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Abstract
Metabolic alterations are established as a hallmark of cancer. Such hallmark changes in cancer metabolism are characterized 
by reprogramming of energy-producing pathways and increases in the generation of biosynthetic intermediates to meet the 
needs of rapidly proliferating tumor cells. Various metabolic phenotypes such as aerobic glycolysis, increased glutamine 
consumption, and lipolysis have also been associated with the process of metastasis. However, in addition to the energy 
and biosynthetic alterations, a number of secondary functions of enzymes and metabolites are emerging that specifically 
contribute to metastasis. Here, we describe atypical intracellular roles of metabolic enzymes, extracellular functions of 
metabolic enzymes, roles of metabolites as signaling molecules, and epigenetic regulation mediated by altered metabolism, 
all of which can affect metastatic progression. We highlight how some of these mechanisms are already being exploited for 
therapeutic purposes, and discuss how others show similar potential.
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Introduction

Despite recent exciting developments in cancer treatments, 
it is evident that metastatic disease is still a fundamental 
barrier to improved outcomes for the majority of patients. 
Indeed, metastatic disease is the main cause of cancer 
deaths. Metastatic progression is a multi-step process, that 
recent work suggest may actually begin early in cancer 
development, although this is still being investigated [1]. 
In order to establish metastatic colonies, cancer cells must 
alter themselves in a number of ways, including acquisition 
of a motile phenotype; transition from an epithelial to mes-
enchymal phenotype; acquisition of ability to enter, survive 
in, and exit the vasculature; and development of mechanisms 
to enable survival and ultimately outgrowth at distant sites. 
Cellular metabolism underlies many of those alterations and 
dysregulation of energy metabolism has been well estab-
lished as a hallmark of cancer biology [2]. For example, the 
Warburg-effect, or the observation that highly proliferative 

cells such as tumor cells are largely dependent on glycolysis 
to meet their energetic needs even in the presence of oxygen, 
is frequently associated with cancer development. Outside of 
the bioenergetic consequences of altered metabolism how-
ever, recent research has established non-canonical functions 
of metabolic enzymes and metabolites that contribute to can-
cer progression. Understanding these novel pathways could 
reveal innovative ways to specifically target the metastatic 
process. Here we describe evidence for novel mechanisms 
that link metabolic alterations in cancer and metastatic pro-
gression, and highlight some potential therapeutic strategies 
that can arise as a result.

Atypical intracellular roles of metabolic 
enzymes in metastasis

Metabolic alterations observed in cancer are often accom-
panied by dysregulation of the expression of metabolic 
enzymes. Secondary functions of these metabolic enzymes 
have been shown to contribute to metastatic progression 
through altering the signaling and genetic landscape of can-
cer cells. Glycolysis is a basic process that links glucose 
uptake with the initial steps of energy production as well 
as biosynthesis. However, several glycolytic enzymes also 
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have a number of effects outside of their classical enzymatic 
activity. For example, glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) can form a complex with the transcription 
factor Sp1 that binds to the SNAIL minimal promoter to 
drive its expression [3]. The expression of SNAIL contrib-
utes to metastasis through induction of epithelial to mesen-
chymal transition (EMT) and a more stem-like phenotype. 
EMT is an important process in metastasis that can cause 
epithelial cells to lose E-cadherin mediated cell–cell adhe-
sion and gain an invasive phenotype allowing them to move 
away from the primary tumor into surrounding stroma and 
potentially into the vasculature. Suppression of GAPDH 
resulted in loss of stem cell markers that was linked to 
decreased tumor-forming ability in a colorectal cancer model 
[3]. Another example is Pyruvate kinase M2 (PKM2), which 
is an isoform of the enzyme that catalyzes the conversion of 
phosphoenolpyruvate to pyruvate. This isoform is frequently 
upregulated in cancers and has many pro-tumorigenic roles 
[4]. One way that PKM2 can contribute to metastatic pro-
gression is through EMT. PKM2 is able to translocate to 
the nucleus and form complexes with TGIF2, a repressor of 
Transforming Growth Factor (TGF)-β signaling, and histone 
deacetylase 3 (HDAC3) [5]. The PKM2 nuclear complex 
was shown to bind to the CDH1 promoter and deacetylate it 
leading to repression of E-cadherin expression.

Although not strictly acting non-canonically, an atypical 
role of glycolysis important for invasive phenotypes relates 
to the finding of glycolytic enzymes in abundance in inva-
dopodia [6]. Glycolysis appears to be the primary energetic 
pathway for cytoskeleton remodeling in several breast and 
prostate cancer models [7]. When glycolysis was inhib-
ited through treatment with 2-deoxy-d-glucose, there was 
a decrease in focal adhesions and motility in PC3 prostate 
cancer cells. In contrast, inhibition of oxidative phosphoryla-
tion with oligomycin had no effect on the motility of prostate 
cancer cell lines. In addition, the association of glycolytic 
enzymes with the cytoskeleton is important for the viability 
of cancer cells [8–10]. Treatment of Lewis lung carcinoma, 
colon carcinoma, or breast cancer cells with clotrimazole, 
a calmodulin antagonist, resulted in decreased cell viability 
[9]. The decrease in cell viability was preceded by dissocia-
tion of glycolytic enzymes from the cytoskeleton, resulting 
in a reduction of local adenosine triphosphate (ATP) supply 
to the cytoskeleton and subsequent altered morphology.

Citric acid cycle enzymes are also associated with 
increased metastasis. Enhanced expression of ATP citrate 
lyase, which catalyzes the conversion of citrate to acetyl-
CoA and oxaloacetate, is linked to increased lipogenesis. 
Normally, the majority of lipids used for cellular functions 
including lipid membranes are obtained from the diet or 
produced in the liver. The biosynthesis requirements of 
rapidly proliferating cancer cells can result in alternative 
mechanisms including generation of acetyl-CoA through the 

activity of ATP citrate lyase. The acetyl-CoA is then a sub-
strate for fatty acid synthase, ultimately leading to membrane 
lipid production. Inhibition of fatty acid synthase and ATP 
citrate lyase slowed tumor growth and inhibited metastasis 
in non-small cell lung cancer, cervical cancer, and prostate 
cancer [11–13]. Concordantly, expression of microRNA 22 
(miR-22), which inhibits ATP citrate lyase expression, is 
downregulated in a number of cancers [14, 15]. The ectopic 
expression of miR-22 was shown to decrease de novo lipo-
genesis and metastatic ability in breast, lung, osteosarcoma, 
cervical, and prostate cancer [14]. ATP citrate lyase is a 
prospective therapeutic target and there are several novel 
inhibitors under investigation [12, 16].

Dysregulation of succinate dehydrogenase activity, 
which normally catalyzes the conversion of succinate to 
fumarate, is associated with a number of cancers including 
pheochromocytoma, renal cell carcinoma, and paraganglio-
mas [17–19]. Decreased succinate dehydrogenase activity 
leads to accumulation of succinate which inhibits prolyl-
hydroxylase (PDH) [20]. This inhibition of PDH stabilizes 
hypoxia-inducible factor 1-alpha (HIF-1α), thus activating 
pro-angiogenic HIF-1α signaling. Additionally, succinate 
dehydrogenase 5 (SDH5) has been shown to regulate glyco-
gen synthase kinase (GSK)-3β signaling in lung cancer [21]. 
SDH5 forms complexes with GSK-3β, and PP2A, a phos-
phatase that regulates activity of GSK-3β. Loss of SDH5 
results in increased β-catenin signaling and subsequent EMT 
in lung cancer. Evidence also suggests that genetic ablation 
of succinate dehydrogenase subunit b (SDHB), increases 
TGF-β signaling and activates a complex of the transcrip-
tion factors SNAIL and SMAD3/4 leading to a metastatic 
phenotype in colorectal cancer cell lines [22]. Indeed, lack of 
SDHB expression is associated with invasive and metastatic 
disease in colorectal patient samples.

Glutamine addiction is another emerging metabolic hall-
mark of cancer cells [23]. The glutamine hydrolyzing enzyme, 
glutaminase has multiple isoforms that have differing effects 
on disease progression in cancer (Fig. 1). Increased expression 
of glutaminase 1 in triple-negative breast cancer is associated 
with poor disease-free survival, and decreased tumor infiltrat-
ing leukocytes [24]. The enhanced uptake and utilization of 
glutamine by the tumor cells results in decreased availability of 
this carbon source in the tumor microenvironment. The lack of 
environmental glutamine, which is important for lymphocyte 
function [25, 26], may explain the decrease of tumor infiltrat-
ing lymphocytes and poor prognosis associated with glutami-
nase expression in triple negative breast cancer. Glutaminase 2, 
the liver isoform of glutaminase, appears to have an opposing 
role to glutaminase 1, as it is able to inhibit metastasis through 
protein binding instead of its classical catalytic functions. 
Glutaminase 2 was shown to bind the small GTPase Rac1, a 
pleiotropic regulator of multiple cellular processes [27]. The 
binding of Rac1 by glutaminase 2 blocks interactions with 
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guanine exchange factors resulting in Rac1 inhibition. Glu-
taminase 2 is also known to stabilize Dicer, which results in 
the maturation of miR-34a [28]. MiR-34a can repress the EMT 
transcription factor SNAIL and inhibit metastasis in hepatocel-
lular carcinoma.

Enzymes associated with nucleotide metabolism are also 
able to affect metastatic progression. Guanosine 5′-monophos-
phate synthase (GMPS) was shown to regulate p53 function 
through altering deubiquitylation complex [29]. GMPS is 
an enzyme normally involved in de novo purine biosynthe-
sis, and is usually sequestered in the cytosol by TRIM21. A 
complex between USP7, MDM2, and p53 is formed in the 
nucleus that results in the ubiquitylation and degradation of 
p53. However, upon genotoxic stress GMPS is imported into 
the nucleus. When in the nucleus GMPS replaces MDM2 in 
the complex, and induces USP7 mediated deubiquitylation and 
stabilization of p53, resulting in increased transcription of p53 
target genes. Loss of normal p53 function has been associated 
with metastasis [30]. Understanding how to target enzymes 
such as TRIM21 to promote this secondary function of GMPS 
and thus induce p53 activity has potential as a therapy for 
metastasis.

Extracellular roles of metabolic enzymes 
in metastasis

A number of metabolic enzymes can actually be secreted 
and drive cancer progression through alternative roles 
as signaling molecules. The most studied example of a 
secreted metabolic enzyme acting as a signaling molecule 
is phosphohexose isomerase (PHI), also known as auto-
crine motility factor (AMF), neuroleukin, or maturation 
factor. The canonical role of PHI is early in glycolysis 
where it catalyzes the conversion of glucose-5-phosphate 
to fructose-6-phosphate. The expression of PHI is under 
the control of HIF-1α, and phosphoinositide 3-kinase 
(PI3 K) [31, 32]. When secreted from cells, PHI exhibits 
functions outside of its normal enzymatic role by bind-
ing and signaling through its cognate receptor gp78 [33] 
(Fig. 2). PHI expression enhances metastasis in pancreatic 
and colorectal cancer [34, 35]. One of the ways that PHI 
contributes to metastasis is through induction of EMT. 
Ectopic expression of PHI is sufficient to drive EMT in 
a number of cancers including breast cancer [36] and 

Fig. 1   Isoforms of glutaminase have opposing roles in cancer metas-
tasis. Glutaminase 1 increases tumor cell survival via its canonical 
catalytic activity. Opposingly glutaminase 2 inhibits tumor metasta-

sis and EMT via its secondary functions as a binding protein (Details 
in text). EMT epithelial-mesenchymal transition, Rac1 ras-related C3 
botulinum toxin substrate 1
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endometrial cancer via mitogen-activated protein kinase 
(MAPK) signaling [37]. PHI can also signal through 
NF-κB resulting in increased expression of the mesen-
chymal transcription factors ZEB1, and ZEB2 in addition 
to decreasing expression of miR-200, a microRNA that 
represses expression of ZEB1 and ZEB2 [38].

Expression of PHI was shown to increase motility of 
cancer cells by regulating expression of microtubule asso-
ciated proteins such as kinesin-like protein KIF3A [39]. 
PHI also plays a role in cytoskeletal dynamics by modulat-
ing expression of Rho GTPases and Rac1 [40]. Expression 
of PHI in melanoma cells leads to the formation of stress 
fibers that are importance for cell migration. Additionally, 
PHI can increase the invasiveness of hepatoma cells by 
increasing expression of integrin β1, which is important 
for cellular adhesion to extracellular matrix, and secre-
tion of MMP2, which plays a role in degrading the sur-
rounding extracellular matrix and allowing tumor cells to 
invade [41]. In all these cases, PHI is thought to act in an 
autocrine manner, binding to the same cells from which it 
is secreted. Outside of intrinsic cancer cell signaling PHI 
has also demonstrated paracrine activity. Expression of the 
PHI receptor, gp78, was reporting in normal endothelial 
cells [42]. PHI secreted by tumor cells signaled in an auto-
crine manner to increase expression of vascular endothe-
lial growth factor (VEGF) in cancer cells. Simultaneously, 
PHI acted in a paracrine manner on endothelial cells in 

order to increase expression of VEGF receptor FLT-1 and 
endothelial cell motility. Together these events increased 
the permeability of endothelial vessels and contributed to 
formation of ascites in a mouse mode l [43].

A number of other metabolic enzymes may contrib-
ute to cancer progression upon their secretion. Secreted 
phospholipase A2 (sPLA2) has been shown to have dif-
fering roles dependent on its localization. When expressed 
intracellularly, sPLA2 can inhibit Wnt signaling through 
activation of Yap in intestinal tissue [44]. Upon inflamma-
tion however sPLA2 is secreted into the lumen where it 
increases Wnt signaling, and prostaglandin E2 synthesis 
via the sPLA2 receptor Plar2r1 which is associated with 
increased susceptibility to colon cancer [44]. Increased 
Wnt signaling is also associated with metastasis, and 
EMT in cancer [45]. In addition, sPLA2 has been shown 
to confer protection against lipotoxic stress, and nutrient 
deprivation in breast cancer cell lines [46]. Peroxredoxin 
4 (PRDX4), the only secreted member of a family of per-
oxidase enzymes, was shown to induce osteoclastogenesis 
in a RANKL independent manner [47]. The secretion of 
PRDX4 led to increased ERK, and calcium/NFATc1 sign-
aling which is mediated by the IgG like receptors OSCAR 
and TREM-2. Genetic ablation of PRDX4 expression led 
to decreased oseteoclastogenesis in vitro, and decreased 
osteolytic lesions in mice in the setting of breast- prostate-
to-bone metastasis.

Fig. 2   Secreted PHI has autocrine and paracrine signaling roles. PHI 
drives pro-tumorigenic MAPK signaling, EMT, and secretion of angi-
ogenic factors. PHI sensitizes endothelial cells to angiogenic signal-
ing by increasing expression of VEGF receptors. PHI phosphohexose 

isomerase, MAPK mitogen-activated protein kinase, EMT epithelial-
mesenchymal transition, AMFR autocrine motility factor receptor, 
VEGF vascular endothelial growth factor
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Metabolites as metastasis‑modifying 
signaling molecules

Changes in metabolism commonly observed in cancer 
often result in the accumulation of metabolites. These 
metabolites can act as intracellular or extracellular signal-
ing molecules that have multiple effects, which are some-
times contrary to each other. For example, incubation of 
metastatic prostate cancer cell lines with citrate has been 
shown to enhance motility and invasion, as well as inhibit 
cell adhesion [11]. Moreover, in lung adenocarcinoma 
and squamous cell lung cancer, expression of SLC25A1, 
a transporter responsible for transporting citrate out of the 
mitochondria into the cytosol, could drive cancer cells to 
a stem-cell like phenotype, and increase colony formation 
[48]. In contrast, there is some evidence that treatment 
with citrate can slow tumor growth in a number of tumor 
models including breast, lung and pancreatic cancer [49]. 
The treatment with citrate was shown to inhibit glycolysis, 
and insulin-like growth factor 1 receptor phosphorylation. 
This corresponds with evidence of decreased citrate levels 
being a biomarkers in prostate cancer [50].

Glutamine is imported into cells through various 
transporters, including ASCT2 (also known as SLC1A5) 
[51] (Fig. 3). Blocking glutamine uptake by ablation of 
ASCT2 expression causes decreased proliferation, and 
activation of mTORC1 signaling in prostate cancer cells 
[52], as well as decreased migration in osteosarcoma, 
and triple-negative breast cancer [53]. Pharmacological 

blockade of ASCT2 mediated glutamine uptake by GPNA 
and benzylserine was shown to have anti-tumor effects in 
endometrial carcinoma [54]. A novel class of 2-amino-4-
bis(aryloxybenzyl)amino butanoic acid (AABA) derived 
drugs designed to target ASCT2, such as V-9302, have 
been demonstrated to decrease proliferation, and increase 
cell death, and oxidative stress [55]. Recent evidence how-
ever, suggests that V-9302 may instead block glutamine 
uptake mediated by redundant glutamine transporters that 
show increased expression in some cancers such as SNAT2 
[56]. In melanoma cells, glutamine can inhibit platelet-
activating factor-induced MAPK signaling [57], resulting 
in decreased metastasis and angiogenesis downstream of 
platelet-activating factor signaling.

The first step in the catabolism of glutamine is the 
conversion from glutamine to glutamate. Glutamate can 
also play an important role in regulating the metastasis 
of cancer by acting as a signaling molecule (Fig. 3). Dis-
ruption of the glutamate-cysteine antiporter xCT (also 
known as SLC7A11) leading to the retention of cellular 
glutamate and reduction of cysteine consumption, results 
in decreased proliferation, and decreased invasion in non-
small cell lung cancer [58]. In addition, inhibition of xCT 
leads to decreased viability in glucose deprived states 
[59]. When xCT is functional and glutamate is exported, 
glutamate can signal through multiple types of recep-
tors. The first class of glutamate receptors are metabo-
tropic glutamate receptors [60]. G protein-coupled recep-
tors that are able to activate multiple pro-tumorigenic 
signaling pathways such as MAPK and AKT signaling. 

Fig. 3   Glutamate is a pro-metastatic signaling molecule. Glutamate 
produced by the hydrolyzation of glutamine is able to be exported 
from tumor cells via transporters like xCT. This secreted glutamate is 
able to drive pro-tumorigenic signaling by binding to ionotropic and 

metabotropic glutamate receptors AMPAR, and GRM. GRM metabo-
tropic glutamate receptor, AMPAR α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor, GLN glutamine, GLU glutamate, 
MAPK mitogen-activated protein kinase, AKT protein kinase B



216	 Clinical & Experimental Metastasis (2019) 36:211–224

1 3

Genetic manipulation of metabotropic glutamate receptor 
1 (GRM1) to reduce its expression led to decreased prolif-
eration of ER positive breast cancer cells [61]. Treatment 
of the oral cancer cell line B88-SDF-1 with an antagonist 
of metabotropic glutamate receptor 5 resulted in decreased 
metastasis and invasion in vivo and in vitro, respectively. 
Another class of glutamate receptor is the alpha-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 
receptors, which are ionotropic receptors that act as ion 
channels. Activation of AMPA receptor was shown to 
drive invasion in pancreatic cancer cells via MAPK sign-
aling [62]. Knockdown of the glutamate receptor AMPA4 
reduced expression of genes associated with adhesion, and 
invasion [63].

Another important metabolic fate of glutamate is its 
conversion to gamma-aminobutyric acid (GABA) by glu-
tamate decarboxylase. Expression of glutamate decarboxy-
lase 1 increased the ability of breast cancer metastases to 
utilize glutamine [64]. GABAergic signaling in breast can-
cer was also found to increase migration and invasion in 
breast cancer [65]. The increase in migration, and invasion 
was mediated through ERK1/2 signaling. GABA receptor 
activation also affected the survival of the chondrosarcoma 
cell line OUMS-27 [66]. When the cells were exposed 
to the GABA antagonist CGP, the activities of apoptotic 
proteins caspase 3 and caspase 9 were elevated.

Along with alterations in cancer cell metabolism, per-
turbations in the metabolism of tumor stroma are emerging 
as a key driver of metastatic progression. The interactions 
between cancer-associated fibroblasts, and tumor cells is 
described as a ‘reverse Warburg effect’ where cancer cells 
induce metabolic reprogramming of fibroblasts leading to 
increased aerobic glycolysis [67], as well as increased 
expression of monocarboxylate transporter-4 (MCT4) [68] 
resulting in release of lactate into the tumor microenviron-
ment. This is correlated with upregulated expression of 
monocarboxylate transporter-1 (MCT1) mediated lactate 
uptake in cancer cells which has been shown to contribute 
to survival and growth [68], as well as tumor migration 
[69]. The role of secreted lactate in disrupting innate and 
adaptive immune responses has been comprehensively 
reviewed elsewhere [70]. Novel roles of lactate in modu-
lating immune response are also constantly emerging such 
as its ability to activate NF-κB in CD4 ± T-cells and drive 
their polarization to the immunosuppressive Treg subtype 
driving prostate carcinoma progression [71]. Metabolic 
symbiosis has been shown to work both ways with fibro-
blasts reprogramming cancer cell metabolism to increase 
glycolytic metabolism and secretion of lactate to sup-
port metastasis [72] as well drive secretion of hepatocyte 
growth factor (HGF) from fibroblasts inducing resistance 
to tyrosine kinase inhibitor therapy [73].

Metabolism and epigenetic regulation 
in metastasis

An emerging area of research in cancer is alterations 
in epigenetic activity that are controlled by metabolic 
changes [74, 75]. A striking example is the association of 
epigenomic reprogramming and metabolism with distance 
metastases in pancreatic cancer [76]. The development of 
distant metastases was associated with global epigenetic 
changes including increases in histone acetylation, and 
decreased histone methylation. Metastatic lesions with 
these epigenetic changes frequently exhibited increased 
oxidative pentose phosphate pathway activity driven by 
overexpression of 6-phosphogluconate dehydrogenase 
(PGD). Inhibition of PGD in distant metastases reversed 
the epigenetic changes, indicating that increased oxidative 
pentose phosphate pathway activity is essential for dis-
ease progression in pancreatic cancer. Further work from 
the same authors showed that the metastatic capable cells 
evolved a pentose conversion pathway to provide substrate 
for PGD thus maintaining its hyperactivity [77]. This con-
version pathway is distinct from the rate-limiting pentose 
phosphate pathway and is evidence of a novel metabolic 
program that appears to especially promote the metastatic 
phenotype via regulating the epigenome.

Altered metabolism can contribute to changes in the 
epigenomic state of cancer cells by providing cells with 
substrates for epigenetic enzymes (Fig. 4). ATP citrate-
lyase (ACLY), which catalyzes the conversion of citrate 
to acetyl-CoA has been identified as an important enzyme 
for producing the nuclear pools of acetyl-CoA used by 
enzymes that control histone acetylation such as histone 
acetyltransferases [78]. Such as pathways has been sug-
gested as necessary for polarization of macrophages to an 
‘M2’ or alternatively activated tumor-promoting pheno-
type [79], although there is some question as to whether 
this is relevant in human macrophages [80]. Alternatively, 
activated macrophages are clearly associated with tumor 
progression and metastasis [81, 82], however it is not 
yet clear if those dependent on ACLY activity are a true 
metastasis-promoting subtype [83]. In hepatocellular car-
cinoma, acetyl-CoA increases and associated histone acet-
ylation were demonstrated to be downstream of Acyl-CoA 
thioesterase 12 (ACOT12) activity [84]. This increased 
histone acetylation was shown to drive expression of the 
transcription factor Twist2 which induced EMT.

Metabolites may also act as competitive inhibitors of 
epigenetic enzyme activity. Dysregulation of the citric acid 
cycle in cancer has been associated with accumulation of 
a number of metabolites that can affect methylation of the 
epigenome, such as the oncometabolite 2-hydroxyglutar-
ate. During normal metabolism, isocitrate is converted to 
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α-ketoglutarate by the enzyme isocitrate dehydrogenase 
(IDH). Mutations in IDH are common in acute myeloid 
leukemia where they may play a role in pathogenesis, 
and in gliomas [85, 86]. IDH R132, IDH2 r140, and 
IDH2 R172 mutations result in increased production of 
2-hydroxyglutarate, via the action of the mutated enzymes 
on α-ketoglutarate [87]. 2-hydroxyglutarate can inhibit the 
function of α-ketoglutarate dependent dioxygenases, such 
as the demethylase KDM4C [88], and dysregulate the 
methylation status of cancer cells [89]. Mutant IDH was 
also shown to lower expression of ATM and interfere with 
DNA repair in acute myeloid leukemia [90]. IDH muta-
tions that produce 2-hydroxyglutarate can cause EMT in 
colorectal cancer cells through driving the expression of 
the transcription factor ZEB1 [89, 91]. Conversely, IDH 
mutant gliomas can have better prognosis due to promo-
tion of methylation and thereby suppression of invasion-
promoting genes such as G0S2 [92].

Deficiency and inhibition of succinate dehydrogenase 
causes hypermethylation in ovarian cancer, pheochromocy-
tomas, and paragangliomas [93, 94]. Fumarate has also been 
associated with progression in a number of cancers includ-
ing renal cell carcinomas, paragangliomas, and nasopharyn-
geal cancers [95, 96]. Loss of fumarate hydratase expres-
sion stabilized HIF-1α and HIF-2α, leading to EMT and 
upregulation of an anti-oxidant response in renal cancer [97, 

98]. In addition, fumarate can inhibit TET demethylases and 
cause a hypermethylation phenotype in renal cancer [99]. 
Finally, fumarate may cause senescence through oxidative 
stress [100].

Implications and future directions

Altered metabolism is well established as a hallmark of can-
cer biology [2] and associated with multiple aspects of can-
cer progression including metastasis [101, 102]. The clear 
tumor-promoting roles of dysregulated metabolic pathways 
have led to a development of a number of therapies [103]. 
However, these therapies present particular challenges in 
their utilization in the clinic. Most critically, many of the 
metabolic pathways that may be dysregulated in cancer cells 
are still used by other cell types, thus identifying a reason-
able therapeutic index has proven difficult. For example, 
inhibition of the key cancer associated metabolic phenotype 
aerobic glycolysis, using 2-deoxy-d-glucose (2DG) results in 
toxic effects similar to hypoglycemia [104]. However, under-
standing and targeting non-canonical functions of enzymes 
related to aerobic glycolysis, such as PHI, may present prom-
ising therapeutic strategies that lack the unintended toxicity 
of targeting ubiquitous metabolic pathways (Table 1). On the 
other hand, there are a number of therapies in development 

Fig. 4   Altered metabolism impacts regulation of cancer epigenome 
via production of substrates and allosteric regulators of epigenetic 
enzymes. IDH mutations can produce 2-hydroxyglutarate which alter 
the function of demethylase enzymes. In addition, altered metabolism 

has been linked to changes in production of Acetyl-CoA the substrate 
of histone acetyltransferases. HAT histone acetyltransferase, HDAC 
histone deacetylase, mIDH mutant IDH, Ac acetylation
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for mutant IDH isoforms, which have the advantage of being 
distinct from the normal enzyme [105].

The opposing roles of GLS1 and GLS2 in metastasis [24, 
27, 28] highlight the importance of understanding and tar-
geting the isoform specific effects of metabolic enzymes. 
While pharmacologic inhibition, and genetic ablation of 
GLS1 slows cancer growth [118] the expression of GLS2 
attenuates metastasis. These opposing roles might sug-
gest that specificity of glutaminase inhibitors is critically 
important. However, the fact that the metastasis-promoting 
effects of glutaminase 1 are dependent on its catalytic activ-
ity while the metastasis-suppressing effects of glutaminase 

2 are catalysis-independent enables possible methods of dif-
ferential modulation.

The significance of changes in metabolism is not just lim-
ited to cancer cells, but also extends to the tumor stroma. As 
illustrated by interactions between cancer-associated fibro-
blasts and tumor cells, altered metabolism in the stroma can 
directly support metastatic progression by supplying tumors 
with high energy metabolites such as lactate [68, 69]. In 
addition, lactate has been shown to affect the signaling of 
immune cells and produce an immunosuppressive tumor 
microenvironment [71]. Changes in cancer cell metabolism 
can also contribute to changes in signaling in the stroma 

Table 1   Current and potential therapeutic targets based on non-canonical metabolic roles

Target Agent Mechanism to target References

Glutaminase 1 CB-839 NCT02071927
NCT02071888
NCT02071862

GRM1 Riluzole Pro-tumorigenic glutamate signaling NCT00903214
NCT01018836
NCT01303341
NCT00866840

HDAC Belinostat
Panobinostat
Vorinostat
SB939
ACY-241

Catalytic activity resulting in hypoacetylation NCT00993642
NCT01075308
NCT02635061
NCT01528501
NCT00274651

mIDH AG-221
AG-120
AG-881
IDH305

Production of oncometabolite 2-hydroxyglutarate NCT01915498
NCT02073994
NCT02492737
NCT02987010

Methyltransferase 5-azacytidine,
5-aza-2′-deoxycytidine

Catalytic activity resulting in hypermethylation NCT03019003
NCT03182894
NCT02159820
NCT00084981

ACLY 2,2-difluorocitrate
Sulfoximine

Catalytic activity producing Acetyl-CoA which induces hyperacetylation [106, 107]

AMF ERI4P
G6P

Pro-metastatic, autocrine and paracrine signaling via gp78 [108]

SLC1A5 (ASCT2) AABA
Benzylserine
Benzylcysteine
GPNA

Import of glutamine, which is an important carbon source for a number of 
pro-metastatic processes

[54–56, 109]

SLC7A11 (xCT) Sulfasalazine
Erastin
Sorafenib

Release of glutamate which can act as a pro-metastatic signaling molecule [110–112]

AMPAR GYKI-52466
CFM-2

Glutamate signaling which can drive metastasis [113]

HAT C646
PU139
PU141

Increased activity resulting in hyperacetylation [114, 115]

sPLA2 Varespladib
PLIs

Secretion and binding to receptors that drive Wnt signaling [116, 117]

GAPDH (potential) N/A GAPDH binding to EMT transcription factor sp1
PKM2 (potential) N/A PKM2 binding to HDAC3 and TGIF2
PRDX4 (potential) N/A Secretion and function as an osteoclastogenic signaling factor
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that enhance metastasis, such as PHI paracrine signaling 
promoting angiogenesis [42]. These changes emphasize the 
importance of understanding changes in metabolism in the 
context of the tumor microenvironment and not just consid-
ering the cancer cells.

Finally changes in metabolism can sensitize cancer cells 
to other forms of therapy. Mutant IDH has been shown to 
sensitize glioma cells to inhibition of glutaminase [119]. 
Inhibited glutaminolysis results in decreased accumula-
tion of α-ketoglutarate, the substrate of mutant IDH and a 
resultant slowed growth phenotype. In addition, gliomas 
with mutant IDH have been shown to be especially sensi-
tive to treatment with inhibitors of DNA methyltransferases 
[120] since altered methylation is a key effect of mutant 
IDH. These examples depict novel targets induced by altered 
tumor metabolism that can be exploited for treatment.

Conclusion

Dysregulation of metabolism is a hallmark of cancer is com-
monly associated with metastasis. The increased consump-
tion of carbon sources such as glucose, glutamine, and fatty 
acids commonly occur in multiple types of cancer leading 
to enhanced metabolic pathway activation. However, non-
canonical functions of these metabolic pathways can influ-
ence metastatic progression in ways that diverge from their 
usual roles in regulating bioenergetics and biosynthesis. 
Here, we have particularly highlighted the ability of meta-
bolic enzymes such as PHI to alter cancer cell signaling 
independent of their normal enzymatic functions, as well 
as the ability of metabolites to act as signaling molecules or 
change the epigenome of cancer cells. The challenge is to 
convert this knowledge of novel capabilities to new thera-
peutic approaches for patients with metastatic disease.
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