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Abstract
The extracellular matrix (ECM) constitutes the scaffold of tissues and organs. It is a complex network of extracellular pro-
teins, proteoglycans and glycoproteins, which form supramolecular aggregates, such as fibrils and sheet-like networks. In 
addition to its biochemical composition, including the covalent intermolecular cross-linkages, the ECM is also characterized 
by its biophysical parameters, such as topography, molecular density, stiffness/rigidity and tension. Taking these biochemical 
and biophysical parameters into consideration, the ECM is very versatile and undergoes constant remodeling. This review 
focusses on this remodeling of the ECM under the influence of a primary solid tumor mass. Within this tumor stroma, not 
only the cancer cells but also the resident fibroblasts, which differentiate into cancer-associated fibroblasts (CAFs), modify 
the ECM. Growth factors and chemokines, which are tethered to and released from the ECM, as well as metabolic changes 
of the cells within the tumor bulk, add to the tumor-supporting tumor microenvironment. Metastasizing cancer cells from a 
primary tumor mass infiltrate into the ECM, which variably may facilitate cancer cell migration or act as barrier, which has 
to be proteolytically breached by the infiltrating tumor cell. The biochemical and biophysical properties therefore determine 
the rates and routes of metastatic dissemination. Moreover, primed by soluble factors of the primary tumor, the ECM of dis-
tant organs may be remodeled in a way to facilitate the engraftment of metastasizing cancer cells. Such premetastatic niches 
are responsible for the organotropic preference of certain cancer entities to colonize at certain sites in distant organs and to 
establish a metastasis. Translational application of our knowledge about the cancer-primed ECM is sparse with respect to 
therapeutic approaches, whereas tumor-induced ECM alterations such as increased tissue stiffness and desmoplasia, as well 
as breaching the basement membrane are hallmark of malignancy and diagnostically and histologically harnessed.

Keywords  Extracellular matrix · Tumor progression · Tumor microenvironment · Cancer-associated fibroblast · Metastatic 
cascade · Cell migration · Cell infiltration · Invadopodia · Metastatic niche · Metastasis
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LRP6	� Low-density lipoprotein receptor-
related protein 6

LY75	� Lymphocyte antigen 75 (CD205, 
DEC-205)

MET	� Mesenchymal-epithelial transition 
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TME	� Tumor microenvironment
TGF-β	� Transforming growth factor-β
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Introduction

Metastasis is the prominent cause of death in cancer. 
Uncontrolled growth of cells within a tissue, neoplasia, 
leads to solid tumors at the site of origin. Unless the neo-
plastic growth does not demand too much space and unless 
it obstructs a vessel or a nerve thereby indirectly causing 
ischemia, analgesia and paralysis, the tumor is considered 
benign and, in most cases, removable by surgery. In contrast, 
metastasis occurs when tumor cells invasively infiltrate nor-
mal tissues neighboring the primary tumor mass. Moreover, 
they spread throughout the body in a malignant way, a hall-
mark of cancer [1, 2]. This spreading requires the motility 
of malignant cells [3]. They move through the connective 
tissue with its meshwork of ECM proteins [4]. Moreover, 

metastatic cancer cells have to penetrate layers of tightly 
connected epithelial and endothelial cells and have to breach 
barriers of several ECM structures, such as the sheet-like 
basement membrane (BM) [5]. In addition, cancer cells must 
stay alive even in suspension during lymphatic and hema-
togenous dissemination. Attachment and detachment as well 
as movement require contacts of cancer cells with different 
ECM proteins and distinct supramolecular arrangements of 
the ECM. Moreover, the ECM also determines where cancer 
cells settle and establish a metastasis [6]. Recent years have 
highlighted that even in the primary tumor mass the ECM is 
qualitatively and quantitatively altered in a tumor-permissive 
way, thereby promoting tumor progression and influencing 
cancer cell invasion [7].

This review pinpoints the key role of ECM in the tumor 
environment and its interplay with tumor cells. It is of prime 
medical interest to decipher how the ECM is modulated by 
tumor cells and how the ECM affects metastasis in diverse 
aspects, acting as a mechanical support for migration and 
metastatic engraftment or as a barrier for cancer infiltration.

ECM, more than an intercellular filling 
material

The highly ordered meshwork of ECM‑molecules

The distinction between an organ-specific parenchyma, such 
as the secreting epithelial cells of a gland, and the stromal 
compartment of the organ, which fills the space between the 
parenchyma and allows access of blood vessels and nerves, 
was a histologic description of an organ. This gave rise to 
the name ‘connective tissue’ for the stromal compartment. 
However, the stroma is not just an intercellular filling but 
an active element in the development, homeostasis, and 
functionality of the entire organ [4, 8]. This is based on the 
complex interplays between the cells of different lineages, 
such as epithelial cells and mesenchymal fibroblasts, and 
between the cells and the ECM.

The ECM, typically found in the large intercellular spaces 
of the connective tissue, consists of a meshwork of fibrous 
proteins, proteoglycans with their properties-determining 
carbohydrate conjugates, amorphous materials, minerals, 
and water [4, 9, 10]. The ECM also contains growth factors 
and other cytokines at orders of magnitude lower concentra-
tions that orchestrate developmental processes in morpho-
genesis, regeneration and maintenance [8].

The molecular architecture of connective tissue under-
lines one function of the ECM, i.e., to shape and maintain 
the form of tissues and organs as a three-dimensional scaf-
fold [4, 8–10]. In addition, the ECM also forms as a thin 
sheet-like BM that delimits the stroma from other tissues, 
such as the epithelial and endothelial cell layers, neurons and 
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muscle cells and fibers, or adipocytes. This BM serves as 
mechanical substratum for cell adhesion [5, 11–15]. Form-
ing a structural scaffold, fibrous ECM proteins can bear 
mechanical tensile forces generated by cells and transferred 
to bone and cartilage to move the body. Also, the tissue pres-
sure caused by the swelling capacity of charged polysac-
charides of proteoglycans sets the fibrillar network under 
tension [14, 16–18].

The molecular and supramolecular structures of its 
components enable the ECM to fulfil the scaffolding and 
mechanical force-bearing functions (Table 1). The most 
abundant ECM proteins are the collagens, of which 28 types 
have been described so far [4, 10, 19–21]. Their characteris-
tic feature is the collagenous triple helix and its propensity to 
assemble into higher-order supramolecular structures, such 
as fibrils and networks [4, 10, 19]. The triple helix consists 
of three collagenous peptide strands with a typical Gly-
X–Y motif, with X and Y predominantly being proline and 
4-hydroxyproline. In a parallel direction, they wind around 
each other in a staggered manner, as their glycine residues 
line up along the helix axis [22, 23]. Unless the triple helix 
is unwound by high temperatures, it is robust against pro-
teolytic cleavage. Several triple helical collagen molecules 
align laterally and in a staggered manner to form fibrils [22, 
24]. From the core to the perimeter of collagenous fibrils, 
the different collagen types, I, V, and XI, vary in their rela-
tive abundance to contribute best to the overall function of 
the fibril in tissue [25]. In network-forming collagens, addi-
tional intermolecular contacts such as head-to-head and tail-
to-tail interactions, including some more recently discovered 
redox-based methionine-derived crosslinks, stabilize the 
chicken wire-like sheets of type IV collagen. Together with 
type XV and XVIII collagens, it is the shape-determining 
components of BMs [12, 26–29]. Additional collagen types, 
such as fibrillar collagens with interrupted triple helix (FAC-
ITs) or type VII collagen [30, 31], interlink the collagenous 
fibrils and networks to the surrounding ECM proteins. Once 
assembled in the extracellular space, the collagen molecules 
within the scaffold can be covalently crosslinked by extracel-
lular enzymes, family members of lysyl oxidase (LOX and 
lysyl oxidase-like, LOXL) and transglutaminase [32–34]. 
These enzymes also covalently crosslink proteins of the elas-
tin network, comprising elastin, fibrillins, and other associat-
ing ECM proteins [35, 36].

Another ubiquitously found ECM protein is fibronectin, 
which consists of two disulfide-linked chains. 20 different 
isoforms due to alternative splicing are known (Table 1) 
[37–39]. Fibronectin molecules not only bind to the colla-
gen scaffold, but also align into filaments which can aggre-
gate into networks with the help of cellular contacts via the 
fibronectin receptor, integrin α5β1 [40]. As a multidomain 
and multifunctional protein, fibronectin also binds several 
growth factors and proteoglycans [41].

The tensile forces that collagen and other fibrillar net-
works absorb counteract the tissue pressure created by the 
swelling power of the highly charged glycosaminoglycan 
(GAG) chains of proteoglycans [16, 17, 42]. This large 
family of ECM proteins comprises the large size hyaluronic 
acid-binding hyalectans (Table 1), viz. aggrecan, neurocan, 
brevican and versican, and the 18 different small leucine-rich 
proteoglycans (SLRPs), such as decorin and biglycan [17, 
18, 43]. Among the long list of potential functions, two fea-
tures of proteoglycans are noteworthy in this context. With 
their GAG chain(s) they tether growth factors and cytokines, 
thereby enabling the ECM to serve as storage and present 
growth factors in a temporal and spatial order needed for 
tissue development and regeneration [13]. Moreover, by 
interacting with other ECM proteins, proteoglycans may 
regulate their assembly, such as the collagenous fibrils, and 
their function, such as perlecan, which is characteristically 
found in BMs and contributes to its negative charge and its 
filtration properties [13, 44, 45].

Laminins are other typical components of BMs (Table 1) 
[10, 12, 46]. All 16 different laminins consists of 3 chains, 
α, β, and γ, which characteristically are wound around each 
other in an α-helical coiled-coil domain [24]. This forms the 
long arm of these cruciform molecules, the three short arms 
are shaped by the N-terminal domains of the three individual 
chains. The C-terminal end of the long arm is flanked by a 
large globular G-domain, which is divided into five homolo-
gous LG domains [47]. The first three assemble into a clover 
leaf-like structure, while the last two LG4-LG5 domains, 
which bind heparan sulfate GAG chains of proteoglycans, 
might be proteolytically cleaved off from some laminin iso-
forms in a physiologically regulated manner [48]. The supra-
molecular assembly of laminins is essential for BMs [49].

Being abundant around cells, matricellular proteins 
(Table 1) affect cell contacts to the ECM [50–52]. They 
have characteristic domains with which they interact with 
ECM scaffold proteins, such as the multifunctional SLRPs, 
decorin and versican [18, 50, 53]. Other matricellular pro-
teins (reviewed in [50]) from various protein families are 
CCN proteins, tenascins [54–56], SIBLINGs [57], galectins 
[58], SPARC [59], thrombospondins [60], and periostin [61] 
(Table 1). They undergo characteristic changes during tumor 
progression [62]. Moreover, matricellular proteins, such as 
thrombospondins, can alter redox signaling in cancer cells, 
thereby affecting the hypoxia-influenced redox status within 
a tumor mass [60, 63].

Cellular contacts with the ECM

Cells are mechanically anchored in the ECM perceiving 
information about the environment. Epithelial and endothe-
lial cells are aligned along the BM, which provides the 
substratum and cues for cell survival, and proliferation, 
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and other biochemical and physiological functions of the 
cells [11, 14]. Entirely embedded within the ECM, fibro-
blasts also intimately interact with the ECM by producing 
and assisting assembly of ECM molecules and by exerting 
mechanical forces onto the fibrillar network within the ECM, 
thereby contributing to ECM tension, an important biophysi-
cal parameter for the embedded cells [64, 65].

At the molecular level, interactions of cells with the 
ECM are mediated by various adhesion receptors, among 
which integrins and about 13 transmembrane proteoglycans 
take a principal role (Table 1) [17, 66, 67]. 18 members 
constitute the family of integrins, all of which consist of 
two subunits, α and β [66, 67]. The N-terminal domains 
of both subunits jointly form the head domain, which har-
bors the ECM ligand binding site. From the head, the two 
chains individually form two stalks, which can take different 
conformations representing different activation states. Via 
short membrane-spanning α-helices, both subunits possess 
short cytoplasmic domains, except for the large cytoplasmic 
domain of the integrin β4 chain [67]. Integrins lack, unlike 
growth factor receptors, any signaling domains. By recruit-
ing adaptor molecules and signal transducing molecules, 
such as focal adhesion kinase (FAK) and members of the 
Src family, they serve as intracellular docking sites for the 
cytoskeleton and relay signals between the ECM and the cell 
interior [68]. This supramolecular protein array, which is 
recruited to the ligand-bound and clustered integrins, can be 
considered as an adhesion-dependent cell organelle, which 
was termed adhesome [69–72]. Depending on its stage of 
formation or on its function to support stable adhesion or 
cell migration, different types of adhesomes, such as focal 
contacts and focal adhesions, can be distinguished [72, 73]. 
However, due to experimental accessibility, most studies on 
these adhesion complexes have been carried out with cells 
adhering to and migrating on ECM-coated surfaces. These 
adhesome structures differ from the ones formed by cells 
in the three-dimensional system of the ECM. Nevertheless, 
integrins as transmembrane connectors between the ECM 
and the cytoskeleton allow transmission of forces, which 
the cells generate with their actomyosin system, onto the 
ECM [70, 72].

The four syndecan isoforms belong to the transmembrane 
glycoprotein, which also mediate cellular interaction with 
the ECM [4, 17]. Moreover, via their heparan and chondroi-
tin sulfate GAG chains, syndecans and other cell surface 
proteoglycans are able to regulate integrin-ligand interac-
tions, such as between fibronectin and laminins and their 
corresponding receptors (Table 1) [40, 74, 75]. Thus, they 
may assist integrins in recruiting signaling molecules to the 
adhesomes [40, 75–77].

Tumor‑induced ECM remodeling

After injury, tissue healing begins by forming the fibrin net-
work of a hemostatic blood thrombus. Platelets, enclosed 
into the thrombotic plug, release growth factors and attract 
fibroblasts, which replace the provisional fibrin matrix for 
a collagenous matrix. The immigrating and resident fibro-
blasts differentiate into myofibroblasts [78, 79]. Marker 
proteins for myofibroblast differentiation are α-smooth 
muscle actin (αSMA), indicative of a strengthened acto-
myosin activity, and a bunch of secreted and deposited 
ECM-proteins, such as fibrillar collagens and fibronectin. 
The strengthened actomyosin machinery results in increased 
force exertion, which brings the newly deposited ECM under 
tension and causes wound contraction. Resembling chronic 
wounds, neoplastic tumors have been compared to a ‘wound 
that never heals’ [80, 81]. In fact, resident fibroblasts within 
a solid tumor mass differentiate into myofibroblast-like, 
cancer-associated fibroblasts (CAFs) under the influence 
of neighboring cancer cells [7, 79, 82, 83]. Transforming 
growth factor-β (TGF-β) is a key regulator in myofibroblast 
differentiation during wound healing and in CAF differen-
tiation during tumor progression [7, 84]. Within the ECM 
meshwork, TGF-β is complexed by latent TGFβ-binding 
protein (LTBP) and the latency-associated protein (LAP) 
and tethered to the fibronectin network, which is connected 
to the fibrillar meshwork of the ECM [38]. Notably, par-
tial proteolysis of LAP and mechanical tension along the 
ECM fibrils cause the release of TGF-β from its LTBP-cage 
and hence its activation. This promotes the differentiation 
of fibroblasts into more contractile CAFs, which further 
increase tension and release of TGF-β in a self-perpetuating 
circle [38, 79, 82, 85]. In addition, CAFs express a reper-
toire of diverse growth factors, such as vascular endothe-
lial growth factor-A (VEGF-A), hepatocyte growth factor 
(HGF), platelet-derived growth factor (PDGF), and several 
chemokines, thereby attracting other cells, such as endothe-
lial and immune cells to the tumor mass, and orchestrating 
them to join the tumor-supportive environment [7, 86].

By secreting ECM components and ECM-modifying 
enzymes, cancer cells modify their environment [87]. But 
even more, CAFs, driven by cancer cells, produce and 
deposit substantial amounts of ECM components, thus alter-
ing the ECM of the tumor stroma qualitatively and quantita-
tively [88, 89]. Therefore, the ECM at the primary site of the 
tumor dramatically changes in its composition and relative 
abundance, respectively. In addition, the ECM components 
are more frequently crosslinked by members of the LOX 
and transglutaminase family, especially LOX-1, LOXL-2 
and transglutaminase-2, which are upregulated in neoplastic 
tumor tissue [32, 33, 90, 91]. Other posttranslational modi-
fications of the ECM scaffold may also occur, as the non-
enzymatic glycation of ECM proteins during hyperglycemia 
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may explain the increased risk to develop certain tumors in 
diabetes patients [92]. Caused by these biochemical altera-
tions, the ECM also changes in its biophysical parameters, 
such as topography, stiffness/rigidity, and tension (Fig. 1) 
[65, 93, 94], as increased deposition of fibrillar collagen 
and cross-linkage inter alia stiffens the tissue and causes 
desmoplasia, the tumor-typical fibrotic deposition of ECM. 
Fibrillar collagens abundantly expressed in desmoplastic 
tumor tissue and other ectopically expressed ECM proteins 
can serve as diagnostic tumor stroma markers (Table 1) [89, 
95]. Among these tumor stroma-typical ECM proteins are 
tenascin-W, laminin-332 [96–99], and the splice variant of 
fibronectin expressing the extra domains A and B (ED-A 
and -B).

Fibronectin is strongly expressed in the tumor stroma, 
in particular its splice variants ED-A and ED-B [37, 38, 
100–105]. The two extra domains are partially redundant, 
as either of them can compensate for the loss of the other 
in the corresponding knockout mice. Nevertheless, the two 

extra domains contain additional binding sites for integrins, 
α9β1 and α4β1, in addition to the fibronectin-binding αv 
subunit-containing integrins and the classical fibronectin 
receptor, α5β1 integrin [101, 103, 104]. Presumably due to 
its enhanced ability to contact cells via integrins, the ED-
A-containing FN variant releases TGF-β1 from its LTBP-
LAP complex especially in a mechanical force-dependent 
manner, without any need of partial proteolysis [38, 84]. 
Thus, mechanical tension, based on integrin-transmitted 
forces, promotes CAF differentiation [85, 103]. Moreover, 
the fibronectin meshwork also tethers other growth factors 
and may deliver them to proliferating tumor cells [41]. With 
respect to the increased deposition of cell-adhesive ECM 
proteins in the tumor stroma, it is intriguing that the tenascin 
isoforms, tenascin-W and -C, are highly upregulated among 
the tenascin family in a TGF-β1 dependent manner [106, 
107]. They interact with fibronectin and attenuate cell adhe-
sion [50, 54, 56]. Tenascin-W may even serve as specific 
molecular marker for the tumor stroma (Table 1) [108–110].

Fig. 1   Potential roles of the ECM in tumor progression and metasta-
sis. The ECM embeds tumor cells (TC), resident fibroblasts and their 
derivatives, the cancer-associated fibroblasts (CAFs). Tumor-induced 
CAF differentiation is a hallmark of tumor progression, as CAFs 
contribute to the tumor-permissive and supportive tumor microen-
vironment (TME), as CAFs remodel the ECM by synthesis, modifi-
cation, and cross-linkage of ECM components, especially under the 
influence of transforming growth factor-β (TGF-β). ECM composi-
tion, supramolecular aggregates, such as collagenous fibrils, and the 
swelling potential of proteoglycans are biochemical parameters of the 
tumor stroma ECM. In addition, TGF-β and other growth factors are 
stored within the ECM and released in a tension-dependent manner. 
The increased ECM deposition and desmoplasia, and the biochemical 
cross-linkage increases the stiffness/rigidity. In addition, the topogra-
phy of the ECM components and the tension on the ECM are bio-

physical parameters, which reinforce CAF differentiation and tumor 
progression. Both the swelling potential of proteoglycans and the 
high contractility of CAFs, the latter in a self-perpetuating manner, 
are responsible for the mechanical tension within the tumor stroma 
ECM. The biochemical and biophysical parameters of the tumor 
stroma ECM, together with the metabolic changes within the TME, 
attract endothelial and specific subsets of immune cells, which con-
sequently contribute to tumor progression. Disseminating from the 
tumor mass, cancer cells undergo epithelial mesenchymal transition 
(EMT) and migrate either along tracks and channels within the ECM 
scaffold or are impaired by dense ECM obstacles, such as desmo-
plastic capsules of fibrillar collagen of the basement membrane. In 
the latter case, ECM-degrading enzymes clear a pathway and release 
ECM fragments, which as matrikines can stimulate cancer cell prolif-
eration and invasion
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In normal tissue, laminins are characteristically found 
in BMs. The ectopic expression of laminin-332 within the 
tumor stroma, especially at the invading front of tumor 
cells, is striking as other BM proteins are scarcely, if at 
all, expressed in this compartment (Table 1) [111–113]. 
However, some tumor entities apparently do not express 
laminin-332. For others, the expression of single 
laminin-332 chains, especially the laminin γ2 and β3 chains 
are reported. They correlate with poor prognosis for the 
patient (Table 1) [114–117]. Laminin-332 is also excep-
tional in terms of its diversity of partial proteolytic process-
ing and the resulting altered cell migration [48]. Cleavage 
within the linker sequence between LG3 and LG4 of the 
laminin α3 chain may affect interaction sites for several inte-
grins and the heparan sulfate chain of syndecan-4 and thus 
cell motility [48, 112, 118, 119]. Different proteases, also 
expressed by cancer cells, are involved in the proteolytic 
cleavage within the laminin chains, β3 and γ2, with different 
effects on tumor progression and cancer cell migration [48, 
120, 121]. The ectopically expressed laminin-332 in tumor 
stroma promotes CAF differentiation and sustains the dif-
ferentiated phenotype of CAFs [122].

The alterations in composition and cross-linkage of ECM, 
dictated by the cancer cells or mostly carried out by CAFs, 
result not only in biochemical properties and storage of 
growth factors [123], but also change biophysical param-
eters, such as stiffness and tension of the tumor stroma [65, 
93, 124]. Although the ECM undergoes constant turnover, 
the life-time of these alterations limits plasticity of the tumor 
microenvironment, which can be considered as the ‘mem-
ory’ of the tissue or as a cancer-related ‘ECM signature’ 
[125–127]. This environmental niche provided by the bio-
chemical and biophysical characteristics of the ECM is not 
only permissive to survival and proliferation of the cancer 
cells, but also it initiates and promotes oncogenic transfor-
mation and is able to influence somatic mutation rates [64, 
65, 128]. This cancer growth-permissive tumor microenvi-
ronment (TME) also encompasses metabolic changes such 
as high concentration of lactic acid, acidosis, low support of 
oxygen and an altered redox status. These metabolic changes 
are caused by metabolic rewiring of cancer cells to use gly-
colysis as the primary source of energy, known as Warburg 
effect, their addiction to glutamine and their demand of oxy-
gen [129, 130] [129, 130]. Other metabolic parameters of 
the TME are the altered metabolism of reactive oxygen spe-
cies and of electrolytes, such as Ca2+-ions, which have been 
reviewed elsewhere [63, 131, 132]. CAFs also contribute to 
these metabolic changes and are driven by cancer cells to 
support their metabolic needs [97, 133]. The desmoplastic 
changes of the ECM and the metabolic reprogramming of 
both cancer cells and CAFs influence the susceptibility of 
tumors to the most common therapeutic strategies, chemo- 
and radiotherapy [130, 134–137].

The tumor stroma ECM influences endothelial 
and immune cells within the tumor mass

CAFs are derived from fibroblasts and other mesenchymal 
cells, such as stellate cells, preadipoctyes, bone marrow-
derived cells, endothelial cells and pericytes [138]. During 
tumor-induced angiogenesis, endothelial cells are attracted 
to the tumor bulk by members of the VEGF family, which 
are expressed by cells within the hypoxic tumor mass [139, 
140]. Among the VEGF family members, VEGF-A165 is 
the predominant angiogenic cytokine. In addition, CAF-
produced cytokines, such as TGF-β and PDGF, stimulate 
angiogenic sprouting of vascular cells [7, 141]. These 
cytokines diffuse from the tumor mass and, by being tethered 
to GAG-chains of the ECM, form a stable gradient along 
which endothelial cells sprout into the tumor mass [142, 
143]. Moreover, stiffness and other biophysical properties 
of the ECM influence angiogenetic sprouting, as endothelial 
cells form new capillaries especially at sites of high scaffold 
tension [144–146]. The outgrowing endothelial cells align 
longitudinally to form a lumenized tube that anastomoses 
and forms a closed circuit for blood flow [129, 147, 148]. 
The endothelial cell tubes are ensheathed by a newly formed 
BM. In contrast to vessels of normal tissue, tumor vessels 
are often tortuous, sometimes blunt-ended and with differ-
ent calibers, which impairs blood flow through the tumor 
mass [147, 149]. Moreover, when reaching the tumor bulk, 
endothelial cells at the tip of the sprouts get in direct contact 
with the tumor stroma ECM and the tumor cells. Tumor cells 
not only coopt existing blood vessels, but also can integrate 
into the monolayer of endothelial cells or even replace the 
endothelial cells lining entirely, forming mosaic vessels or 
vasculogenic mimicry (VM) vessels [129, 147, 150–152]. 
Among other factors, ECM stiffness within the tumor mass 
favors the upregulation of the matricellular protein CCN1, 
which in turn induces N-cadherin expression in endothe-
lial cells and thus allows direct intercellular contacts with 
tumor cells [153]. VM vessels are histologically recognized 
by their lack of the endothelial cell marker CD31 and by 
the presence of a sleeve of BM glycoproteins in periodic 
acid Schiff (PAS) staining [152, 154]. The presence of such 
VM vessels correlates, probably due to the direct access of 
tumor cells to the blood stream, with a poor prognosis [155]. 
Recent studies revealed that ECM proteins, their fragments 
and their supramolecular aggregates, foster the formation of 
such VM vessels. This has been reported for the matricel-
lular protein CCN2, produced by CAFs, the proteolytically 
cleaved γ2 chain of laminin-332, and a dense three-dimen-
sional collagen-network, respectively [156–159].

The new vascular tubes grown into the tumor mass pro-
vide nutrients and oxygen and remove waste products from 
the tumor cells, thereby supporting further tumor progres-
sion. Another advantage for the cancer cells is that ingrowing 
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blood vessels facilitate their spread through the blood stream 
[160]. For this hematogenous metastasis, tumor cells gain 
access to the blood stream by penetrating the endothelial 
cell layer and its subjacent BM. Also, lymph vessels are 
subverted by cancer cells to spread throughout the body. 
This lymphogenic metastasis explains why metastases are 
frequently formed in the lymph nodes into which the tumor 
tissue-draining lymph vessels converge [161–163].

During vessel formation, endothelial cells are assisted 
by diverse immune cells [164–166]. Also on their route of 
immunological surveillance, immune cells encounter the 
tumor mass [167]. However, the TME keeps most cells of 
the innate and adaptive immune system in an immunosup-
pressive state [168]. The contact of immune cells with the 
desmoplastic ECM deposition plays a yet not fully under-
stood role in this immunosuppression, which further fosters 
tumor progression [169]. Within the tumor stroma, mono-
cyte-derived macrophages preferentially acquire the M2 
phenotype. These tumor-associated macrophages (TAMs) 
secrete various cytokines and interleukins (ILs), especially 
the immune reaction-attenuating IL-10, as well as TGF-β 
[168, 170]. TGF-β attracts the subclass of regulatory T-cells 
(Tregs) and other adaptive immune cells to the tumor mass 
[84, 141]. Along with the myeloid suppressor cells, they 
suppress the attack of CD8+-T-cells and of natural killer 
(NK) cells to cancer cells [168, 171–173]. This is mediated 
by direct cellular contacts via membrane-bound receptors 
and counterreceptors, among them the immune checkpoint 
receptor PD-1 and its ligand, PD-L1 [164, 174–176]. Tregs 
also secrete TGF-β and help in activating ECM-tethered 
TGF-β, thereby reinforcing the tumor-supportive effects of 
this growth factor [173]. TGF-β was shown to cause expres-
sion of a set of ECM genes, which contribute to the immu-
nosuppression of the TME [177]. Moreover, the selective 
recruitment of specific immune cells to the tumor stroma 
reinforces the desmoplastic process while the immune cell-
secreted interleukins add an additional immunosuppressive 
tendency to the TME and contribute to the immunotoler-
ance against cancer cells [168, 170, 178]. While reprogram-
ming of Tregs via immune checkpoint inhibitors is already 
an approved therapy to reactivate immune response against 
cancer cells [174–176], selective immigration of subgroups 
of immune cells into the tumor stroma likely depends on the 
ECM of the tumor stroma and might become another strat-
egy to curb tumor progression and metastasis [179].

Cancer cells on the move: along or across the 
ECM

In order to metastasize, cancer cells spread throughout the 
body along different routes in successive steps of the meta-
static cascade (Fig. 2). Cancer cells disseminate from the 

primary tumor site, where they separate from their neighbor-
ing cancer cells. Then, they migrate through the ECM scaf-
fold and have to overcome barriers made by the dense ECM 
meshwork. Sometimes, they are transported by the blood 
stream or by the lymph for long distances and thus get to 
other organs, where they settle down and form a metastasis. 
Along their routes, cancer cells encounter ECM proteins, 
and the ECM scaffold plays an ambivalent role in cancer cell 
migration and metastasis. On the one hand, ECM supports 
cancer cell dissemination as fibrillar supramolecular struc-
tures serve as stabilizing scaffold, tracks and channels, which 
enable cancer cells to move at considerable rates through the 
stromal tissue. On the other hand, the ECM meshwork may 
impair cell migration by barring the way of cancer cells and 
forming impermeable dense ECM barriers, such as at the 
BM [64]. Cells sense their ECM environment by forming 
very thin cell protrusions, the filopodia, in which molecular 
ECM receptors probe the ECM environment [68, 180]. In 
addition, cancer cells have molecular tools and strategies to 
deal with supportive or impairing types of ECM.

Role of ECM in cancer cell dissemination

The vast majority of solid tumors are epithelial cell-derived 
carcinomas, which are characterized by their close cell–cell 
contacts. These intercellular connections are mediated via 
cadherins, a family of cell-membrane anchored immuno-
globulin fold-containing proteins, which favor a homophilic, 
Ca2+-dependent trans-interaction between cells of the same 
tissue [181–185]. These cadherin-mediated contacts allow 
the selective formation of epithelial cell layers and enable 
cells to withstand intercellular forces thereby clustering 
epithelial cells. Such intercellular bonds are loosened when 
individual cancer cells or a group of cancer cells leave 
the carcinoma in situ to disseminate (Fig. 2, step ➊ [183]. 
Along with the loss of cell–cell contacts, these carcinoma 
cells undergo additional changes, such as changing their 
morphology and becoming motile. This step of epithelial-
mesenchymal transition (EMT) depends on several factors, 
such as the ECM and growth factors [186, 187]. The process 
is conveyed by intracellular signaling pathways, receiving 
signals from the ECM via integrins and from several growth 
factors, such as TGF-β and hepatocyte growth factor (HGF) 
via the corresponding growth factor receptors [141, 186, 
187]. In particular, TGF-β is of key importance not only 
to CAF differentiation and immunosuppression but also to 
EMT of carcinoma cells, initiating their metastatic move-
ment [141]. Additional CAF-derived growth factors, such 
as SDF1/CXCL12, reinforce this process [188].
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Cancer cells breach ECM barriers

Epithelial neoplasias progress but remain in their original 
site. However, a decisive hallmark of malignancy is that 
they breach the BM which separates the epithelium from 
the neighboring connective tissue [2]. The BM is imper-
meable to cells except immune cells and malignant tumor 
cells. To penetrate the dense ECM network of the BM, can-
cer cells secrete several proteases of different types [87, 
189–191]. Among these proteases, the Zn2+ ion-dependent 
matrix metalloproteinases (MMPs) play a crucial role and 
hence have a high prognostic value [192–195]. Among the 
28 members of the MMP family, most studies in the last 
few years have focused on the two collagenases, MMP-1 
and membrane-type 1 MMP (MT1-MMP, MMP-14), as well 
as on the gelatinases, MMP-9 and MMP-2 (Table 1) [194, 
196–203]. Whereas gelatinases cleave only denatured col-
lagen chains, collagenases are able to partially unwind and 
cleave the otherwise proteolytically stable triple helix of col-
lagen [204–206]. After collagenolytic cleavage by MMP1 
and MT1-MMP, the triple helix is destabilized, unwinds and 
becomes a substrate to MMP-9 and MMP-2. Moreover, acti-
vation of MMP-2 also depends on the membrane-anchored 
MT1-MMP in a complex binding and cleaving mechanism 
[206–208]. Synthesis and secretion of MMPs by cancer 

cells depend on various factors of the TME, such as certain 
growth factors and the tumor-specific variants of fibronectin 
[209].

Invasion of cancer cells is hindered by the BM and cap-
sules of fibrillar collagens surrounding desmoplastic tumors 
[2, 93]. Yet, invasive cancer cells can break through these 
dense collagen meshworks that are in their way with the aid 
of MT1-MMP-containing invadopodia, which take a cen-
tral role in the proteolytic penetration of the ECM barrier 
[198, 201, 210, 211] (Fig. 3). These cellular protrusions are 
formed under the influence of the TME, especially TGF-β, 
HGF, and epidermal growth factor (EGF). Hypoxia also pro-
motes invadopodia formation in cancer cells [198, 212–214]. 
The most appropriate stimulus is mechanical stiffness of the 
ECM, which is sensed via integrins in a Rho- and WASP/
WAVE-dependent manner [68, 212, 215, 216]. This results 
in a Rac-, PAK1- and cortactin-dependent formation of the 
core structure of the invadopodia [198, 212, 217, 218]. This 
core structure consists of F-actin bundles, which stabilize 
the cell protrusion and extend it into the ECM barrier at the 
front of an invading cell [198, 212, 219]. During maturation, 
various signaling molecules, such as PAK-1 and -4, which 
prolong the half-life of invadopodia, are recruited [220]. In 
addition, collagenolytic MT1-MMP is recruited to the inva-
dopodium, which enables local proteolysis to facilitate the 

Fig. 2   The metastatic cascade. After the oncogenically transformed 
epithelial cells have grown into a neoplastic tumor (carcinoma 
in  situ), they reveal their malignancy by undergoing metastasis and 
colonizing distant organs. The metastatic cascade encompasses the 
following steps, in which cancer cells encounter ECM molecules. 
➊ Breaching the basement membrane (BM) and infiltrating into the 
underlying connective tissue requires proteolytic activity of the can-
cer cells and is a hallmark of malignancy. ➋ Taking advantage of col-
lagen fibrils, cancer cells migrate through the interstitial space along 
these fibrillar tracks or through channels between collagen fibrils. ➌ 
Approaching the blood vessels, cancer cells again breach the suben-

dothelial BM, intravasate and reach the blood stream. ➍ Decorated 
with thrombocytes in a fibrin-dependent manner, blood-borne cancer 
cells reach distant organs via the circulation. ➎ After attaching to the 
vessel wall, cancer cells extravasate by breaching the subendothelial 
BM and access the interstitial stroma. ➏ Again by migrating along 
the fibrillar components of the ECM scaffold, cancer cells migrate 
towards the premetastatic niche. ➐ Reaching it, cancer cells engraft 
within the ECM of the metastatic niche and progress to a secondary 
tumor mass or temporally remain in a dormant state, until tumor pro-
gression resumes
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penetration of barriers and to activate the soluble gelatinase 
MMP-2 [198, 220]. Due to the recruitment of Tks-4 and -5, 
invadopodia are stabilized for more than 60 min, in contrast 
to cellular protrusions, called podosomes, of endothelial 
cells during tumor-induced angiogenesis, which are also 
equipped with proteolytic MT1-MMP activity [221–223]. 
Structurally homologous to MT1-MMP, the membrane-
anchored proteinases of the ADAMTS family (a disintegrin 
and metalloproteinase with thrombospondin-1 motif) have 
been identified to cleave proteoglycans if they are obsta-
cles to the cancer cell movement (Table 1) [224]. To allow 
attachment to the ECM, integrins are located in a ring-like 
fashion at the base of the invadopodium [225]. Either lack-
ing or possessing ECM-cleaving proteinases, adhesomes 
and invadopodia, respectively, are cellular organelles, which 
mediate cellular contacts with the ECM in a metastasis-rel-
evant manner (Fig. 3).

ECM barrier-penetrating proteinases also cleave protease-
activated receptors (PARs) on cancer cells and CAFs, such as 
PAR-1 and PAR-2 [226]. These G-protein coupled receptors 
are cleaved canonically by thrombin and non-canonically by 

MMPs, such as MMP-1 and MMP-13, at their extracellular 
N-terminus [227, 228]. In the tumor stroma, activated mono-
cytes/macrophages secrete thrombin. This is activated by 
cancer cell-derived tissue factor (TF) via an extrinsic coagu-
lation cascade [226]. Likewise, MMPs are also activated at 
sites of ECM penetration. Proteolytic processing activates 
Gα12/13 of the heterotrimeric G-protein and thereby Rho 
signaling. This affects the actomyosin machinery with its 
motor protein myosin II and thus increases cell contractility 
and cell movement. This further promotes invasion through 
the ECM barrier. Moreover, Rho activation promotes EMT 
of cadherin-interlinked cancer cells [227, 228].

In addition, ECM barrier-penetrating proteinases release 
soluble and bioactive fragments, so-called matrikines 
(Table 1), from insoluble matrix proteins that indirectly 
affect the TME [229–231]. Thus, fragments of BM collagen 
types IV, XV, XVIII, and XIX are released by proteolyti-
cally active infiltrating tumor cells. In addition to affecting 
cancer cells [232], endostatin and other such fragments are 
angiostatic and prevent sprouting of endothelial cells into the 
tumor mass [143, 229, 233, 234]. Endostatin also reverses 

Fig. 3   Invadopodia and adhe-
somes are ECM-contacting cell 
organelles, which are relevant 
in metastasis. Cancer cells can 
produce special membrane pro-
trusions, termed invadopodia, 
which in many ways resemble 
adhesomes but also show differ-
ences [71, 180, 212, 349, 350]. 
Like adhesomes, invadopodia 
are equipped with integrins 
as ECM adhesion molecules, 
and similar to endothelial cell 
podosomes, these form an adhe-
sion ring during invadopodium 
maturation [225]. In addition 
to the adhesive capability of 
adhesomes, invadopodia have 
ECM-degrading abilities. 
Therefore, invadopodia are 
important promoters of the 
metastatic cascade. Invadopodia 
are remarkably long-lived com-
pared to adhesomes. Preferably 
using the nucleus as a mechani-
cal abutment, they possess a 
stiff actin core that, together 
with various adapter and 
signaling molecules, can propel 
the invadopodium far into the 
ECM like a molecular drilling 
rod. Essential components of 
invadopodia and adhesomes are 
listed for comparison



183Clinical & Experimental Metastasis (2019) 36:171–198	

1 3

immunosuppression [235], and a versican-derived matrikine 
causes selective recruitment of a specific subset of dendritic 
cells to the tumor stroma [236]. Similarly, the perlecan frag-
ment endorepellin impairs angiogenesis by interacting with 
integrin α2β1 on endothelial cells [237, 238]. Some frag-
ments of matricellular proteins and of laminin-332 agonis-
tically bind to the EGF receptor, thereby promoting cancer 
cell from motility [230, 239]. Likewise, matrikines can be 
cleaved off elastin [240–242].

ECM provides the molecular tracks for cancer cell 
dissemination

The molecular details of cell migration are described in 
other reviews [243–248]. Here, it may suffice to name 
the relevant molecules: (i) the force-generating actomyo-
sin system, consisting of F-actin fibers and the intercon-
necting motor proteins myosin II [249–252] (ii) the actin 
cytoskeleton-organizing members of the Rho family, the 
WAVE/WASP family and Arf family [215, 216, 253–255], 
(iii) the motor protein-regulating kinases [256], and (iv) the 
adhesome proteins including integrins [251, 257] as well as 
adaptor proteins, such as vinculin, α-actinin, and paxillin. 
Vinculin and α-actinin change their conformation and thus 
unmask cryptic binding sites for other proteins upon force 
transmission [258–263]. Moreover, paxillin and vinculin are 
recruited after phosphorylation to the adhesome in a sus-
tained and force-dependent manner [264, 265]. Therefore, 
they sense mechanical forces, including the stiffness/rigid-
ity and the tension of the ECM, and serve as receptors for 
mechanotransduction. Moreover, linkage of the cytoskeleton 
with the nuclear membrane and force-dependent transloca-
tion of the transcription-factors, YAP and TAZ, results in a 
force-dependent gene expression along the Hippo pathway 
[266–268].

Cancer cell migration depends on the biochemical prop-
erties of the ECM, as cell adhesion receptors must interact 
with the appropriate strength to the scaffold protein to allow 
both attachment and detachment of the cell in an ordered 
manner [269] Collagen fibers are ideal tracks, along which 
tumor cells migrate (Fig. 2, steps ➋ and ➏ [270, 271]. In 
haptotactic migration, cells sense the density of cell attach-
ment sites of the deposited ECM proteins [272, 273]. In 
addition, biophysical parameters of the ECM, such as fiber 
topography and geometry, stiffness/rigidity and tension 
determine cell migration (Fig. 1) [64, 65, 274]. Moreover, 
cancer cells perceive the mechanical conditions of their 
environment and regulate the migration rate in correlation 
to the ECM stiffness in durotactic migration [65].

Following the path of least resistance, infiltrating cells 
recognize and use open pores within the ECM. These 
pores must have an open cross-sectional area of at least 
7 µm2, which is necessary for the rather rigid nucleus of a 

eukaryotic cell to be squeezed through [3, 275, 276]. Oth-
erwise, protease-assisted invadopodia open the pore to the 
necessary size. But also disruption and subsequent repair 
of nuclei have been observed [277]. Usually, cancer cells 
move through channel-like tracks of the ECM which are 
3–30 µm in diameter and 100–600 µm in length [3]. Once 
such a migration track through the ECM scaffold is found 
or opened by a path-finding cancer cell, several cancer cells 
follow this path [127, 278, 279]. If adhesion strength to the 
ECM proteins in these channels is too low, cancer cells move 
in an amoeboid fashion, which is driven by the contractile 
activity of the cortical actin network. Upon integrin-medi-
ated firm adhesion, cells migrate faster with a spindle-like 
fibroblastic shape. In adhesomes, integrins are connected to 
the actin cytoskeleton. Together with F-actin stress fibers, 
which stretch through the entire cell soma, myosin motor 
proteins generate the forces, which move the cell relative 
to the ECM. There are other additional types of migration 
between amoeboid and fibroblast-like migration, such as 
lobopodial migration with characteristic bleb-like membrane 
protrusions [3, 278–280].

Depending of the degree of intercellular contacts between 
the cancer cells, not only single cells but also groups of 
interconnected cancer cells can invade the ECM [281, 282]. 
Collectively migrating cancer cells are linked by cadherins 
and gap junctions, making them slower but also more robust 
to antimetastatic factors [283, 284]. In contrast, single cells 
or cohorts of less interconnected cancer cells migrate faster 
[281]. The transition from single cell migration to collective 
cell migration is multifactorial [127, 278, 279, 285]. Among 
other factors, it depends on the biochemical composition 
of the ECM, since, for example, fibronectin supports sin-
gle cell migration [286]. Moreover, cancer cells adapt their 
migration mode to the biophysical properties of the ECM 
[286], to the status of pericellular proteolysis [287] and to 
metabolic conditions, including the hypoxic status, of the 
tissue [288, 289].

Also during cancer cell infiltration and migration, CAFs 
are not mere bystanders but reportedly promote cancer cell 
infiltration into the surrounding normal tissue by taking the 
lead and forming ECM tracks in which tumor cells follow 
[290]. Integrin α3β1 on CAFs and its ligand, laminin-332, 
in the tumor stroma play key roles in this context and confer 
migratory and invasive properties on cancer cells [122].

Hematogenous metastasis also depends on the ECM

The fastest way for cancer cells to colonize distant organs is 
the transport by the blood stream. During intravasation and 
extravasation, cancer cells gain access to and exit from the 
blood stream by penetrating the dense ECM network of the 
BM (Fig. 2, steps ➌ and ➎). Blood-borne cancer cells recruit 
platelets (Fig. 2, step ➍). The latter support the cancer cells 
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with growth factors and shelter them from immune attack 
[291]. The formation of such tumor cell-platelet aggregates 
is indispensably required for hematogenous metastasis [292]. 
Most of the multifactorial interactions between cancer cells 
and platelets are mediated via direct receptor-counterrecep-
tor contacts. Nevertheless, fibrin is also an essential bridging 
molecule, which is recognized by both tumor cells and plate-
lets via the integrins, αvβ3 and αIIbβ3, respectively [291]. 
Tissue factor (TF) expressing tumor cells activate the extrin-
sic pathway of the coagulation cascade and initiate the con-
version of soluble fibrinogen to insoluble fibrin [293]. Like 
the scaffolding proteins of the ECM, fibrin molecules form 
highly ordered fibrin bundles, which bridge tumor cells and 
platelets, and thus contribute to hematogenous metastasis 
[226]. Von Willebrand factor (vWF), an ECM proteins usu-
ally expressed by endothelial cells, but also by cancer cells, 
may serve the same tumor cell-platelet-bridging function, 
and assist tumor cells to attach to the endothelial cells upon 
extravasation, along with cell adhesion molecules on tumor 
cells and platelets (Fig. 2, step ➎) [294, 295].

The metastatic niche, the site of settlement 
and colonization of cancer cells

If cancer cells find suitable conditions in a distant organ, they 
settle there and form a secondary, metastatic tumor (Fig. 2, 
step ➐). The question, whether the tumor cells are actively 
targeting a particular tissue or accidentally encountering an 
environment suitable for further cancer progression, has not 
yet been fully resolved. The first option is underlined by 
the fact that certain cancer entities show organotropism and 
form metastases preferentially in certain organs [296–299]. 
Another option was first phrased as ‘seed and soil’ theory 
by Stephen Paget in 1889, which states that metastasizing 
cancer cells like seeds engraft and grow only in tumor cell-
permissive tissues (soil). In reality, both options are partly 
realized, as a primary tumor mass is able to influence sec-
ondary sites of the organism to prepare those distant sites for 
tumor cell engraftment, even before cancer cells take their 
metastatic routes. Hence, these primed secondary tissue sites 
were named premetastatic niches [300, 301].

Chemokines and matrikines, as well as exosomes, 
30-100 nm-sized extracellular vesicles, are systemically 
released from the primary tumor [298, 302–304]. On their 
surface, exosomes bear integrins, which adhere to the ECM 
of the targeted tissue after being systemically distributed via 
blood and lymph throughout the body [298]. At the target 
sites, they fuse with normal cells and release their contents, 
among them translatable mRNA and regulatory microRNA 
(miRNA), along with proteins [303, 304]. Thus, these cells 
may change their phenotype, alter their metabolism, and 
secrete ECM proteins or ECM-modifying enzymes, such 

as LOXs [305]. In addition, systemically spread cytokines 
and growth factors are recognized by corresponding recep-
tors in the target tissue [126, 306]. Among the latter, also 
TGF-β educates the designated sites of metastatic settlement 
by altering the ECM and resident cells in a biochemical and 
biophysical manner similar to the ones in the primary tumor 
mass [306–308]. For example, tenascin-W is a component of 
the (pre)metastatic niche in bones [106]. LOX family mem-
bers, secreted from a primary tumor and distributed sys-
temically via the blood circulation, can interfere with bone 
homeostasis by promoting osteoclastogenesis, leading to 
the formation of premetastatic lesions that can be colonized 
by circulating cancer cells [309]. LOX also promotes tissue 
stiffening and induces premetastatic niche and metastasis 
in breast cancer [310, 311]. Also, immune cells immigrate 
into the chemokine- and exosome-responsive tissue, fur-
ther preparing the properties of the (pre)metastatic niche 
[312]. Upon engraftment of metastasizing cancer cells, the  
premetastatic niche becomes a metastatic niche, which fos-
ters its own progression, thus closing the metastatic cycle, 
or its dormancy [299, 313, 314].

Translational aspects and perspectives

The knowledge about the biophysical alterations of tumor 
tissue has been used diagnostically for a long time. For 
example, palpation examination of the breast detects tis-
sue regions of stiffer ECM and desmoplasia, which are 
suspicious and prompt further examination of the patient. 
Biochemical alteration of the tumor stroma is analyzed 
histologically in tissue biopsies. Fibronectin splice vari-
ants containing the domains ED-A and ED-B, laminin-332, 
periostin and tenascin-W are such markers typical of tumor 
stroma [7, 61, 98, 109, 114, 315, 316]. Microscopic and 
other imaging techniques have been improved to diagnosti-
cally analyze more accurately tumor-associated alterations 
of the ECM [97, 271]. Therapeutic approaches to use these 
markers as antigenic targets to direct antitumor agents to 
the tumor site have been only experimental so far [96, 99]. 
Some of these tumor stroma-typical proteins and fragments 
thereof are diagnostically detected in blood samples, such 
as the laminin γ2 chains [117]. They may develop into more 
robust and easily accessible tumor markers.

Therapeutics which directly target ECM components are 
still awaited. Several attempts, also in clinical trials, have 
been made to pharmacologically target ECM-modifying 
enzymes such MMPs and LOXs [32, 189, 191, 202]. Inhi-
bition of MMPs might support the endogenous ECM barrier. 
Therefore, such inhibitors might prevent cancer cells from 
breaching the BM and curb or even prevent metastasis [5, 
317]. Moreover, inhibitors of MMP-activated PARs, which 
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enhance the metastatic invasion of cancer cells, have been 
used in clinical trial [227].

While the use of MMP inhibitors as anti-cancer drugs was 
initially difficult due to lack of specificity and side effects, 
several new MMP inhibitors with improved properties have 
been developed and are currently under investigation ([318] 
and references therein). Neovastat (Benefin/AE-941) inhib-
its MMPs-2, -9, and -12, which is well tolerated by cancer 
patients in phase I/II clinical trials [319, 320]. Yet, in a phase 
III trial, no efficacy was found in patients with non-small 
cell lung carcinoma [321]. The broad-spectrum MMP inhibi-
tor BMS-275291 was well tolerated in a phase I study and 
showed little musculoskeletal toxicity [322], but in a phase 
III study, it did not improve patient survival in advanced 
non-small cell lung carcinoma [323]. Also, another phase 
III study with tanomastat (BAY 12-9566), a non-peptid-
omimetic MMP inhibitor directed against MMPs-2, -3, and 
-9, did not show any efficacy in slowing or halting cancer 
progression [324]. Similarly, prinomastat (AG-3340), which 
inhibits MMPs-2, -3, 9, -13, and -14, caused arthralgia and 
myalgia in a phase I study and failed in a phase III trial of 
efficacy in non-small cell lung cancer [325, 326]. Yet, sev-
eral monoclonal antibodies against MMP-9 [327, 328] and 
MMP-14 [329, 330] appear promising in preclinical models. 
With regard to MMP-directed tumor therapy, microRNA-
mediated post-transcriptional MMP regulation is also of 
interest [331–333].

The other group of collagen-modifying enzymes, the cop-
per-dependent LOX family members are also tangible targets 
for tumor therapy [32]. In a phase II study on copper deple-
tion using tetrathiomolybdate, triple-negative breast cancer 
patients showed a marked decrease in the LOX activity 
involved in the formation of a premetastatic niche [334]. In 
other phase II trials, however, the LOXL2 function-blocking 
antibody simtuzumab did not improve clinical outcomes in 
patients with KRAS mutant colorectal or pancreatic adeno-
carcinoma [335, 336], although it is well tolerated in patients 
with solid tumors and inhibits the desmoplastic reaction 
in vitro [337, 338].

When inhibitors of ECM-modifying enzymes are used, in 
addition to limited specificity, undesirable side effects pose 
a considerable problem. For example, the broad-spectrum 
MMP inhibitor marimastat, although better bioavailable than 
its analog batimastat [339], proved inappropriate in phase III 
trials because it caused musculoskeletal pain and inflamma-
tion [340]. Similarly, the development of the low molecular 
weight inhibitor CGS 27023A/MMI270 directed against 
MMPs-2, -8 and -9 was discontinued because of poorly tol-
erated joint and muscular pains in phase II studies in early 
stage non-small cell lung carcinoma patients [341].

The potential to harness ECM molecules as antimetastatic 
therapeutics or to deliver anticancer compounds to the tumor 
have recently been evaluated in detail in a series of excellent 

reviews [16, 20, 39, 42, 43, 52, 237, 318, 342, 343]. Also, the 
ECM-receptors might be relevant pharmacological targets in 
blocking cancer cell progression and migration [243, 344, 
345]. However, attempts to “normalize” the tumor stroma 
and its ECM into a non-tumor supporting environment [346] 
or to prevent the tumor-induced formation of premetastatic 
niches [347, 348] are desirable goals for the future.
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