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Abstract
In epithelial-derived cancers, altered regulation of cell–cell adhesion facilitates the disruption of tissue cohesion that is 
central to the progression to malignant disease. Although numerous intercellular adhesion molecules participate in epithe-
lial adhesion, the immunoglobulin superfamily (IgSF) member activated leukocyte cell adhesion molecule (ALCAM), has 
emerged from multiple independent studies as a central contributor to tumor progression. ALCAM is an archetypal member 
of the IgSF with conventional organization of five Ig-like domains involved in homo- and heterotypic adhesions. Like many 
IgSF members, ALCAM is broadly expressed and involved in cellular adhesion across many cellular processes. While the 
redundancy of intercellular adhesion molecules (CAMs) could diminish the impact of any single CAM, consistent correla-
tion between ALCAM expression and patient outcome for multiple cancers underscores its role in tumor progression. Unlike 
most oncogenes and tumor suppressors, ALCAM is neither mutated nor amplified or deleted. Experimental disruption of 
ALCAM-mediated adhesions implies that this IgSF member contributes to tumor progression through dynamic turnover 
of the protein at the cell surface. Since ALCAM is not frequently altered at the gene level, it appears to promote malignant 
behavior through regulation of its availability rather than its specific activity. These observations help explain its hetero-
geneous expression within malignant disease and the drastic changes in protein levels across tumor progression. To reveal 
how ALCAM contributes to tumor progression, we review regulation of its gene expression, alternative splicing, targeted 
proteolysis, binding partners, and surface shedding within the context of cancer. Studying ALCAM regulation has led to a 
novel understanding of the fine-tuning of cell adhesive state through the utilization of otherwise normal regulatory processes, 
which thereby enable tumor cell invasion and metastasis.

Keywords  ALCAM/CD166 regulation · ALCAM/CD166 alternative splicing · Cell adhesion · Dynamic cell adhesion · 
CAM regulation

Introduction

The formation, organization, and maintenance of multi-
cellular tissues is mediated in large part through cell adhe-
sion molecules (CAMs). These molecules don’t necessarily 
provide the adhesive strength required for physical cohesion, 
but rather enable the cell–cell sensing needed to resolve 
tissue-specific patterning. Coordinating the dynamic func-
tion of CAMs is crucial for embryogenesis, the formation 
of differentiated tissues during morphogenesis, and wound 
healing. While the stimuli that initiate changes in cell adhe-
sion range widely from mechanical disruption, to growth 
factor stimulation and intrinsic activity (such as cell division 
or apoptosis), the underlying dynamics that allow for the 
formation and dissociation of adhesive interactions are con-
served. Both cell–cell and cell–matrix adhesions are subject 
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to such dynamics and each adhesion of each cell is per-
formed by members of four main CAM families: cadherins, 
immunoglobulin superfamily (IgSF), selectins, and integrins 
(Table 1). While each family contains multiple members, 
the IgSF is by far the largest and most diverse family with 
members characterized by a typical Ig-fold of sandwiched 
anti-parallel beta sheets. As such, IgSF members are not 
limited to CAMs, but rather extend across many subfamilies 
such as antigen receptors, growth factor receptors, costimu-
latory/inhibitory molecules, etc. This review details the con-
tribution of activated leukocyte CAM (ALCAM/CD166), an 
archetypal IgSF member, in the dynamic regulation of cell 
adhesion and provides insight into the broader significance 
of non-permanent dynamics of cell adhesion in cancer, its 
regulation, and the potential for leveraging this process in 
favor of reversing malignant behavior.

Cell adhesion molecule families

The cadherin family members of the cadherin family form 
relatively strong, calcium-dependent, homotypic adhesions 
between adjacent cells through a variable number of cad-
herin-like domains. These proteins facilitate mechanical 
cohesion as well as cell–cell recognition crucial for organo-
genesis and maintaining tissue organization [1].

The integrin family integrin receptors are calcium-
dependent heterodimers composed of non-covalently asso-
ciated alpha and beta subunits. Members of the integrin 
family molecules link the extracellular matrix (ECM) and 
cytoskeleton. This family is capable of bi-directional signal-
ing, which in turn allows for control not only over the physi-
cal mechanics of adhesion and migration through inside-out 
signaling, but also cellular polarity, cytoskeletal structure, 
and survival through outside-in signaling [5].

Selectin family members of the selectin family consist 
of an N-terminal calcium-dependent lectin type domain, an 
EGF-like domain, and variable numbers of short repeats 
homologous to complement-binding sequences. They exhibit 
transient cell–cell adhesions, through ligand interactions 
with sialyl-Lewis X tetrasaccharide carbohydrate moieties 
required for minimal recognition, on glycoproteins and gly-
colipids. This CAM family is well known for their role in 
leukocyte migration during inflammation. Reversible inter-
actions between selectins on leukocytes and their ligands 
on activated endothelial cells facilitates leukocyte tethering 
which, if followed by the activation of integrins, potentiates 
rolling and firm cell adhesion to the vascular wall. This is a 
representative example of molecular synergy among CAMs 
from structurally and functionally distinct families [8].

Immunoglobulin superfamily (IgSF) IgSF proteins medi-
ate calcium independent cell–cell adhesion through Ig-like 
domains and recognize both homophilic and heterophilic Ta
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ligands. These interactions are not as strong as cadherin- or 
integrin-mediated adhesion, but members of the IgSF seem 
to contribute more to the fine-tuning, potentiation, and regu-
lation of these adhesive interactions during tissue formation 
and maintenance [11].

Cell adhesion and cancer

In normal tissues, adhesion complexes form in order to 
define specific tissue compartments, establish barrier func-
tions, and enable cell migration. Importantly, adhesion medi-
ated by CAMs is a tunable process in which adhesive state 
is dynamically regulated.

Dysregulation of CAMs contributes to cancer progression 
and metastasis through coordinated changes in cell adhesion 
to promote the motility of tumor cells and allow for migra-
tion into surrounding tissue. Alterations in the expression 
of CAMs are well documented in association with tumor 
progression, but the mechanisms controlling the tunable 
modulation of their activity remain poorly understood. A 
better understanding of what molecular changes occur and 
how they are altered is essential for understanding how can-
cer overcomes physiologically imposed restrictions on tissue 
aberration and better target potential sites for therapeutic 
intervention.

While there are no significant genomic alterations in 
ALCAM for any cancers, ALCAM expression has been 
reported to decrease during the formation and subsequent 
malignant progression of solid tumors [13–20]. In addition, 
changes in ALCAM mRNA expression do not always cor-
relate with protein expression, suggesting there are multiple 
levels of regulation being employed [21]. Since ALCAM 
alterations have been used as prognostic markers for many 
solid tumors, this CAM has emerged as a functional contrib-
utor to cancer progression [13–20]. The main focus will be 
to illustrate direct regulatory mechanisms affecting ALCAM 
expression while emphasizing the functional outcome affect-
ing cell adhesion.

Activated leukocyte cell adhesion molecule 
(ALCAM)

ALCAM is a member of a small subgroup within the IgSF 
characterized by transmembrane glycoproteins with five 
extracellular immunoglobulin (Ig)-like domains composed 
of two amino-terminal membrane distal variable-(V)-
domains, three membrane proximal constant-(C2)-domains, 
one transmembrane region, and a short, carboxy-terminal 
cytoplasmic tail of varying length (Fig. 1). These Ig-like 
domains mediate homophilic ALCAM–ALCAM inter-
actions and heterophilic ALCAM–CD6 interactions. 

Cis-oligomerization occurs through lateral oligomerization 
of ALCAM interacting through the three membrane proxi-
mal C-type domains, while trans ALCAM–ALCAM inter-
actions involve the amino-terminal ligand binding modules 
(V-domains) [22].

This molecule’s expression is described in many cell 
types including hematopoietic stem cells, cancer stem cells, 
intestinal epithelial crypts, the central nervous system, 
microvascular endothelium, retinal vascular endothelial 
cells, and motor neurons [23–29]. Its broad tissue distribu-
tion in a wide variety of cells confers involvement in a vast 
scope of processes including epithelial migration, neuronal 
migration and differentiation, axon growth and pathfinding, 
and hematopoiesis [26–29]. The extensive tissue expression 
and functions of ALCAM speak to its ability to not only 
confer adhesion, but also act as a marker of cell identity. 
Being a junctional adhesion molecule, ALCAM is found at 
sites of cell–cell contact in epithelial, neuronal, stromal, and 
mesenchymal tissues.

Regulation of ALCAM

ALCAM is regulated by transcription, alternative splicing, 
trafficking to the membrane, binding partners, and prote-
olysis. The protein’s adhesive ability is regulated through 
subcellular localization and availability of its extracellular 
domain and therefore is limited by intercellular binding part-
ners and potential extracellular engagement of heterotypic 
and homotypic interactions. These are detailed below and 
summarized in Fig. 1.

Gene expression

The ALCAM gene is located on the long arm of human chro-
mosome 3 (3q13.11) with the most prominent transcription 
start site 349 bp upstream of the translation start site [30, 
31]. The ALCAM promoter contains CpG rich sequences, 
a canonical Sp1 element, and a functional p65 NF-κB motif 
[31, 32]. Other putative transcription factor binding sites 
have also been identified by Tan, F. et al. These cis-acting 
elements contribute to ALCAM expression by regulating 
promoter activity.

The Sp1 site is located within the proximal region of the 
ALCAM promoter at − 550 bp upstream of the translation 
start site and adjacent to an Ets site, which can establish 
cooperative transcriptional activation with Sp1. However, 
optimum ALCAM promoter activity requires only the Sp1 
element [33, 34]. Changes in ALCAM expression have 
been seen upon Sp1 inhibition through siRNA mediated 
knockdown. In stem cells isolated from two colorectal can-
cer (CRC) cell lines, Sp1 knockdown suppressed ALCAM 
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mRNA expression and proliferation while increasing apopto-
sis. Conversely, over-expression of Sp1 leads to an increase 
in ALCAM expression [35].

Upstream of the Sp1 element is the NF-κB consensus 
sequence at the putative site − 1140 [31, 32]. Wang, J. et al. 
describes how the p50/p65 heterodimer increases ALCAM 
expression upon serum deprivation (SD) in melanoma cell 
lines, but not breast cancer cell lines. These conditions 
potentially model a poorly vascularized, thus nutrient poor, 
tumor microenvironment that forces cells to rely on survival 
mechanisms such as apoptosis and autophagy. This is inter-
esting because translocation of p50/p65 to the ALCAM pro-
moter appeared to have a time dependent effect on ALCAM 
protein and mRNA expression. While expression of both 
entities increased after 24 h after SD, protein expression 

significantly decreased after 48 h [36]. However, there are 
no studies elucidating other mechanisms of NF-κB induction 
on ALCAM transcription. This could be crucial in under-
standing the immunological aspect of ALCAM transcription 
regulation by connecting NF-κB pro-inflammatory signaling 
to cell adhesion.

Membrane organization

Cell-surface localization of ALCAM is controlled, in part, 
by trafficking to the membrane and association with the 
actin cytoskeleton and binding partner CD9 [37, 38]. 
ALCAM has 10 potential N-linked glycosylation sites 
[39] further characterized in the melanoma cell line A375 

Fig. 1   ALCAM regulation for tunable cell adhesion. (1) ALCAM 
is composed of five Ig-like domains, two V-type domains and three 
C2-type domains, a transmembrane (TM) region, and a small intra-
cellular domain (ICD). ALCAM gene expression (2a/b) is regulated 
by the promoter elements NF-κB, Ets, Sp1, and a GC-box upstream 
of the translation start site (TSS). This molecule associates with the 
tetraspanin CD9 to enhance homotypic ALCAM–ALCAM inter-
actions and facilitate clustering. It also associates with the actin 

cytoskeleton to strengthen cell adhesion through adaptors syntenin-1 
and ezrin (3). ALCAM protein stability is regulated by CHIP medi-
ated ubiquitination and subsequent proteasomal degradation (4). 
Alternative splicing affects the proteolytic susceptibility of ALCAM 
(4). ADAM17 proteolysis of iso1 promotes high cell–cell adhesion 
through low basal shedding (5a), while MMP14 proteolysis of iso2 
enables cell motility through high basal shedding and disruption of 
ALCAM–ALCAM interactions (5b)
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as β 1–6 branched oligosaccharides by mass spectrometry 
[40]. While no functional studies have been performed 
determining the role of these N-glycans on ALCAM 
post-golgi trafficking, they could contribute to sorting 
at apical membranes of polarized cells [41]. Based on 
co-immunoprecipitation and co-localization experiments, 
the tetraspanin CD9 interacts with ALCAM on leukocyte 
membranes [38]. Tetraspanins are a conserved family 
of protein organizers consisting of four transmembrane 
domains that form a small extracellular loop and large 
extracellular loop (LEL). Tetraspanins typically inter-
act with themselves and other proteins, both cytoplas-
mic and membrane bound, forming tetraspanin enriched 
microdomains (TEMs) [42]. These TEMs are endowed 
with distinct functional specialties ranging from modu-
lation of growth factor signaling to integrin-dependent 
cell adhesion [43]. By using CD9-LEL mutants, optimal 
ALCAM interaction required the variable region within 
the LEL. CD9 therefore interacts with ALCAM through 
its LEL and was found to enhance homotypic adhesion 
by facilitating cis-clustering [38]. While ALCAM lacks 
a direct actin-binding site, it is anchored to the cytoskel-
eton through the scaffolding proteins syntenin-1 and 
ezrin, which interact with the cytoplasmic tail of ALCAM 
[44]. Membranous ALCAM is clearly linked to the actin 
cytoskeleton because lateral mobility is enabled upon 
inhibition of actin polymerization by cytochalasin D. This 
in turn allows for the formation of high avidity clusters 
ultimately affecting adhesion strength [37]. Altogether, 
ALCAM intracellular membrane distribution is regulated 
by the formation of CD9-associated ALCAM microdo-
mains and subsequent redistribution upon ligand engage-
ment whereby ALCAM is recruited to sites of trans-inter-
action. Thus, regulation of ALCAM availability through 
surface distribution is critical to its ability to contribute 
to cell–cell adhesion.

Protein degradation

Post-translational turnover is especially important in the 
protein homeostasis of membrane proteins like ALCAM 
whose activity is primarily regulated by availability. The 
E3 ubiquitin ligase, carboxy-terminus of Hsc70 Interacting 
Protein (CHIP), was found to increase ubiquitination and 
subsequent proteasomal degradation of ALCAM in head 
and neck cancer. Using multiple HNC cell lines, CHIP 
over-expression studies revealed increased ALCAM pro-
tein turnover, while mRNA levels remained unaffected. 
CHIP has also been shown to suppress tumor progression 
in breast cancer, which correlated with high expression 
in non-aggressive cell lines [45]. These observations 

demonstrate how protein stability regulates ALCAM func-
tion through membrane availability.

Proteolytic shedding and the consequences 
of alternative splicing

ALCAM has nine recognized splice variants, four of which 
have open reading frames. Of these, two splice variants 
have been confirmed at both the mRNA and protein level. 
Canonical or full length ALCAM, from here on referred to 
as ALCAM-isoform1 (iso1), contains all 15 coding exons, 
while ALCAM-isoform2 (iso2), lacks exon 13, resulting 
in a 13 amino acid truncation of the stalk region. The gene 
structure analyses of these isoforms are described in detail 
by Hebron et al. [46]. Even though both isoforms contain 
the terminal Ig-domains responsible for adhesion, iso1 
promotes cell–cell adhesion while iso2 enables single cell 
dispersion. These phenotypes are a result of differential 
proteolytic susceptibility of the two isoforms [46].

Like many receptors, ALCAM is proteolytically shed 
from the cell surface and released into interstitial fluid 
from which it enters circulation. Early studies identified 
the transmembrane protease a disintegrin and metallo-
protease 17/tumor necrosis factor α converting enzyme 
(ADAM17/TACE) as being responsible for ALCAM shed-
ding in ovarian cancer cells [47]. ADAM17-mediated 
shedding was verified in a metastatic prostate cancer cell 
line (PC3) and readily detected in the circulation of tumor-
bearing mice as well as cancer patients [48]. ADAM17 
cleaves its substrates in the stalk region of transmembrane 
proteins located on the extracellular membrane-proximal 
part of the molecule [49, 50]. The stalk region of ALCAM 
is encoded by exons 12–14 at amino acids 502–527. The 
presence of an alternative splice variant that lacked exon 
13 (iso2) implied that a protease resistant ALCAM variant 
might exist. However, detailed protein-structure analysis 
studies revealed that the loss of exon 13 in iso2 enabled 
proteolytic cleavage of ALCAM by matrix metalloprotein-
ase 14/matrix-type 1-metalloproteinase (MMP14/MT1-
MMP) at a distal site in the fourth Ig-like domain [46]. 
These findings demonstrated that iso2 is shed at 10-times 
the rate of iso1 and explains why iso1 is able to maintain 
cohesion, despite being shed, while iso2 enables single-
cell dispersion. While the specific need for two distinct 
mechanisms of shedding has yet to be investigated, we 
speculate that the shedding of iso1 by ADAM17 is a low 
shedding rate needed to turn-over adhesion between cells, 
while shedding of iso2 by MMP14 entails a high rate shed-
ding that facilitates single-cell movement. This observa-
tion implies that proteolytic shedding of ALCAM is not 
merely regulated through availability or activity of the pro-
tease, but can be finely tuned by controlling the splicing 
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of ALCAM post-transcriptionally to change the balance 
between a proteolytically-susceptible and proteolytically-
resistant isoform (iso2 vs. iso1 respectively). Therefore, 
there is an interdependency between isoform expression 
and protease activity that is leveraged depending on the 
state of tissue cohesion. The increase of iso2 expression 
in bladder cancer tissue compared to normal bladder is 
consistent with the idea that tumor malignancy favors a 
less cohesive and more readily dispersed behavior [46].

Proteolysis by both ADAM17 and MMP14 results in the 
release of soluble forms of ALCAM (sALCAM) contain-
ing most of the ectodomain. In general, these molecules are 
antagonistic to cell-surface ALCAM and disrupt ALCAM-
mediated cell–cell adhesion which, in turn, promotes migra-
tion in both tumor and normal cells.

Considering that ALCAM is shed by cancer, where 
this shedding increases as a function of malignancy and 
metastasis [47–49], the detection of sALCAM could func-
tion as a biomarker of cancer progression. Several studies 
have evaluated ALCAM in ascites fluid, urine, and blood 
serum of cancer patients, and provide an increasingly robust 
indication for using sALCAM as a non-invasive means of 
disease monitoring [16, 39, 50]. Indeed, ALCAM shedding 
has prognostic implications across many types, including 
bladder, cervical, prostate, CRC, and pancreatic cancers [16, 
17, 48, 51, 52]. The discovery that ALCAM shedding is 
regulated in part by its alternative splicing makes ALCAM 
shedding particularly intriguing as a biomarker of cancer 
malignancy because it implies that ALCAM shedding exists 
at the intersect between intrinsic regulation of gene expres-
sion and extrinsic regulation of protein activity. As such, it 
functions as an indicator of phenotype rather than genotype.

Concluding remarks

Cell adhesion is a crucial part of the formation and mainte-
nance of tissue architecture. Molecular mechanisms of adhe-
sion not only define the (spatial) organization and infrastruc-
ture of differentiated epithelial cell layers, but also enable the 
interpretation of external signals involved in cell–cell com-
munication. While no adhesion molecule acts in isolation, 
we chose to focus this review on the regulation of the IgSF 
member ALCAM to show how dynamic regulation of this one 
molecule through distinct, but coordinated regulatory mecha-
nisms, can enable fine-tuning of cell adhesion. The fact that 
this single molecule from a family of 600+ members can sig-
nificantly impact cellular cohesion and demonstrate clinical 
relevance clarifies the enormous dynamic range in cellular 
adhesion that can be achieved with the IgSF members. While 
this has been recognized for some time in the field of develop-
mental biology, the relevance of these processes in controlling 
the malignant phenotype independently from the underlying 

genotype has been under-appreciated in the area of cancer 
biology. Lessons learned from investigating ALCAM suggest 
that dynamic regulation of cell adhesion is essential for defin-
ing the differences between normal and malignant phenotype.

Understanding how the tuning of cell adhesion controls 
the malignant phenotype will have ramifications at both at 
the mechanistic and clinical level. For instance, dynamic 
turn-over of ALCAM–ALCAM adhesions not only disrupts 
the mechanics of cell–cell adhesion but also disables the 
intracellular association with syntenin-1 and ezrin which 
impacts not only this distribution of these scaffolding mol-
ecules, but all of the associated biological processes includ-
ing actin organization, g-protein mediated signaling, and 
possibly vesicle biogenesis. Consequently, adhesion mol-
ecules such as ALCAM become much more than iterative 
additions to the cell adhesion milieu of normal and tumor 
tissue. The lack of any significant phenotype in the ALCAM 
knockout mouse initially diminished enthusiasm for finding 
a therapeutic intervention that could be effective. However, 
by gaining an understanding of the underlying regulatory 
dynamics, it has become possible to target its activity and 
direct the adhesive properties to benefit clinically. Pub-
lished examples include targeting the alternative splicing 
to promote an adhesive phenotype [46] or treatment with 
an antagonistic molecule such as a competing peptide [53], 
sALCAM ectodomain [46], ALCAM blocking antibodies 
[54] or antibodies against the ALCAM ligand, CD6 [55].

While the focus of this review is limited to regulation of 
ALCAM–ALCAM interactions, ALCAM–CD6 interactions 
have emerged as a promising target in the cancer immuno-
therapy field. CD6 is a cognate ALCAM ligand expressed on 
T-cells and a small subset of B-cells that functions both as 
a costimulatory molecule for T-cell activation/proliferation 
and as an adhesion molecule to promote thymocyte–thymic 
epithelial cell interactions [56–60]. Previous studies pri-
marily concentrate on ALCAM–CD6 in autoimmune dis-
eases, such as multiple sclerosis, rheumatoid arthritis, and 
psoriasis, to inhibit leukocyte transendothelial migration to 
inflammatory sites [27, 61–63]. There are very preliminary 
reports of ALCAM-independent CD6 targeting in hemato-
logical malignancies, however it is important to note that 
only less than five patients were evaluated in each study. 
Using the mouse anti-human CD6 mAb IOR-T1 in cutane-
ous T-cell lymphoma to topically treat resulting skin lesions 
induced clinical and histopathological regression based on 
CD6+ T-cell depleting properties [64]. Treatment with the 
fully humanized CD6 mAb T1h (Itolizumab) in patients with 
chronic lymphocytic leukemia also showed clinical improve-
ment [65]. The first reports of targeting ALCAM/CD6 spe-
cific interactions in a solid tumor have been shown to yield 
promising results for the immunotherapy field by means of 
T-cell homing in brain cancer [66].
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Identifying therapies that target the malignant pheno-
type without being restricted to the underlying genotype is 
increasingly important in a clinical setting that recognizes 
the heterogeneity of cancer as a disease and the need for 
individualized therapy. Consequently, we see the diversity 
of adhesion mechanisms not as a hindrance to our under-
standing of cancer progression and metastasis, but rather 
as a wealth of possible mechanisms by which we can re-
direct and eliminate the malignant phenotype. ALCAM is an 
example of this approach, but numerous other mechanisms 
are likely to offer similar opportunities.

Funding  This study was supported by National Cancer Institute (Grant 
Nos. 5T32CA009592-30, R01 CA218526).
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