic 
and brain microenvironmental drivers or inhibitors of brain 
metastasis employing the xenograft models described above. 
It should be stressed that the driver or inhibitor functions 
exerted by tumor-intrinsic or microenvironmental molecules 
refers to conditions described in the referenced studies. It 
is not unlikely that certain molecules may, under different 
circumstances, exhibit opposing functions to those described 
below [10].

Molecular drivers of melanoma progression

Several drivers of MBM were identified in our laboratory. 
The functional activity of two such drivers is described in 
some detail whereas others are mentioned in brief.

One of the genes whose expression was significantly 
higher in MBM variants than in matching cutaneous vari-
ants was Angiopoietin-like 4 (ANGPTL4). This gene whose 
expression is regulated by microenvironmental TGFβ1 [11] 
plays important but opposing roles in the progression of dif-
ferent cancers [12].

In vivo and functional in vitro studies employing the 
xenograft models described above indicated that ANGPTL4 
promotes the malignancy phenotype of cutaneous melano-
mas [11]. In agreement with these results we found that 
ANGPTL4 expression is significantly higher in paired 
clinical specimens of melanoma metastases than in primary 
melanomas from the same patients.

Targeted migration of tumor cells to future metastatic 
cites is facilitated by the hijacking of chemokine receptors 
by metastasizing tumor cells thereby enabling chemotactic 
interactions with the corresponding ligands produced by and 
released from cells in the future metastatic microenviron-
ment [13]. The expression of the chemokine receptor CCR4, 
another member of the molecular signature of MBM, was 
also higher in MBM variants than in matching cutaneous 
variants [14]. Similarly to ANGPTL4, the expression of 
CCR4 by melanoma cells was regulated by the brain micro-
environment [15].

In view of the fact that MBM variants express higher lev-
els of CCR4 than cutaneous variants and that the expression 
of CCR4 is significantly higher in paired clinical specimens 
of melanoma metastases than in samples of primary tumors 
from the same patients, we hypothesized that CCR4 ligands 
expressed in the brain interact with the CCR4-expressing 
melanoma cells thereby directing them to the brain.

The expression of the CCR4 ligands, CCL17 and CCL22 
by brain endothelial cells, astrocytes and microglia is upreg-
ulated at the early stages of brain metastasis, preceding the 
infiltration of melanoma cells to the brain. In-vitro experi-
ments indicated that CCL17 induced migration and transen-
dothelial migration of melanoma cells. Melanoma cells 
over-expressing CCR4 generated a higher load of MBM 
than control cells. Blocking CCR4 with a small molecule 
CCR4 antagonist in-vivo, reduced MBM formation. All 
these results implicate CCR4 as a driver of melanoma brain 
metastasis [16]. Other molecular drivers of MBM character-
ized in our lab were: Extracellular cysteine protease inhibitor 
cystatin C (CysC) [17]. This protease inhibitor may either 
promote or confine tumor progression [18, 19]; IL-23 [20], 
a cytokine known to support growth of several types of 
tumors [21]; GM-CSF [22], a constituent of various anti-
cancer immunotherapy trials [23]; Aldolase C (Izraely et al., 
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in revision, Mol Oncol), a glycolytic enzyme with involve-
ment in cancer progression [24]. In a collaborative study, the 
group of Dave Hoon demonstrated that GD3, a prominent 
cell surface ganglioside expressed by human cutaneous mel-
anoma cells, plays a functional role in MBM formation [25].

Claudin‑1 suppresses MBM

Claudin-1 (CLDN1) a tight junction protein, functions either 
as a tumor promoter or suppressor (or both). In some can-
cers, lower expression of CLDN1 is associated with can-
cer progression, while in others, loss of CLDN1 indicates 
restrained tumor progression [26].

Employing the melanoma xenograft models described 
above, we found that the expression of CLDN1 was lower in 
the brain‐metastasizing variants than in cutaneous variants 
from the same melanoma. In order to establish the function, 
if any, of CLDN1 downregulation/loss in melanoma brain 
metastasis, we transduced melanoma brain metastatic cells 
expressing low levels of CLDN1 with CLDN1 cDNA [27]. 
CLDN1‐overexpression eliminated the formation of micro-
metastasis in the brain. In sharp contrast, the ability of the 
CLDN1‐overexpresing cells to form lung micrometastasis 
was not impaired. The differential effect of CLDN1 overex-
pression on brain and lung metastasis is due to a differential 
expression of CLDN1 by brain and lung endothelial cells; 
the former cells expressed significantly higher levels of this 
tight junction component than the lung endothelial cells. The 
CLDN1 overexpressing melanoma cells adhered firmly to 
the brain endothelial cells via a hemophilic CLDN1–CLDN1 
interaction [28], which blocked melanoma cell penetration 
into the brain. In view of the fact that lung endothelium 
expresses very low levels of CLDN1, such a hemophilic 
interaction does not occur allowing metastasizing melanoma 
to colonize the lungs.

Astrocytes, microglial and brain endothelial cells take part 
in the colonization and maintenance of human MBM

Astrocytes play important but contradictory roles in the 
homeostasis of the central nervous system. On the one hand 
they contribute to neuroprotection and on the other hand 
they may exacerbate neurological diseases [29].

Activated astrocytes are involved in the formation of 
MBM [30]. As reported above factors released from micro-
environmental brain cells shape the malignant behavior of 
MBM [15]. Reciprocal interactions between astrocytes and 
melanoma cells were then identified as the source of some 
of these factors. Astrocyte‐derived factors up‐regulated 
the secretion of MMP2 from MBM whereas the melanoma 
cells up‐regulated the expression of the pro‐inflammatory 

cytokine IL‐23 in microglia. This cytokine enhanced mela-
noma cell invasion in vitro implying its function in MBM 
formation [20].

Microglia cells are the main immune cells of the brain 
[31]. Microglia and brain metastasizing melanoma cells 
are engaged in a dialogue which modifies gene expression 
patterns and cell signaling in, and cytokine secretion from 
both interacting cell types [32]. Brain metastasizing mela-
noma cells prompted significant morphological changes in 
microglia cells, enhanced their proliferation and migration 
and induced MMP-2 activation. Reciprocally, microglia cells 
generated phenotypic changes in melanoma cells and ampli-
fied their malignant phenotype. Specifically, microglia cells 
increased proliferation, migration and ability to penetrate 
the brain endothelium, and augmented MMP-2 activity of 
melanoma cells. Microglia also supported 3D spheroid for-
mation by melanoma cells.

Cystatin C (CysC) (see above) is involved in melanoma-
microglia interactions. Melanoma and microglia reciprocally 
upregulated CysC secretion from both cells. In vitro and 
in vivo experiments led to the conclusion that secreted CysC 
promotes melanoma brain metastasis [17].

Putting together the work on the bidirectional interac-
tions between melanoma and microglia cells, indicates that 
microglia contributes to melanoma brain metastasis forma-
tion. The endothelium of the brain functioning as the blood 
brain barrier plays multiple (sometimes contradictory) roles 
in the generation of brain metastasis [10].

Interactions between neural progenitor cells and the vas-
culature form a neurovascular niche. Injured neurovascular 
niches, induced, for example by stroke, elicit repair pro-
cesses that regenerate the neurovascular niche. These repair 
processes are mediated by cytokines and other growth fac-
tors [33].

A collaborative study with the Carmichael group at 
UCLA indicated that factors that promote melanoma brain 
metastasis and those mediating brain tissue repair share sim-
ilar cellular processes. We identified a hitherto undescribed 
function of the stroke-induced regenerative neurovascular 
niche, predominantly endothelial cells, in shaping the brain 
metastatic microenvironment and in promoting melanoma 
brain metastasis [34].

Conclusion

Studying interactions between brain-metastasizing mela-
noma cells and their metastatic microenvironment reveals 
an intricate signaling web. Its comprehension is a prereq-
uisite for the development of novel anti-metastasis therapy 
modalities.
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Matrix‑assisted autocrine signaling 
in melanoma as a therapeutic target

Jonathan Sleeman

During tumorigenesis, the progressive development of the 
tumor stroma serves to support the survival and growth 
of cancer cells [35]. Upon metastatic spread, cancer cells 
become divorced from this supportive stroma. At second-
ary sites, disseminated tumor cells (DTCs) encounter a new 
stromal microenvironment that determines whether they die, 
remain dormant or grow as metastases [36]. Microenviron-
ments that support the survival and outgrowth of DTCs at 
secondary sites are termed metastatic niches [37]. In addi-
tion to cellular components such as myeloid-derived sup-
pressor cells and cancer-associated fibroblasts, the constitu-
tion and conformation of the extracellular matrix (ECM) has 
emerged as an important component of metastatic niches 
[38]. Accordingly, the formation of metastatic niches is 
often associated with extensive remodelling of the ECM, 
including deposition of a range of structural and matricel-
lular ECM components, crosslinking of ECM proteins by 
enzymes such as lysyl oxidases, and ECM degradation by a 
number of proteolytic enzymes such as MMPs [39].

Although particular characteristics of the ECM within 
metastatic niches have been associated with the initiation 
of metastases by DTCs, the mechanisms through which the 
ECM impacts on metastasis initiation are poorly understood. 
Enhanced matrix stiffness via ECM crosslinking and col-
lagen deposition that is associated with metastatic niches 
results in mechanotransduction in tumor cells, which stimu-
lates integrin signalling [40], the induction of EMT [41] and 
migration [42]. In the context of metastasis initiation, this 
may be relevant for suppressing dormancy [43]. Matricellu-
lar proteins such as tenascin C and periostin that are associ-
ated with metastatic niches have been implicated in regulat-
ing metastasis-initiating Wnt and Notch signalling [44, 45]. 
Laminin- or fibronectin-rich ECM can tether tumor-derived 
exosomes that bear appropriate integrin receptors, allow-
ing them to fuse with and regulate organ-specific resident 
cells that contribute to developing metastatic niches, thereby 
shaping the organotropism of metastasis [46]. Despite these 
insights, more work is required to understand how the ECM 
can regulate metastasis initiation.

Malignant melanoma (MM) is the most lethal form of 
skin cancer. Cutaneous metastasis is a frequent and early 
event during the progression of MM, and represents the first 
site of metastasis formation for more than half of all MM 
patients [47]. In a recently published study [48] we used sub-
cutaneous injection of melanoma cells together with specific 
ECM components as a model to investigate the initiation 
of cutaneous metastases. We found that a number of ECM 

components strongly increase the efficiency of cutaneous 
metastasis initiation. To understand how 3D ECM environ-
ments impact on gene expression that is associated with 
metastasis initiation, we compared the transcriptional pro-
files of melanoma cells growing in 2D and in 3D ECM envi-
ronments. These data and subsequent validation revealed 
that a number of 3D ECM environments including Matrigel 
and collagen strongly induced Id1 and Id3 expression in 
melanoma cells.

Inhibitor of DNA binding 1 and 3 (Id1 and Id3) are tran-
scriptional regulators whose expression is regulated by bone 
morphogenetic protien (BMP) and TGF-β signalling [49, 
50]. They act as dominant negative inhibitors of basic helix-
loop-helix (bHLH) transcription factors, by heterodimeris-
ing with them and preventing them from binding to DNA 
[51]. Expression of Id1 and Id3 has been implicated in tumor 
initiation and metastatic growth [52–54]. Accordingly, their 
expression correlates with poor prognosis for many types of 
cancer [55], including melanoma [56]. Loss of Id3 results 
in an impaired B-cell proliferation that can be rescued by 
ectopic overexpression of Id1 [57], indicating functional 
redundancy between Id1 and Id3.

To demonstrate a role for Id1 and Id3 expression in the 
initiation of cutaneous melanoma, we used CRISPR-Cas9 
to disrupt Id1 and Id3 expression in two independent mela-
noma models. The concept and technique of CRISPR-Cas 9 
are described below in this review article. Genetic ablation 
of Id1 and Id3 expression suppressed melanoma cell out-
growth and invasiveness in 3D ECM, and inhibited mela-
noma initiation and growth in vivo. Mechanistically, we 
found the physical properties of 3D matrix environments 
promote autocrine BMP signalling. Specifically, we used 
fluorescence correlation spectroscopy to demonstrate that 
specific 3D ECM microenvironments inhibit the diffusion of 

Fig. 1   Matrix-assisted BMP autocrine signaling. Tumor cells produce 
low levels of BMPs that are insufficient to activate the cognate recep-
tors on their surface under normal diffusion conditions. When the 
tumor cells are placed within particular 3D ECM microenvironments, 
the diffusion of the endogenously produced BMPs is significantly 
reduced, leading to pericellular accumulation of BMP proteins and 
subsequent receptor activation. Downstream signaling then induces 
expression of Id1 and Id3, fostering tumor initiation and metastasis
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endogenously-produced BMPs. This serves to increase peri-
cellular BMP concentrations, and thereby fosters autocrine 
BMP signalling. We have termed this mechanism matrix-
assisted autocrine signalling (Fig. 1).

To leverage these findings therapeutically we synthesized 
and screened a custom chemical library. Thereby we identi-
fied a novel coumarin-like substance class that inhibits Id1 
and Id3 expression. In proof of principle experiments, one 
of the most promising of these compounds was investigated 
further. Similar to the impact of genetic ablation of Id1 and 
ID3, the compound exerted a strong inhibitory effect on the 
outgrowth and invasiveness of melanoma cells grown in 3D 
ECM, and potently suppressed the initiation and growth of 
cutaneous metastasis in experimental animals. These data 
suggest that Id1 and Id3 represent promising therapeutic 
targets for melanoma, and identify new chemical inhibi-
tors of Id1 and Id3 that can serve as lead compounds for 
drug development. More broadly, our findings suggest that 
the physical properties of a particular matrix environment 
can regulate metastasis formation through matrix-assisted 
autocrine signalling, and may be operative in other types of 
cancer as well. The mechanism of matrix-assisted autocrine 
signalling may additionally be relevant not only for BMP 
signalling, but also for other signalling molecules. Precon-
ditions for this mechanism are that the signalling molecule 
is produced at low levels endogenously by cancer cells, that 
the cancer cells also express the cognate receptor, and that 
the diffusion of the signalling molecule is reduced by the 3D 
matrix environment.

Utility of multiplex microscopy to study 
the cancer microenvironment

Brian Piening, Bernard A. Fox and Carlo B. Bifulco

With the adoption of checkpoint inhibitors (CPI), immu-
noncology (IO) is rapidly transforming outcomes and 
therapeutic approaches in a variety of cancers, leading to 
durable responses in a significant subset of patients with 
previously-incurable disease, such as metastatic melanoma 
or metastatic non-small cell lung cancers [58–60]. These 
effects, driven by the inhibition of the PD1/PD-L1 axis, are 
believed to be ultimately mediated by the activation, in the 
context of the tumor microenvironment, of the cytotoxic 
effects of previously exhausted T-effector cells [61]. The 
clinical efficacy of CPI validates retrospectively a series of 
observations made in the pathology literature, going back 
all the way to the early 1990s, describing a strong correla-
tion in multiple tumor types between the density of T cells 
present in the intratumoral and peritumoral microenviron-
ment and outcomes. This body of work is best exemplified 
by the pioneering work of Jerome Galon, demonstrating 

that the quantification via digital pathology of the combined 
CD3+ and CD8+ T-cell density at the tumor margin and 
intratumor compartments (Immunoscore) predicts outcomes 
independently and significantly better than conventional 
locoregional pathologic stage in colon cancer [62]. These 
findings have been confirmed in a large multinational cohort 
of colon cancer patients [63], and beyond staging, are now 
being actively explored as predictors of response to adjuvant 
chemotherapy in stage III colon cancer, where emerging evi-
dence suggests that the benefits from systemic chemotherapy 
are predicated on a functional immune system as assessed 
by a high Immunoscore [64]. Notwithstanding the available 
strong evidence supporting the importance of density and 
localization of T-cells in cancer outcomes and the require-
ment of effector T-cell tumor killing for IO efficacy, these 
findings have not yet been incorporated in the prediction of 
response to CPI, which is instead currently clinically either 
based on tumor intrinsic features, such as the tumor muta-
tional burden [65] or microsatellite high status [66], or on 
a simple quantification of the expression of PD-L1, one of 
the components of the PD1/PD-L1 axis [67]. While these 
biomarkers have led to improved response rates in a variety 
of tumors, there are still a significant subset of biomarker-
positive tumors that exhibit little to no response to CPI, a 
phenomenon likely reflective of the lack of comprehensive 
tumor microenvironment characterization with these current 
strategies. These paradigms may be soon changing as there 
are now multiple novel multiplexed immunohistochemistry/
immunofluorescence (mIHC/IF) platforms that enable the 
co-visualization of large numbers of biomarkers in a spatial 
and morphological context, allowing for an accurate charac-
terization of immune cell distributions in the tumor micro-
environment and, beyond that, of their complex spatial rela-
tionships [68]. The current generation of mIHC/IF platforms 
solutions are based on a variety of technologies, including, 
among others, multiplexed tyramide fluorescent immuno-
histochemistry [69], repetitive cycling stain-stripping work-
flows [70], mass spectrometry-based detection of elemental 
isotopes [70–72] and oligoprobes hybridization based solu-
tions [73], with the latter potentially enabling the concurrent 
multiplexed detection and spatial resolution of thousands of 
biomarkers. The emergent potential for the clinical utility of 
these novel technologies, here defined as the applicability 
of mIHC/IF platforms to empower clinical decision making 
processes, was first suggested in head and neck non-HPV-
positive squamous SCC by the finding that the density of 
immunosuppressive populations, assessed by a tyramide 
mIHC/IF platform and identified by the expression of PD-L1 
and FOXP3 in macrophages and T-cells, had, when colocal-
izing within a 30 micron radius of an effector CD8+ cells, 
a detrimental effect on the overall survival of these patients 
[74, 75]. Several research groups have now extended the 
application of these technologies beyond prognosis into the 
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prediction of response to PD-1/PD-L1 checkpoint blockade. 
Their results, summarized in a recent review and meta-anal-
ysis, demonstrate that mIHC/IF is an independent predictor 
of response to CPI and both outperforms and synergizes 
with PD-L1 IHC, TMB and mRNA based signatures [66]. 
Despite these successes, a number of challenges mostly 
related to the inherent complexity of these novel technolo-
gies are currently slowing adoption into the clinic. Depend-
ing on the platform, multiplexing itself requires careful plan-
ning in order to avoid steric hindrances, secondary to the 
deposition of either chromogenic/fluorescence substrates or 
for antibody complexes as well as the loss of antigenicity 
due to harsh chemical treatments [68]. Careful attempts to 
address these multiplexing signal quantification reproduc-
ibility aspects with quantitative controls, such as exemplified 
in the T-cell activation marker proficiency panel (TAMPP) 
study, relying on a comparison of flow cytometric and mul-
tiplexed imaging technologies, are currently underway and 
may contribute to increase the robustness of in-situ anti-
gen quantification approaches. Another existing challenge 
is the lack of a standardized strategy to guide the selection 
of regions of interest (ROI) for downstream high-resolution 
image analysis, a process that is often reliant, with a few 
exceptions such as the Immunoscore, on a manual and sub-
jective human operator-driven process, potentially resulting 
in poor reproducibility. Possible strategies being explored 
to address these challenges take advantage of existing H&E 
images, as these can guide field selection, via co-registration 
of the IF and H&E digital slides, facilitating ROI selection, 
or fully or semiautomated selection tiling based procedures 
driven by image analysis derived features such as the density 

of immune cells in specific image tiles. The application of 
machine learning and specifically deep learning-based meth-
odologies in histopathology is currently a significant area 
of focus, and such approaches have the potential to rapidly 
automate image analysis and classification (Fig. 2). There 
is also the potential to use H&Es to automate cell type rec-
ognition by leveraging data generated via mIF/IHC and the 
application deep convolutional neural networks (CNN). This 
process relies on the tagging of cell types based on mIHC/
IF labels, and uses the generated labels to train a CNN to 
enable cell type recognition based on H&E features only. 
The results have the potential to provide an intrinsic quality 
control to multiplexed images, by anchoring them to observ-
able features that are independent of complex experimen-
tal procedures and are embedded in an easily interpretable 
morphological background. In addition, this approach could 
enable an assessment of the tumor microenvironment that is 
scalable, as H&Es are routinely used in clinical diagnostic 
pathology around the world, with the availability of millions 
of historical slides, correlated to clinical outcomes and easily 
digitizable thorough high throughput FDA-approved scan-
ning platforms. In summary, the development of multiple 
novel multiplexed imaging technologies as well as support-
ing algorithms for detection, segmentation and/or classifi-
cation is expected to transform the assessment of the tumor 
microenvironment both in research and clinically, offering 
the opportunity to rationally select patients for CPI-based 
and other immunologic therapies, ultimately leading to bet-
ter response rates and outcomes.

Breast cancer heterogeneity: molecular 
and cellular mechanisms are further 
complicated by racial and genetic diversity

Rachel Martini, Lisa Newman and Melissa Davis

Breast cancer is a collection of phenotypically distinct 
diseases, typically defined by hormone receptor status, or 
more recently gene signature profiling, which define intrin-
sic molecular tumor subtypes [76–78]. Disparities in breast 
cancer (BC) mortality emerged in a similar timeframe as the 
advent of targeted treatment therapies for hormone receptor 
positive (HR+) breast tumors [79], where we observed a dis-
tinct increase of mortality among Black or African Ameri-
can (AA) women compared to White or European American 
(EA) women, and an overall excess of 40% mortality among 
AA women is still observed today [80, 81]. Retrospectively, 
we can attribute divergence in mortality as an unmasking of 
this diversity in tumor phenotypes, where increase in AA 
mortality corresponds to disproportionately higher preva-
lence of HR− or Triple-negative BC (TNBC) tumors among 
AA women [79, 80, 82, 83]. HR− or TNBC tumors, which 

Fig. 2   Convolutional neural network-based nuclei segmentation on 
an mIF image. Mask R-CNN was applied to automatically detect and 
segment nuclei from the DAPI channel of an example mIF slide (Vec-
tra Polaris). Image courtesy of Kevin Matlock
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lack targeted treatments, are more molecularly aggressive, 
and have worst survival outcomes of all BC subtypes [80, 
81, 84].

From a global perspective, African nations have some of 
the lowest incidence rates of BC among all nations yet suffer 
from highest BC mortality rates. The International Center 
for the Study of Breast Cancer Subtypes (ICSBCS) inves-
tigates BC disparities worldwide. The disparate outcomes 
observed in Africa are partially due to initial disease pres-
entation occurring at later stages and limited resource access 
to standard treatment options [85]. ICSBCS has participated 
in capacity-building to increase HR testing and we find that 
African nations also have among the highest frequencies of 
TNBC, which is intrinsically associated with poor prognosis 
and increased mortality. West African and AA women report 
the highest frequencies of TNBC, compared to relatively 
lower prevalence of TNBC disease among East African and 
CA women [86–88]. While tracking the social and demo-
graphic history of ethnically diverse groups, our Oncologic 
Anthropology work allows us to characterize the genetic 
network differences among genetically distinct African 

populations. Intriguingly, their migration within and out of 
Africa correlates with the distribution of TNBC incidence 
and frequency. As ICSBCS also prospectively recruits newly 
diagnosed BC patients across our international sites, we are 
able to investigate the biological factors driving disparate 
outcomes. Using germline DNA testing, we have shown that 
quantified west African ancestry significantly increases risk 
for TNBC disease worldwide [79]. An individual’s genetic 
ancestry composition is determined through analysis of 
ancestral informative markers [89–91], or single nucleotide 
variants that are population private.

The genetic ancestry of African Americans in the US 
today is largely represented by European admixture with a 
majority of commonly shared African ancestry. The shared 
African ancestry is historically derived from ancestors who 
were enslaved and forced into the Americas over hundreds 
of years through the Trans-Atlantic Slave Trade (TST) [92, 
93]. The activity of the TST had a profound impact across 
the African diaspora, which has health implications to this 
day. In the case of BC, that impact includes a distribution of 
risk alleles for aggressive tumor subtypes (i.e. TNBC) that 

Fig. 3   Quantified genetic ancestry reveals a more robust differen-
tially expressed gene signature than self-reported race among TNBC 
cases. Proportional ancestry estimates are shown as a heatmap head-
ing across all patient columns. Darker blue indicates higher ances-
try within the genetic supergroups defined as European (EUR), East 
Asian (EAS), American Native (AMR), South Asian (SAS) and 
African (AFR). a Self-reported race (SRR) was used as a categorical 
variable to determine differentially expressed genes (DEGs) between 

European Americans (EA) and African Americans (AA). Over 1000 
DEGs were identified using this approach and are shown in the unsu-
pervised hierarchical cluster. b Quantified African ancestry was used 
as a continuous variable to determine DEGs associated with Afri-
can ancestry. Approximately 150 DEGs were identified using this 
approach and are shown in the unsupervised hierarchical cluster, 
clearly filtering most differential gene patterns
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are more prevalent in AA women as well as other women of 
African descent, globally. We sought to determine if shared 
African ancestry was a key to these observations. Our pre-
vious differential gene expression profile studies identified 
unique immune response in tumors among AA patients [94, 
95], compared to EA patients. Intriguingly, this corresponds 
to other human evolutionary genetics studies that indicate 
distinct immune responses in infectious diseases, specifi-
cally the association of stronger immune response signals 
for cytokine production and inflammatory response, among 
individuals with West African ancestry [96]. We have identi-
fied an enrichment of immune response in AA, specifically 
within TNBC [97], which has vast implications in disease 
outcome and treatment response.

In our study of TNBC gene expression profiles, we com-
pared between AA and EA women, using both self-reported 
race (SRR) and quantified genetic ancestry to determine 
differentially expressed genes [98] (Fig. 3). We found that 
the quantified ancestry approach yields genes with a more 
robust difference in gene expression. Our gene network anal-
ysis implicated known canonical cancer pathways (such as 
EGFR, TP52 and NFkB) as well as an enrichment of genes 
specifically related to immune response. This West African 
ancestry associated immune signature is strongly replicated 
in our preliminary analysis of a Pan-African dataset (not yet 
published), where increased signals observed among Gha-
naian and AA women in the dataset appear to be decreased 
in Ethiopian and EA women. This indicates the potential 
of an evolutionarily enriched immune response to impact 
tumor biology, directed through shared West African ances-
try among these women.

Population-private mutations that have arisen in ancient 
populations in response to disease burden at different points 
through our history could be underlying the unique immune 
responses we have observed. Specifically, one such muta-
tion is the Duffy-null allele, which arose across Sub Saha-
ran Africa, and was fixed in populations in this region as it 
provided immunity towards certain malaria parasites [99], 
removing a route of entry for the pathogen into red blood 
cells [100]. While this mutation arose hundreds of years ago, 
it remains at almost 100% frequency across Sub Saharan 
Africa, and AAs are carriers of this allele in present day 
[101]. Global frequency of the Duffy-null allele follows sim-
ilar global distribution as TNBC prevalence and BC mortal-
ity. We have found that this allele is significantly associated 
with TNBC risk among AA, after controlling for age and 
west African ancestry in a nested case-series analysis in our 
African ancestry enriched cohort [87].

The function of DARC and the Duffy-null allele in TNBC 
outcomes is still emerging. We know that Duffy-null is a 
promoter region variant of the Duffy Antigen Receptor for 
Chemokines/Atypical Chemokine Receptor 1 gene (DARC/
ACKR1) and removes its expression from red blood cells 

(RBCs) specifically [100]. DARC/ACKR1 functions as an 
atypical chemokine receptor and is able to bind both struc-
tural classes of pro-inflammatory chemokines (i.e. CXCL 
and CCL) [102, 103]. Its primary function on RBCs is 
to modulate levels of chemokines in circulation through 
sequestering chemokines for degradation, returning home-
ostatic levels, thereby limiting duration of inflammation 
[103]. The known endothelial expression of DARC/ACKR1 
functions in chemokine transcytosis, presenting chemokines 
to rolling leukocytes in circulation to aid in immune cell 
recruitment and diapedesis [103–105].

In the BC context, we were the first to show DARC/
ACKR1 expression on tumor epithelial cells, its co-local-
ization with pro-inflammatory chemokine ligands and cor-
responding increase of immune cells associated with higher 
DARC/ACKR1 levels [106]. In TCGA data, we found that 
AA and EA patients have broad variation of DARC/ACKR1 
gene expression in BC tumors, AA had the highest preva-
lence of tumors with low DARC/ACKR1 expression. High 
DARC/ACKR1 expression was found to be significantly 
associated with better overall and relapse-free BC survival 
outcomes among all BC subtypes. We also observed that the 
Duffy-null allele regulates the availability of CCL2 in circu-
lation, revealing that newly diagnosed BC patients who were 
homozygous for the Duffy-null allele showed significantly 
lower levels of CCL2 in circulation compared to heterozy-
gotes or non-carriers of this mutation. This suggests that 
inflammation from tumors may be dampened in AA’s who 
carry the Duffy Null mutation.

To specifically investigate the association of DARC/
ACKR1 expression with immune cell response, we used 
CIBERSORT RNAseq deconvolution methods and reported 
significant positive correlation between DARC/ACKR1 
tumor expression and tumor-associated leukocyte abundance 
[106]. While bulk signals of immune cell infiltration are 
compelling, we are missing spatial acuity with the decon-
volution method. Currently, we are utilizing imaging mass 
cytometry (IMC) methods to phenotypically define and 
quantify immune response. As we characterize the differ-
ences in spatial distribution of immune cell types, we will 
utilize the DARC/ACKR1 immuno-tumor phenotype in 
prognostics. Preliminary findings shown that DARC/ACKR1 
positive tumors have more immune cell infiltration into the 
solid tumor space, compared to DARC/ACKR1 low tumors 
having more stromal compartmentalization of immune cells.

In summary, BC is a heterogeneous disease, where both 
tumor characteristics and patient race/ethnicity play an 
important role in prognostic outcomes of a BC diagnosis. 
With the expansion of our genomic toolkit, we have been 
able to identify potential biological drivers of BC dispari-
ties, with the goal to identify actionable targets for thera-
peutic development. These findings will have global impact, 
especially in the case of TNBC, where the African diaspora 
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has increased burden and targeted treatments are not cur-
rently available. We have seen immune response biomarker 
differences between race/ethnic groups, and these signals 
appear to be driven by shared west African ancestry, as a 
consequence of evolutionary adaptation. Specifically, we 
have highlighted the Duffy-null allele, and further work done 
around the DARC/ACKR1 gene, as this chemokine receptor 
plays a significant role in immune cell recruitment and is 
also associated with West African ancestry and increased 
TNBC disease risk. As we advance in the field of precision 
medicine, it is imperative that through study conception and 
design, we plan for inclusion of diverse patient populations 
to fully characterize tumor heterogeneity across subtypes 
and racial/ethnic groups, to identify targets for treatment that 
are effective across all BC patients.

The California Kids Cancer Comparison 
Project

Lauren M. Sanders, David Haussler and Olena M. 
Vaske

Demonstrated clinical utility of large genomic datasets 
for individual childhood cancer patients

Worldwide genomic data sharing has come to the forefront 
of scientific focus as large consortia such as The Cancer 
Genome Atlas and the Human Brain Atlas have revealed 
the molecular underpinnings of human physiology and dis-
ease. Nowhere is the need for genomic data sharing more 
apparent than in rare and understudied diseases, including 
many childhood cancers and germline disorders. Because 
no one institution generates enough data from these rare 
diseases to fully understand them, it is vitally important to 
share these genomic data and make them public to the sci-
entific community.

The study of childhood cancer provides a key example 
of the necessity of leveraging combined, publicly available 
genomic datasets into clinically translatable findings. Unlike 
adult cancers, childhood cancers are thought to arise from 
epigenetic or developmental aberrations during embryogen-
esis or early childhood [107]. As a result, pediatric cancers 
harbor lower overall DNA mutation rates than adult cancers, 
and recurrent genomic aberrations tend to be epigenetic in 
nature and impossible to target therapeutically [107, 108].

Nevertheless, despite the marked lack of upstream acti-
vating DNA mutations, pediatric cancer cell growth is 
driven by activated oncogenic pathways as in adult can-
cers. Targetable oncogenic gene and pathway activity can 
be detected through RNA sequencing (RNA-Seq) of cancer 
biopsy or resection samples [109, 110]. Due to the relative 
nature of RNA-Seq data, each individual sample must be 

compared against a background cohort to detect unusually 
highly expressed genes and pathways. For adult cancers, 
such comparative analysis often uses a background of nor-
mal tissue samples, such as the Genotype-Tissue Expression 
database (GTEx) [111]. However, the early developmental 
origin of most pediatric cancers makes it difficult to identify 
or source the appropriate normal tissue. For example, the 
ETV6-RUNX1 fusion positive subtype of acute lymphoblas-
tic leukemia is thought to arise from B-cell progenitors dur-
ing embryonic hematopoiesis, but the developmental stage 
and cancer cell of origin are as yet unknown [112].

To address this problem and maximize the clinical utility 
of childhood cancer genomic datasets, the Treehouse Child-
hood Cancer Initiative at UC Santa Cruz has generated a 
publicly available cancer compendium of RNA-Seq data 
from over 12,000 adult and pediatric tumors and 144 differ-
ent tumor types [113]. The compendium contains 44 inde-
pendent RNA-Seq datasets, all of which have been processed 
uniformly using the UCSC TOIL RNA-Seq pipeline to elim-
inate technical artifacts [114]. Included are the data from 
The Cancer Genome Atlas and the Therapeutically Appli-
cable Research to Generate Effective Treatments program.

Treehouse has also developed a method to compare indi-
vidual samples to a background cohort. This method, Tree-
house Comparative Analysis of RNA Expression (Treehouse 
CARE), identifies genes with outlier expression in a single 
tumor sample as compared to a background cohort [109]. 
These genes are then used to identify significantly enriched 
gene sets with an existing drug or therapeutic targeting them. 
The analysis is performed against two different background 
cohorts: the “pan-cancer” analysis compares a child’s cancer 
to the entire Treehouse cancer compendium. The second 
analysis, “pan-disease”, compares the tumor to a subset of 
highly correlated tumors or tumors of the same disease type. 
The pan-disease analysis also aids in molecular subtyping of 
rare tumors by identifying most similar tumors through gene 
expression correlation. Treehouse partners with clinical sites 
and genomics trials to provide a report of CARE findings, 
including the outlier genes and enriched pathways, and the 
clinical characteristics of the tumors with highest correlation 
to the focus sample.

The development of this approach and the ability to 
compare within thousands of RNA-Seq cancer samples has 
led to the discovery of clinically actionable insights that 
would have been otherwise impossible to attain. A multi-
center study of 144 childhood or young adult patients with 
relapsed, refractory or rare cancers found that the Treehouse 
CARE method identified actionable overexpressed genes or 
pathways in 68.8% of cases [109]. In 36.5% of cases, the 
actionable target was only identifiable through RNA analy-
sis, and was not present in DNA variant analysis.

In a case of a child with relapsed sarcoma of the cen-
tral nervous system, metastatic to the lungs, comparative 
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RNA-Seq analysis revealed overexpression of JAK1 as com-
pared to all cancers (pan-cancer analysis), and other sar-
comas or other lung cancers (pan-disease analysis) [110]. 
This patient’s tumors had no actionable DNA variants, so 
the physician treated with Ruxolitinib, a JAK inhibitor. 
Within a week of Ruxolitinib initiation, the patient had dra-
matic improvement in energy level and resolution of sev-
eral symptoms. Although most of his lung lesions remained 
stable, one lesion progressed after 5 months so Ruxilitinib 
was stopped and focal radiation was administered. Within 
2 months of Ruxolitinib discontinuation, the other lung 
lesions progressed, and the patient’s family requested that 
Ruxolitinib be restarted for quality of life. The patient again 
showed dramatic improvement and a prolonged period of 
stable disease until dose reduction was required because of 
myelosuppression, and the patient passed away.

In a case of a young patient originally diagnosed with 
immature teratoma, comparative RNA-Seq analysis revealed 
that the top six most correlated tumors were all glioma. After 
additional histopathological analysis, the patient’s diagno-
sis was refined to gliomatosis peritonei, a rare tumor type 
involving mature glial tissue in the peritoneum which is dif-
ficult to identify via histopathological analysis alone [115].

These findings demonstrate the clinically translational 
value of sharing and combining genomic data for precision 
medicine trials. In the context of rare and difficult to treat 
childhood cancers, comparative RNA-Seq analysis using 
thousands of samples from various sources has aided in 
identifying therapeutics and refining diagnoses.

Application of CRISPR‑Cas9 system 
in editing the genetic code

Stanley P Leong

This section of the review article has been extracted from the 
presentation by Christof Fellmann at the 2019 8th Interna-
tional Cancer Metastasis Congress in San Francisco.

The 2020 Nobel Prize for Chemistry was awarded to 
Emmanuelle Charpentier and Jennifer Duodna “for the 
development of a method for genome editing,” the CRISPR/
Cas9 (Clustered Regularly-Interspaced Short Palindromic 
Repeats) genetic scissors [116]. This important topic was 
presented by Christof Fellmann, a colleague of Jennifer 
Duodna at the 2019 8th Cancer Metastasis Congress in San 
Francisco [117]. He was not able to write this section and 
this write-up has been extracted from his talk, Emerging 
Roles of CRISPR-Ca in Precision Oncology (available at: 
https://​www.​vumedi.​com/​video/​emerg​ing-​roles-​of-​crispr-​
cas-​in-​preci​sion-​oncol​ogy/) with his permission. The mech-
anism of CRISPR-Cas in editing the genetic code has been 
discovered by Charpentier and Duodna based on the adap-
tive immunity in bacteria and archaea against plasmids and 
viral infections [118–121]. CRISPR-Cas being associated 
with adaptive immune systems are found in roughly 50% of 
bacteria and 90% of archaea [122].

Like the vertebrate adaptive immunity, CRISPR immu-
nity functions similarly by generating memory of previous 
infections to launch a rapid and effective response during 
reinfection. Cas9 from S. pyogenes in particular has proven 
enormously useful for genome editing. The original Cas9, a 
two-component system can be rendered into one system by 
fusing the CRISPR RNA (crRNA) and tracer RNA (tracr-
RNA) into a single guide RNA (sgRNA) (Fig. 4), thus, 
allowing ease for genome editing by cutting the specific 
DNA segment and incorporation of donor DNA (genetic 
engineering), transcriptional control, RNA targeting, and 
imaging [123, 124]. CRISPR-Cas9 has been used in differ-
ent cell types and organisms including mice and monkeys to 
primary human T cells and stem cells in addition to plants, 
bacteria, and fungi [123, 124].

With the rapid expansion of personalized and reference 
genomics, CRISPR-Cas genetic editing tools have opened 
unlimited genetic manipulation in different biological sys-
tems, including human cells [119, 125–128]. It enables 
editing, inhibition or activation of genes, it will allow more 
fundamental understanding of biology and create disease 
models to develop therapeutic strategies. It can be applied 
to drug target discovery, toxicology and diagnostics. It can 
help to develop more effective cellular therapies with novel 
therapeutics [129]. CRISPR may be applied in understand-
ing cancer and metastasis to allow: (1) precision edits at 

Fig. 4   Courtesy of Professor Jennifer Duodna. Molecular model 
of Cias9 protein and fused RNA onto the DNA based on crystallo-
graphic structures. The Cas9 protein is bound to the fused RNA as a 
guide to the targeted sequence of the DNA. Once the RNA is bound 
to the DNA at the specific targeted segment, the Cas9 protein cuts 
precisely the targeted segment of the DNA with resultant repair of the 
cut-off segment

https://www.vumedi.com/video/emerging-roles-of-crispr-cas-in-precision-oncology/
https://www.vumedi.com/video/emerging-roles-of-crispr-cas-in-precision-oncology/


96	 Clinical & Experimental Metastasis (2022) 39:85–99

1 3

single-gene level; (2) large scale in vitro and in vivo studies 
of functional genomics; (3) Screens for knockout, inhibi-
tion, activation and methylation and (4) growing toolkit of 
new editing modalities. Also, from the diagnostic and treat-
ment points of view, CRISPR may be used to develop: (1) 
CAS12a, Cas13a-based detection kits, (2) cell based thera-
pies, such as CAR T cells and (3) somatic in vivo editing for 
Mendelian diseases and cancer-related genes [130]. Indeed, 
CRISPR-Cas is a revolutionary molecular technique which 
can edit the genetic code of DNA and can be considered as a 
molecular scalpel for precision medicine. Thus, beyond the 
realm of cancer evolution within the cancer microenviron-
ment, CRISPR-Cas system has opened new vistas with the 
ability of editing specific genes to modify cancer evolution 
and the cancer microenvironment with the goal to halt can-
cer evolution and progression, thus, controlling and eventu-
ally stopping the cancer growth and metastasis.

Summary and future perspectives

Marlys Witte

New ideas replace the old but the old comes back again—
epitomizes the growing emphasis on the critical cancer 
microenvironment, its interplay with the genomics of the 
cancer cell, and the evolution of the metastatic process, i.e. 
whether and even where the cancer will spread. Histori-
cally, for several centuries before Virchow’s demonstration 
that cancer involved aberrant cells, the term “cancer” was 
almost synonymous with “lymph”, i.e. a disease of the tis-
sues and tissue fluid [131]. It is only relatively recently that 
there has been an increased recognition of the influence of 
surrounding non-cancer cells and their products along with 
alterations in the stracellular matrix in determining the fate 
of the cancer cell and even the genes expressed, particu-
larly those related to epithelial-mesenchymal transition in a 
reversion to a migrating invading embryonic phenotype. The 
evolving integration of cancer cell genetics and epigenetics 
(environment within and outside the cancer cell) mirrors 
the larger recognition over the last several decades of the 
importance of epigenetics/environment on the expression 
of genes (heredity) more generally.

Moreover, understanding of lymphatic “systemomics” has 
simultaneously evolved, encompassing not only lymphatic 
vessels and “lymph” permeating the tissues and circulat-
ing in collecting channels through lymph nodes to return 
to the bloodstream, but also as a route of entry of harmful 
substances (e.g., carcinogens, cancer-causing and protective 
microbes), as a transport system for abnormal cells and their 
products to disseminate, and as the center of the immune 
network of resident and circulating “immunocytes” [132].

The communications in this symposium session illumi-
nate the multifaceted aspects of the evolution of thinking 
about cancer, lymphatic systemomics, and potential thera-
peutic implications for modulating the influence of the can-
cer microenvironment on the fate of both the cancer cell and 
ultimately, the host.
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