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Abstract
Predicting time-dependent survival probability of a breast cancer patient using information such as primary tumor size, 
grade, node spread status, and patient age at the time of surgery can be of immense help in managing life expectations and 
strategizing postoperative treatment. However, for moderate-sized clinical datasets the application of standard Kaplan–Meier 
theory to determine survival probability as a function of multiple cofactors can become challenging when continuous vari-
ables like tumor diameter and survival time are segmented into a large number of narrow intervals, a problem commonly 
termed the curse of dimensionality. We circumvent this problem by modeling the patient-to-patient distribution of primary 
tumor diameter with a realistic, right-skewed function, and then matching the diameter-marginalized survival with the mean 
Kaplan–Meier survival for the data. We apply this procedure on a recent clinical data from 1875 breast cancer patients 
and develop parameters that can be readily used to estimate post-surgery survival for an arbitrary time length. Finally, we 
show that the observed fraction of node-positive patients can be quantitatively explained within a simple tumor growth and 
metastasis framework. Employing two different tumor growth models from the literature (i.e., Gompertz and logistic growth 
models), we utilize the observed fraction-node-positive data to determine metastasis rates from the surface of a primary 
tumor and its patient-to-patient distribution.
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Introduction

Breast cancer is a leading cause of death for women world-
wide [1]. When a breast cancer patient is faced with the deci-
sion of whether to undergo surgery, it is of immense help 
to have knowledge of the expected survival time (beyond 
surgery) as a function of the patient’s age and features of 
the primary tumor, such as size, grade, and whether it has 
spread to one or multiple nodes. Such knowledge can sig-
nificantly aid in managing the patient’s quality of life along 
with choosing among postoperative treatment options. 
Kaplan–Meier (KM) theory [2] has long been the standard 

nonparametric method of computing survival probability 
curves from right-censored (or uncensored) data and has 
been employed by many past studies on estimating effects 
of cofactors such as tumor features (size, grade, node spread 
status) and patient age at the time of surgery on post-surgery 
survival chances [3–5]. However, the accuracy and prac-
tical application of the method requires a large dataset of 
patients comprising maybe tens of thousands to hundreds of 
thousands of subjects studied over a long period of time [6, 
7]. A moderately large dataset (hundreds to a few thousand 
subjects) segmented into narrow ranges of patient age, tumor 
diameter, specific grade, and node status quickly becomes 
too sparse for reliable application of KM.

In this work we address the above challenge by categoriz-
ing only the age variable while keeping tumor diameter and 
time of survival as continuous variables. The post-surgery 
survival probability of a patient is expressed as a param-
eterized function of the two continuous variables, i.e., (1) 
tumor diameter at the time of surgery, and (2) the amount of 
time (number of years) beyond surgery, with the parameter 
values being dependent on the categorical cofactors (patient 
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age group, tumor grade, and node status at the time of sur-
gery). Optimized parameters are determined by represent-
ing the patient-to-patient distribution of diameters with a 
smooth right-skewed function [8], and then matching the 
resulting diameter-marginalized survival function with the 
Kaplan–Meier mean survival curve computed from clini-
cal data. The procedure yields the survival probability of a 
patient as a function of time after surgery, and cofactors such 
as age group, tumor diameter, and node status.

Finally, we show that the observed fraction of patients 
with positive lymph nodes (i.e., with metastatic spread to at 
least one of the nodes) can be quantitatively explained by a 
simple tumor growth and metastasis model. Using two dif-
ferent tumor growth models from the literature and assum-
ing metastasis rates proportional to tumor surface area, we 
utilize the observed fraction of node-positive patients in our 
clinical dataset to determine the metastasis rate constant and 
the distribution of its patient-to-patient variation.

Data

In this work, we analyze the METABRIC (Molecular Tax-
onomy of Breast Cancer International Consortium) breast 
cancer dataset on around 2000 patients [9]. This dataset 
has been the subject of several recent studies, ranging from 
genomic architecture [9] and signaling pathways [10] to can-
cer prognosis using machine learning [11] and evolutionary 
modeling of breast cancer [12]. For our own purposes, we 
focus on six variables: patient age, tumor diameter, survival 
status (censored or uncensored), survival time, neoplasm 
histologic grade (henceforth referred to simply as tumor 
“grade”), and the Nottingham Prognostic Index (NPI). 
Tumor grade in this dataset is a three-level categorical vari-
able defined as either 1 (well-differentiated, more benign), 
2 (moderately differentiated), or 3 (poorly differentiated). 
Node status (“node”), was also included as a three-level 
categorical variable defined as node = 1 (no nodes affected 
by metastatic spread), node = 2 (1–3 nodes affected), or 
node = 3 (more than 3 nodes affected). The Nottingham 
Index, NPI, is the sum of node, grade, and a small contribu-
tion proportional to the tumor diameter. Thus, it is straight-
forward to determine the node status N for each patient.

After removing patients with incomplete data, we ended 
up with 1875 patients in our dataset, which had the fol-
lowing frequency breakdown: node = 1 (968), node = 2 
(603), node = 3 (304); grade = 1 (167), grade = 2 (763), 
and grade = 3 (945). Figure 1 summarizes the distribution 
of tumor diameter and (uncensored) survival times for the 
different node and grade categories. From the boxplots of 
Fig. 1a and b, we can see a positive association between 
diameter size and node status and a negative association 
between survival times and node status, i.e., with higher 

levels of metastatic spread to the nodes the diameter dis-
tribution changes to larger sizes and survival times shift to 
smaller values, respectively. Also, the probability of survival 
as a function of tumor grade is qualitatively similar to the 
probability of survival as a function of node status, although 
there are some quantitative differences, as discussed in the 
sections below.

Kaplan–Meier survival

From the censored survival data, it is straightforward to 
compute the survival probability (along with uncertainty 
estimation) using KM theory. The mean KM survival prob-
ability for the whole dataset of 1875 patients, as well as for 
subsets segmented according to node status, age group, and 
tumor grade, is summarized in Fig. 2. The uncertainty in 
the estimate of overall survival is represented by the 95% 
confidence bounds in Fig. 2a. Such uncertainty is known to 
increase proportionally to the time of survival and decrease 
inversely proportionally to the square root of the number of 
patients at risk [2]. Thus, for categories with a low number 
of samples, the uncertainty in the KM estimate can be sig-
nificantly higher than the tight bounds indicated in Fig. 2a.

Prior to discussing survival results, we would like to note 
that age was categorized into three levels (or age groups), 
i.e., < 55 (age group 1), 55–65 (age group 2), and > 65 (age 
group 3), with 611, 496, and 768 patients, respectively. Such 
choices of groups were based on an exploration of different 
segmentations and performing logrank tests [13] to decide if 
statistically significant differences in survival existed among 
different age groups. For instance, if we segment the data 
into four age groups, < 50, 50–60, 60–70, and > 70, we find 
no significant survival difference between the first two age 
groups, but significant differences among all other pairs. The 
chosen three-level age categorization in this work was not 
based on any rigorous statistical procedure, but was rather 
the result of seeking a segmentation that satisfies: (1) a small 
number of categories; (2) round values of age boundaries; 
(3) significant survival difference between each age group 
pair (by logrank test); and (4) significant patient population 
in each age group.

From the KM curves of Fig. 2b–d several interesting trends 
were noted. The overall decreasing survival probability with 
increasing node status, age group, and tumor grade is intuitive, 
and thus, not surprising. However, some results were unex-
pected. For instance, Fig. 2c shows that for times less than 8 
years, the survival probability is higher for age group 55–65 
than for age group < 55. Logrank tests [13] indicate signifi-
cant survival differences among the three age groups (< 55, 
55–65, and > 65), although the difference between the first two 
age groups is relatively smaller than their difference from age 
group 3. Such results are consistent with the survival curves 
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of Fig. 2c. Also, as Fig. 2d indicates, the survival differences 
among the three tumor grades are smaller than those between 
the node categories. Thus, in the following analysis, depend-
ence on node status has been explored more extensively.

As shown in Fig. 2b–d, the Cox proportional hazard model 
[14, 15] does not hold as a function of cofactors such as node 
status, age group, or tumor grade. Figure 3, which plots the 
hazard function for the three different node status and the three 
different age groups, supports this finding. Statistical tests on 
hazard proportionality [16] on node, grade, and age group 
cofactors resulted in significantly small p-values in all cases, 
thereby confirming the non-applicability of the Cox model 
for this dataset.

Distribution of tumor diameters 
and the survival function

The main strategy in this work, i.e., fitting the distribution 
of diameters with a smooth probability distribution, arose 
from noting that in the METABRIC dataset the diameter 
distribution for any category segment appears to follow the 
same qualitatively similar right-skewed distribution. This 
is exemplified in Fig. 4 for four different categories, i.e., 
(a) the entire dataset of 1875 patients; (b) patients with 
tumor grade 3; (c) patients of age group 1 (< 55) with node 
status 1; and (d) patients with node status 3.

Fig. 1  Exploratory data analysis of the METABRIC dataset. Boxplot representation of the distribution of tumor diameter and survival times 
(uncensored) for the three levels of node status and tumor grades
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To fit the right-skewed histograms of Fig. 4 we chose the 
following three-parameter probability distribution function, 
originally used by Dagum [8]:

Thus, for each category subset, we have a set of Dagum 
parameters a, b, p that best fits the corresponding histogram 
of diameter distribution, which results in the best fit �pdf (D) 
for that category.

As mentioned in the introduction, the reason for pursuing 
a smooth diameter distribution in this work is twofold: (1) 
lack of enough data within an over-specified category with a 
narrow range of diameters; and (2) resulting increase in the 
number of model parameters. The idea behind our approach is 
that each KM survival curve of Fig. 2 is a marginal distribution 

(1)�pdf (D) =
(ap∕b)(D∕b)ap−1

{

(D∕b)a + 1
}p+1

of a survival function (S) of two continuous variables, survival 
time (t) and tumor diameter (D), that has been marginalized 
(or integrated) over variable D. Next, we selected a functional 
form for S as a function of two continuous variables, t and 
D. To this end, we segmented the dataset according to many 
different (node, age group, grade, diameter range) classes and 
explored the patterns of KM survival probability. From such 
analyses we found that survival probability as a function of t 
and D can be modeled by the function:

where z represents the set of cofactors such as node sta-
tus, age group, and tumor grade. In the above model, the 
exponent n is kept independent of the cofactors z, while 
the parameters k and � are both z-dependent. The hazard 

(2)S(D, t; z) = e−k(z)D
nt�(z) ,

Fig. 2  Mean Kaplan–Meier survival probability for the METABRIC dataset: a whole dataset, b for each level of node status, c for each of the 
three age groups, d for each level of tumor grade. In a the 95% confidence margins are also included
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Fig. 3  The hazard function corresponding to the KM survival curves of Fig. 2b and c. The hazard ratio between different curves vary with time, 
thus showing the inapplicability of the Cox proportional hazard model for cofactors such as node status and age group

function [17, 18] corresponding to the above model is read-
ily obtained as:

The z-dependence of the parameter � (along with margin-
alization over diameters D as discussed in the following sec-
tion) leads to the breakdown of the Cox proportional hazard 
model, consistent with previous discussions.

Optimizing parameters and survival 
as a function of diameter

The optimized survival parameters n, k(z), and �(z) are 
obtained by matching the marginalized survival, defined by:

with the corresponding KM survival curves, e.g., as shown 
in Fig. 2. From numerical experiments, we see that the 
root-mean-squared error (RMSE) between the KM sur-
vival curves computed from the data and the corresponding 

(3)h(D, t;z) = �(z)k(z)Dnt�(z)−1.

(4)Smodel(t;z) = ∫ �pdf (D)e
−k(z)Dnt�(z)dD,

marginalized survival Smodel is low for a range of values 
of the triplet (n, k(z), �(z)) . Thus, to reduce the number 
of parameters, we constrain the parameter n to be of fixed 
value (independent of cofactors z ) and optimize only k(z) and 
�(z) for each cofactor combination of interest. In the analy-
sis below, we have chosen this value to be 0.8, although a 
slightly different value of n (e.g., 0.7 or 0.9) would have also 
yielded comparable results. Table 1 lists the various cofactor 
sets we have explored in this study and the corresponding 
optimized survival parameters. Figure 5 displays the results 
for Smodel corresponding to the cofactor sets in Fig. 2. These 
results show good agreement with the KM curves of Fig. 2.

With the optimized parameters shown in Table 1, Eq. 
(4) can readily be used to estimate survival probability as 
a function of D. Figure 6 illustrates such a prediction for 
example cases. When comparing Fig. 6a and b, we see that 
the 5-year survival probability for age group 2 is higher than 
that of age group 1, while the trend reverses for the 15-year 
survival probability, which is consistent with the survival 
curves of Fig. 2c and 5c. The relative ordering of the curves 
for other cofactors is also as expected.

As a more direct rationalization of the choice of the 
optimized parameters in Table 1, we have segmented the 
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diameters into 14 intervals and computed the mean survival 
for each interval. Figure 7 compares these results (for arbi-
trarily chosen cases) with predictions from our model sur-
vival function (Eq. (2)) using parameters from Table 1. The 
scatterplots show large fluctuations as a function of diameter, 
the direct result of a relatively small number of data points 
within each segment. Additionally, reliable results for larger 
diameters are absent due to the lack of significant data for 
D > 80 mm. Nonetheless, the consistency of the model pre-
diction is apparent in each case and it provides confidence 
in the survival function and the parameters derived above.

Fraction‑node‑positivity and metastasis 
rates

To make a quantitative connection between node positivity 
and metastasis rates, we computed the fraction of patients 
with at least one positive node (i.e., node status 2 or 3) for 
small ranges of tumor diameters. The results are shown as 
data points (open squares) in Fig. 8. If we assume metastasis 
to occur homogeneously from the tumor surface [19, 20], the 
rate of metastasis for a tumor of diameter D should be equal 

to mD2 , where m is a metastasis rate constant. Assuming 
metastasis to be a Poisson process [21], the total probabil-
ity of spread to any node during the lifetime of the tumor, 
i.e., during its entire growth time from size 0 (at the time 
of inception) to size D (at the time of surgery) is given by:

where “node positive” means that at least one lymph node 
has been affected by metastatic spread, D(�) is a function 
that represents how the tumor grows with time, t1 is the age 
of the tumor at the time of surgery, and D

(

t1
)

= D is the 
size of the tumor at the time of surgery. Given that growth 
rates cannot be obtained from survival data, we need to 
use growth models developed in the literature. To this end, 
we considered two different growth models for the pri-
mary breast tumor, i.e., a Logistic growth model [22] and 
a Gompertz growth model [23]. In both these models, the 
tumor growth rate follows a lognormal distribution with 
finite standard deviation. Explicitly, the growth models (in 
terms of diameter) are as follows:

Logistic growth model [22]:

(5)P(node positive) = 1 − e−∫ t1
0
mD2(�)d� ,

Fig. 4  Density histogram of tumor diameters for four different stratifications and the corresponding best fits with the Dagum probability distribu-
tion (see Eq. (1) in text)
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Gompertz growth model [23]:

In the above, Dmax is the theoretical maximum diameter 
and Dcell the diameter of a single cell (tumor size at time 
0). In Eq. (6a), the growth parameter � follows a lognormal 
distribution with mean 1.07 and standard deviation 1.14 
[22], while in Eq. (6b) the growth parameter � follows a 
lognormal distribution with mean − 2.9 and standard devia-
tion 0.71 [23]. We would like to note that in Norton’s origi-
nal paper [23], time origin t = 0 was defined when tumor 
reaches a size of N(0) = 4.8 × 109 cells, while in our defini-
tion (Eq. (6b)) time starts when tumor is of size 1 cell. This 
translational shift in time does not cause any change in the 
quantitative interpretation of the growth parameter � (which 
Norton calls b ). In the analysis below, we chose Dmax = 180 
mm and Dcell = 0.0124 mm (using a spherical cell volume 
of 10−6mm3).

The metastasis rate constant (m) is also expected to 
vary from person to person, and we assume a lognor-
mal distribution. Past studies indicate a positive correla-
tion between tumor growth and metastasis rates [24, 25]. 
Thus, we assume that (ln(m), ln(�))follows a bivariate 

(6a)D(�) = Dmax

[

1 +
{

(

Dmax∕Dcell

)3∕4
− 1

}

e−��∕4
]−4∕3

(6b)D(�) = Dcell

(

Dmax∕Dcell

)1−e−��

normal distribution with some positive correlation coef-
ficient � , i.e., (ln(m), ln(�))∼N(�,Σ) , with the mean and 
covariance matrices given by:

 where the subscripts “ m ” and “ g ” refer to metastasis and 
growth parameters, respectively.

The growth rate distribution parameters (�g, �g) were cho-
sen from literature values of marginal lognormal distribu-
tions for logistic growth [22] and Gompertz growth [23]. To 
determine the metastasis rate distribution parameters �m , �m 
we use the following strategy:

1. assume a positive value of the growth-metastasis log-log 
correlation ( � ) and keep it constant;

2. choose a specific value of marginal metastasis param-
eters (�m, �m);

3. draw a large number (1000) of random pairs (ln(m), ln(�)) 
from a bivariate normal distribution (Eq. (7)), compute 
P(nodepositive) as a function of D (using Eq. (5)) for 
each drawn value of m , average over all 1000 drawings, 
and compare this average P(nodepositive) curve to the 
open squares of Fig. 8;

4. repeat steps (2) and (3) (for a fixed � ) until the distri-
bution-averaged P(nodepositive) curve has minimum 
root-mean-square-error (RMSE) with respect to the 
open squares of Fig. 8.

For a given value of � , we were able to find an optimized 
pair (�m, �m) , which yields a result quantitatively similar to the 
dashed curve of Fig. 8. Table 2 lists these optimized metastasis 
parameters for each of the two growth models for a few dif-
ferent values of the correlation coefficient � . Table 2 shows 
that with increase in � the standard deviation �m increases, 
while the mean �m remains unchanged. However, the metas-
tasis parameter values are sensitive to the growth model and 
parameters, which is not unexpected, given noticeable differ-
ences between the growth parameters of refs. [22, 23]. Had a 
tumor growth model existed on the METABRIC population 
itself, that would have been the most appropriate to use for 
this dataset.

Finally, we would like to clarify that metastasis rates dis-
cussed here pertain only to spread from the primary tumor 
to the lymph nodes. There are additional processes whereby 
metastatic spread can occur from the primary tumor and the 
lymph nodes to distant organs. Extracting such rates from sur-
vival data would require complex biological models of direct 
and indirect spread and assumptions relating a critical level of 
metastasis to subsequent organ failure and death.

(7)� =

[

�m

�g

]

and Σ =

[

�
2
m

��m�g

��m�g �
2
g

]

,

Table 1  Optimized survival parameters for different cofactor sets 
(fixed n = 0.8 ). These parameters are to be used with Eq. (2) to esti-
mate the survival probability for a given tumor diameter D (in mm) 
and a given time of survival t  (in years)

z k(z) �(z)

All 0.00274 1.196
Node 1 0.00130 1.417
Node 2 0.00299 1.167
Node 3 0.00561 1.137
Age group 1 (younger than 55) 0.00419 0.883
Age group 2 (55 ≤ age < 65) 0.00207 1.248
Age group 3 (65 and over) 0.00208 1.445
Tumor grade 1 0.00076 1.609
Tumor grade 2 0.00112 1.521
Tumor grade 3 0.00474 1.022
Node 1, age group 1 0.00144 1.178
Node 1, age group 2 0.00137 1.353
Node 1, age group 3 0.00100 1.668
Node 2, age group 1 0.00496 0.834
Node 2, age group 2 0.00059 1.713
Node 2, age group 3 0.00245 1.428
Node 3, age group 1 0.00659 1.030
Node 3, age group 2 0.00607 1.072
Node 3, age group 3 0.00482 1.279
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Summary

The aim in this work was to develop a model for predicting 
survival probability as a function of continuous time and 
tumor diameter for different cofactors such as node status, 
patient age group, and tumor grade. In order to overcome 
data sparsity shortcomings within small diameter ranges 
in a moderately-sized dataset like the METABRIC dataset, 
we adopted the strategy of representing the tumor diameter 
distribution among patients with a Dagum probability dis-
tribution [8], and then optimizing the model parameters to 
best match the corresponding KM mean survival curve. By 
analyzing the METABRIC dataset [9] we observe that the 
Cox proportional hazard model is not applicable for the 
cofactors of interest, i.e., the hazard ratio between different 

node statuses, age groups, or tumor grade levels do not 
remain constant as a function of time. Our model survival 
function intrinsically takes this into account by incor-
porating cofactor-dependent exponents (Eq. (2)), along 
with marginalization over diameter distribution (Eq. (4)). 
These parameters can be readily used to estimate the sur-
vival probability of a patient for any specified length of 
time beyond surgery. Such an approach was found to have 
accurate predictive power for mean survival probability 
for different cofactor combinations and was able to flex-
ibly reproduce unexpected features in the data, e.g., the 
reversal of survival probabilities between age groups 1 and 
2 as a function of time.

Finally, by studying the fraction of node-positive patients 
as a function of tumor diameter, we show how to decipher 

Fig. 5  Model-predicted mean survival probability using Eqs. (2) and 
(4) for the four cases corresponding to Fig. 2. Top left whole data-
set, top right for each node status, bottom left for each age group,  

bottom right for each tumor grade.  For direct comparison, top 
left also includes the KM mean survival curve from Fig. 2a
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metastasis rates from the primary tumor surface to the lymph 
nodes (prior to tumor removal via surgery). More specifi-
cally, assuming known models for tumor growth rate � from 
the literature [22, 23], assuming a metastasis rate m propor-
tional to the tumor surface area, and assuming a bivariate 
lognormal distribution of (m, �) , we determine the marginal 
patient-to-patient distribution of m (see Table 2).

A knowledge of the mean survival probability (along with 
uncertainty bounds) as a function of the primary tumor’s 

size, grade, node status, and patient age can be of immense 
help in managing the patient’s quality of life beyond sur-
gery. Such knowledge can aid doctor’s recommendation and 
patient’s choice of postoperative treatment options. Addi-
tionally, knowing mean metastasis rates (and its variability) 
could enable doctors make more informed assessment on 
the progression of the disease, especially in cases where the 
metastatic tumors are too small to be detectable by current 
clinical means.

Fig. 6  Model-predicted survival probability as a function of tumor diameter using Eq. (2): a KM5 curves for three age groups, b KM15 curves 
for three age groups, c KM10 curves for the three nodes, d KM5, KM7, KM10, KM15 curves for node 1, age group 3
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Fig. 7  Results from direct calculation of mean KM survival prob-
ability for various diameter segmentations within specified cofactor 
categories (open circles) compared with model-predicted probability 
(dashed line) using Eq. (2). The four cases have been arbitrarily cho-

sen for illustration purposes. Top left whole dataset for KM 5 year, 
top right whole dataset for KM 10 year, bottom left node status 2 for 
KM 10 year, bottom right node status 1 and age group 3 for KM 10 
year

Fig. 8  Fraction-node-positive results for the whole METABRIC 
dataset. (open squares) Fraction of patients with at least one node 
affected (i.e. node status 2 or 3) for different diameter ranges directly 
computed from the METABRIC dataset; (dashed line) best fit using 
Eq.  (5) that was averaged over the joint lognormal distribution of 
tumor growth and metastasis rates (Eq. (7)). The optimized metasta-
sis parameters are listed in Table 2

Table 2  Optimized parameters for the marginal lognormal distribu-
tion of metastasis ratemobtained by fitting the observed fraction of 
node-positive patients in the METABRIC dataset as a function of 
tumor diameterD(open squares in Fig. 8)

Results for two different growth models are indicated separately. The 
various parameters are defined in the text (Eq. (7))

Tumor growth model � (�m, �m)

Logistic [22] 0.1 (− 6.1, 2.45)
0.3 (− 6.1, 2.7)
0.5 (− 6.1, 3.05)
0.7 (− 6.1, 3.25)

Gompertz [23] 0.1 (− 7.5, 3.5)
0.3 (− 7.5, 3.7)
0.5 (− 7.5, 3.85)
0.7 (− 7.5, 4.0)
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