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Abstract
Imaging is broadly used in biomedical research, but signal variation complicates automated analysis. Using the Pulmonary 
Metastasis Assay (PuMA) to study metastatic colonization by the metastasis suppressor KISS1, we cultured GFP-expressing 
melanoma cells in living mouse lung ex vivo for 3 weeks. Epifluorescence images of cells were used to measure growth, 
creating large datasets which were time consuming and challenging to quantify manually due to scattering of light from 
outside the focal plane. To address these challenges, we developed an automated workflow to standardize the measurement 
of disseminated cancer cell growth by applying statistical quality control to remove unanalyzable images followed and a 
filtering algorithm to quantify only in-focus cells. Using this tool, we demonstrate that expression of the metastasis suppres-
sor KISS1 does not suppress growth of melanoma cells in the PuMA, in contrast to the robust suppression of lung metastasis 
observed in vivo. This result may suggest that a factor required for metastasis suppression is present in vivo but absent in 
the PuMA, or that KISS1 suppresses lung metastasis at a step in the metastatic cascade not tested by the PuMA. Together, 
these data provide a new tool for quantification of metastasis assays and further insight into the mechanism of KISS1 medi-
ated metastasis suppression in the lung.

Keywords Metastasis assay · Pulmonary metastasis assay · PuMA · Lung metastasis · KISS1 · Quantitative fluorescent 
imaging

Introduction

Imaging plays a critical role in assessing components of 
living systems and understanding their biology as a whole. 
Qualitative imaging data are striking and give insight into 
biologic function, but quantitative analysis of imaging data 
remains challenging. Large variations in signal intensity, 
shape, or distribution can complicate objective and quanti-
tative image analysis [1]. Such complex variations are often 
present within living systems and increase with the range of 
imaging depth [2]. While methods such as confocal micros-
copy allow for the independent imaging of each focal plane 
for subsequent data compilation, data collected using stand-
ard epifluorescence microscopy, in vivo imaging and time-
lapse microscopy often capture images containing regions 
that are both in- and out-of-focus. Thus, out-of-focus objects 
within an image or light scattered as it is transmitted through 
tissues can skew quantification efforts [3, 4]. In metasta-
sis research, image data from intact lungs, epifluorescence 
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photomicrographs, in vivo luciferase, and Pulmonary Metas-
tasis Assays (PuMA) [5] data all present such challenges. 
In these cases, objectively distinguishing between in-focus 
and out-of-focus fluorescent particles within the same image 
remains challenging.

PuMA is a powerful tool to study mechanisms of pul-
monary metastasis ex vivo [6]. However, we found manual 
quantification of fluorescent image data to be time consum-
ing and potentially subjective. In order to overcome these 
challenges, we designed an automated workflow to identify 
images suitable for automated analysis and quantify in-focus 
regions of interest (ROI) by adapting a method originally 
developed to study sediment deposition [7]. The goal of this 
workflow is not to replace one method of microscopy with 
another (i.e. confocal with epifluorescence), as we recognize 
each imaging platform has unique strengths and limitations. 
Instead, we sought to improve the objectivity and speed with 
which complex datasets containing images and features of 
varying quantity and quality can be stratified and analyzed.

We developed this tool to measure the growth of cancer 
cells disseminated to the lung in order to use the PuMA as 
a platform to further dissect how the metastasis suppres-
sor KISS1 suppresses melanoma lung metastasis [8]. We 
hypothesized that melanoma cells expressing KISS1 would 
be growth suppressed (i.e., dormant) in the PuMA, just as 
they appear in vivo [9]. Surprisingly, we did not see any dif-
ference in the rate of growth in the PuMA as measured by 
area of GFP positive cells in each lung slice. Nonetheless, 
these experiments were useful in developing a tool for auto-
mated quantification of PuMA and other imaging datasets 
containing images and data varying in quality and intensity.

Methods

Pulmonary metastasis assay

All animal studies were conducted in accordance with the 
Guide for the Care and Use of Laboratory Animals (National 
Institutes of Health). Protocol (#2014–2208) was approved 
by University of Kansas Medical Center Institutional Ani-
mal Care and Use Committee. The PuMA was performed 
as described [5] with modifications. Female nude mice aged 
6–8 weeks were intravenously injected with 50,000 enhanced 
green fluorescent protein- (GFP) expressing C8161.9 cells 
(human amelanotic melanoma, clone 9) [10, 11] suspended 
in 200 µl of 0–4 °C Hanks Buffered Salt Solution (HBSS, 
Life Technologies, #14175-103). Cells circulated for 20 min 
and lodged in lung capillaries. Mice were euthanized using 
 CO2 before lungs were insufflated with a 1:1 mixture of 
media and agarose using an 18-gauge (GA) needle and 10 ml 
syringe. After tying off the trachea with suture, lungs were 
extracted and placed in sterile phosphate buffered saline 

(PBS) on ice. Lungs were cut into ~ 0.5–1 mm sections using 
sterile forceps and microdissection scissors. Sections were 
placed on media-saturated Gelfoam® (Pfizer-Pharmacia & 
Upjohn Co., #09-0315-08) in a 6-well cell culture plate for 
incubation and imaging. Media was replaced every 2 days.

Experimental metastasis assay

In order to seed the lungs with disseminated melanoma cells, 
injections were performed as previously described [12]. 
Briefly, 50,000 C8161.9 cells were suspended in 0–4 °C 
HBSS and injected into the tail vein in a volume of 100 µl 
using a 27 GA needle and 1 ml syringe. Cells were allowed 
to grow in vivo for 5 weeks or until the animal was mori-
bund. After  CO2 induced euthanasia, lungs were imaged 
with the aid of a fluorescence dissecting microscope and 
tumor and lung tissues were collected for analysis. Macro-
scopic metastases were quantified by using the multi-point 
tool in ImageJ to count each metastasis visible on the surface 
of the lung.

Immunofluorescence

Samples of lung growing in PuMA culture were collected 
weekly for 3 weeks and flash frozen in OCT (Fisher # 
23-730-571). Frozen sections (7 µm) were cut using a cry-
ostat and fixed 4% paraformaldehyde in PBS. Fish gelatin 
(4% in PBS) was used for blocking and dilution of the pri-
mary (GFP, Abcam #6556, 1:100) and secondary (Alexa 
594, #R37117, ThermoFisher, 1:500) antibodies. Nuclei 
were counterstained with DAPI in mounting medium (#H-
1200, Vectashield).

Image acquisition

Lung sections containing disseminated GFP-expressing 
melanoma cells were imaged at days 0, 7, 14 and 21. Each 
Gelfoam® sponge containing lung sections and cancer 
cells were placed lung side down on a culture dish (Mat-
Tek, #P35-G-1.5-20-C) for imaging. A Nikon Eclipse TS100 
Inverted Microscope, QImaging QIClick monochrome 
CCD camera and Metamorph software were used to take 
~ 30 non-redundant images per experimental group at 20× 
magnification for each time point (Fig. 1). GFP-expressing 
cancer cells were present throughout the lung section. The 
focal plane which optimized the number of in-focus cancer 
cells was chosen for each image. Immunofluorescence (IF) 
images were collected using a Nikon Eclipse 80i micro-
scope, QImaging QIClick 8 bit monochrome camera and an 
XCite120PC light source. Five images per time point were 
collected and quantified using ImageJ. After imaging, Gel-
foam® with lung sections was returned to the 6 well dish 
and media was replaced.
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Image analysis

In collecting and analyzing PuMA data, we noted that while 
some images were easily analyzed by automated process-
ing, images with high background skewed analysis because 
the software was not able to recognize all GFP-expressing 
cells or groups of cells. Hereafter, these cell clusters will 
be referred to as regions of interest (ROI) (Fig. 2a). A step-
by-step protocol for the method described (Supplementary 
1) and all operating scripts required for the protocol are 
freely available online (https ://drive .googl e.com/drive /folde 
rs/1zmjp _VW_Pnw7B dyeAu t36DS 1J6Ao J-QG?usp=shari 
ng). To develop a training set for machine learning, we used 
a large set of images and manually stratified analyzable 

images by how accurately the automated threshold identi-
fied ROI. ImageJ [13] was used for image processing and 
cell measurements. R was used for statistical analysis, and 
MATLAB was used to identify out-of-focus particles.

To process the images, first the MaxEntropy threshold 
[14] from ImageJ was applied to images from the PuMA. 
Then, we manually classified images into two groups: 
those which the MaxEntropy threshold accurately identi-
fied as fluorescent cells (“analyzable”) and those which 
were not (“unanalyzable”). In both the analyzable and 
unanalyzable image sets, parameters from ImageJ served as 
explanatory variables (numROI, avgArea, avgPerim, avg-
Width, avgHeight, avgMajor, avgMinor, avgAngle, avgCirc, 
avgFeret, avgIntDen, avgMinFeret, avgAr, avgRound, 

Fig. 1  PuMA image acquisi-
tion and automated image 
analysis workflow. PuMA image 
acquisition and automated 
image analysis workflow. a 
Mouse lung sections (0.5–1 mm 
thick) containing disseminated 
GFP-expressing melanoma cells 
were placed on media-saturated 
Gelfoam® sponges cultured 
ex vivo for up to 3 weeks. Using 
an inverted microscope, an 
average of 30 non-redundant 
photomicrographs were 
recorded per experimental 
group every 7 days. Scale bar 
for cell culture dish is 1 cm. 
Scale bar for fluorescent image 
is 50 µm. b Cross-section views 
of lung sections containing 
GFP-expressing melanoma cells 
within lung section atop Gel-
foam® with respect to the focal 
plane of the image. c Schematic 
of the automated workflow used 
for image analysis. Output from 
a logistic regression model 
selects analyzable images for 
subsequent automated analysis. 
To standardize measurement of 
melanoma growth, only in-focus 
fluorescent cell clusters/regions 
of interest (ROI) were quanti-
fied. In-focus ROI were selected 
by applying a Gaussian gradient 
and selecting ROI with a clarity 
value above the in-focus thresh-
old for quantification. Scale bars 
are 50 µm

https://drive.google.com/drive/folders/1zmjp_VW_Pnw7BdyeAut36DS1J6AoJ-QG?usp=sharing
https://drive.google.com/drive/folders/1zmjp_VW_Pnw7BdyeAut36DS1J6AoJ-QG?usp=sharing
https://drive.google.com/drive/folders/1zmjp_VW_Pnw7BdyeAut36DS1J6AoJ-QG?usp=sharing
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Fig. 2  Validation of Image Analysis to Measure Tumor Cell Growth. 
Validation of image analysis measurements and image stratification. 
a Image of disseminated GFP-expressing melanoma cells in living 
lung tissue. Raw image (monochrome), image negative, image after 
thresholding, and cancer cell(s) identified by ImageJ are shown. In-
focus cell clusters/ROI are retained while out-of-focus particles are 
excluded. Width of cell cluster measured by ImageJ is scaled cor-
rectly. Scale bar is 50 µm. b Comparison of representative analyzable 
and unanalyzable images stratified by the logistic regression model. 
Raw images, negatives and ROI identified after applying the Gauss-

ian gradient to identify in-focus ROI are shown. Analyzable images 
show correctly identified ROI, while unanalyzable images do not. 
Scale bars are 50 µm. c Microscopy images of GFP+ control cells on 
Day 0 and Day 21 as seen by IF (upper panels) staining for GFP or 
live cell inverted epifluorescence microscopy (lower panels). Scale 
bars are 20 µm (IF) and 50 µm (image analysis). d Quantification of 
tumor cell growth in the PuMA at Day 0 and Day 21 as measured 
by IF (upper graph) and image analysis (lower graph). Comparison 
of image analysis quantification with immunofluorescence (IF) show 
similar growth trends
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avgSolidity). Parameter descriptions are provided in Table 1 
and Supplemental Fig. 1a.

Next, we used these explanatory variables to fit a multi-
variate logistic regression against the outcome variable of 
whether an image was analyzable or unanalyzable. Features 
which contributed significantly to distinguishing analyzable 
and unanalyzable images were used to stratify future image 
datasets (Table 1). Examples of analyzable and unanalyzable 
images identified by the model are shown in Fig. 2b.

The outcome of our logistic regression was used to set 
a threshold for classifying which images were analyz-
able. To determine this threshold and assess prediction 

performance, we conducted a cross-validation using our 
test dataset by comparing original estimates of image 
analyzability from the multivariate analysis to the cross-
validated model (Supplemental Fig. 1b). The probability 
threshold was set by constructing a 2 × 2 table comparing 
images determined to be analyzable by manual or auto-
mated stratification and determining which image prob-
ability value (0.57) gave the fewest misclassified images. 
Images with a predicted probability below this threshold 
were excluded from further analysis, while images with 
a probability above it were retained for further analysis. 
Comparison of automated and manual image stratification 

Table 1  Logistic regression identifies features predicting analyzable images

Output of multivariable logistic regression. For each region of interest (ROI) feature assessed, the estimate, standard error, z value, probability 
that a value would be greater than the z value, and assigned significance codes are shown. Description of coefficients adapted from ImageJ User 
Guide http://image j.nih.gov/ij/docs/guide /user-guide .pdf
Significance codes: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘^’, 0.1 ‘ ’, 1

ROI feature (coefficients) Definition Estimate SE z Value Pr (>|z|)

Width Longest continuous horizontal dimension 88.840 19.330 4.596 4.300E−06***
Feret’s diameter Longest distance between any two points − 94.700 21.980 − 4.308 1.650E−05***
Height Longest continuous vertical dimension 80.550 21.470 3.752 1.760E−04***
Aspect ratio Major axis

Minor axis
− 15.360 4.462 − 3.442 0.001***

Perimeter Length of outside boundary − 12.860 4.587 − 2.803 0.005**
Solidity Area

Convex area
3.296 1.397 2.359 0.018*

Roundness 4 ×
Area

π×[Major axis]
2

− 3.214 1.421 − 2.261 0.024*

Circularity 4π ×
Area

[Perimeter]2
− 3.444 1.920 − 1.793 0.073^

Minimum feret Minimum caliper diameter − 30.460 23.140 − 1.316 0.188
Area Area of the selection in square pixels 2.454E+09 1.883E+09 1.303 0.193
Minor ellipse Secondary axis of best fitting ellipse − 19.260 15.580 − 1.236 0.216
Angle Angle between primary axis and line parallel to the X-axis of 

the image
0.929 0.935 0.993 0.321

Major ellipse Primary axis of best fitting ellipse 7.788 16.200 0.481 0.631
Feret angle The angle (0°–180°) of the longest distance between any two 

points along the selection boundary (Feret’s Diameter)
0.445 1.103 0.403 0.687

Table 2  Accuracy of image 
classification by logistic 
regression

Manual Stra�fica�on (Truth)

Analyzable Unanalyzable Total

Au
to

m
at

ed
St

ra
tif

ic
at

io
n

(T
es

t) Analyzable True posi�ves

1586

False nega�ves

72

1658

Unanalyzable False nega�ves

156

True nega�ves

328

484

Total 1742 400 2142

Comparison of manual and automated image stratification

http://imagej.nih.gov/ij/docs/guide/user-guide.pdf


82 Clinical & Experimental Metastasis (2018) 35:77–86

1 3

is summarized in Table 2. Overall, automated stratification 
performed well as a test for whether or not an image was 
analyzable with a positive and negative predictive values 
of 0.957 and 0.678 respectively (Table 3).

Finally, we selected only in-focus ROI for analysis using 
a method originally developed to remove out-of-focus ROI 
from images in sediment deposition research [7]. First, 
a clarity value is calculated for each ROI by applying a 
Gaussian gradient smoothing function. The threshold for 
in-focus ROI was determined by comparing a series of gra-
dient-produced images with the original image. A clarity 
value threshold was set which distinguished between in-
focus and out-of-focus ROI (Figs. 1b, c, 2a, b). ROI with a 
sharper gradient (larger value) than the clarity value were 
retained and the area was quantified, while ROI with a 
more gradual (smaller) gradient than the clarity value were 
considered out-of-focus and excluded. To verify our image 
analysis measured cell growth accurately, we compared 
image analysis measurements to direct measurements of 
cell growth using IF of GFP positive cells at Day 0 and 
21 (Fig. 2c, d). We observed similar growth trends using 
these techniques, validating the measurements made by 
image analysis. Thus, we standardized the ROI which were 
selected before calculating the surface area of the ROI. 
Surface area of the in-focus fluorescent ROI as compared 
to the total area imaged was then used as a proxy for cell 
growth ex vivo and we were able to automate the measure-
ment of the tumor explants in living lung.

Statistical analysis

Logistic regression, one-way ANOVA, Student’s t-tests and 
graphing were performed using R (Vienna, Austria) [15] 
and MATLAB [16].

Results

Our goal was to develop an automated workflow whereby 
epifluorescence images could be objectively quantified 
(Fig. 1a). Three tasks had to be automated in order to achieve 
this objective: (1) classification of an image as “analyzable” 
or “unanalyzable”; (2) measurement of ROI/cancer cell fea-
tures in the image; and, (3) removal of identified out-of-
focus ROI that might bias the data.

First, images were classified as “analyzable” or “unan-
alyzable”. We found that some images were amiable to 
automated cell measurement (task 2) while some were not 
(Fig. 1c). All images unable to be measured must be removed 
from the analysis to avoid biased ensemble results (Fig. 2b). 
From our test dataset, we used several features measured by 
ImageJ (Table 1, Supplemental Fig. 1a) to stratify analyzable 
from unanalyzable images (Fig. 2b). Features varied in their 
ability to identify analyzable images and we found that ROI 
Width, Feret’s Diameter, Height and Aspect Ratio were most 
significant in distinguishing analyzable from unanalyzable 
images (Pr (>|z|) of 4.300E−06, 1.650E−05, 1.760E−04, 
and 0.001 respectively). Also statistically significant were 
the ROI perimeter, solidity, and roundness (Pr (>|z|) of 
0.005, 0.018, and 0.024 respectively). These features are a 
result of the statistical model built around our test data set 
and we would expect these features may vary for different 
data sets.

Recognizing that several of the above referenced features 
may be potentially correlated (e.g. perimeter and area), we 
performed a cross-validation of our test set to check for over-
fitting of our model and found that the model performed 
equally well on unique subsets of our data (Supplemental 
Fig. 1a). Next, we determined which probability threshold 
would result in the fewest misclassified images and found 
this value to be 0.57. This threshold was then used to distin-
guish analyzable and unanalyzable images in future experi-
ments. Common causes of unanalyzable images included 
decreased image contrast due to absence of fluorescent 
cancer cells, pixel oversaturation due to robust cancer cell 
growth, cancer cells outside the focal plane, and increased 
tissue density surrounding bronchioles producing increased 
background. We also compared the automated analysis to 
manual stratification (Table 2) and found that automated 
stratification was able to identify similar numbers of ana-
lyzable images as when the same dataset was analyzed 
manually.

Table 3  Image selection is equitable between groups and experimen-
tal day

Comparison of number of excluded images between biologi-
cal groups. No difference was identified in the number of images 
excluded between any groups at any experimental day was identified 
after one-way ANOVA and Tukey’s HSD post-hoc test

Day Group compari-
son

95% confidence interval 
(LL, UL)

P value

0 B–A − 3.189, 1.522 0.637
0 C–A − 2.689, 2.022 0.929
0 C–B − 1.855, 2.855 0.847
7 B–A − 7.080, 10.080 0.893
7 C–A − 10.080, 7.080 0.893
7 C–B − 11.580, 5.580 0.644
14 B–A − 9.010, 8.344 0.995
14 C–A − 8.844, 8.510 0.999
14 C–B − 8.510, 8.844 0.999
21 B–A − 9.562, 6.562 0.880
21 C–A − 5.729, 10.395 0.737
21 C–B − 4.229, 11.895 0.452
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Next, we wanted to ensure that there was not bias in 
our model between any of the biologically distinct groups 
analyzed. Over the course of a 3-week PuMA experiment, 
lung sections from three biologically distinct lines of GFP-
expressing C8161 melanoma cells were imaged at 0, 7, 14 
and 21 days. Approximately 30 images (range, 14–58) were 
taken per experimental group at each time with a median 
and average of 25.5 and 29.8 images respectively (stand-
ard deviation, 10.9). To demonstrate that analyzable and 
unanalyzable images were stratified in an unbiased manner 
from distinct biological groups, we recorded the number of 
excluded unanalyzable images at each day of analysis and 
compared the means using one-way ANOVA and Tukey’s 
post hoc test (Supplemental Fig. 1c). No statically-signifi-
cant differences were identified between any of the groups. 
These data suggest that the image stratification is function-
ing equitably between biologic groups.

The second task was the measurement of the ROI fea-
tures. The key steps involved in this process were: (i) remov-
ing broad-scale trends in the grayscale color of the image; 
(ii) creating a binary image of black and white pixels through 
thresholding; and (iii) applying particle measurement rou-
tines to obtain quantitative data on the cell population (e.g., 
area, perimeter, long and short axis length and the orienta-
tion of long axis) for each ROI. Similarity between the ROI 
observed in the raw image and the ROI particles identified 
by the set thresholds (Fig. 2a, b) suggests that the threshold 
is able to correctly identify ROI of interest.

The third and final step was to exclude from further analy-
sis any ROI which were out-of-focus and might bias the data. 
In this way, we could objectively select high quality images 
and quantify the area of in-focus ROI to standardize analysis 
between samples.

This workflow was developed while we attempted to 
elucidate the mechanism of KISS1 suppression. While the 
ability of KISS1 to strongly suppress metastasis [8] has been 
demonstrated in multiple tumor types [9] and there have 
been hints related to upstream and downstream regulatory 
pathways [17], the biochemical underpinnings of KISS1 
metastasis suppression remain largely unknown. However, 
previous studies showed that KISS1 allows all steps prior to 
colonization of secondary sites [18]. As a result, we sought 
to use the PuMA as a model for understanding KISS1 medi-
ated suppression in the lung so that we could test what regu-
lates KISS1’s metastasis-suppressing activity.

To our surprise, there was no statistical difference in the 
growth of KISS1-expressing cells compared to controls 
(Fig. 3a). In some cases, growth in lung appeared even 
greater (Fig. 3b). Since secretion of KISS1 is required to 
suppress metastasis [18], we confirmed that KISS1 was still 
secreted in the PuMA at Day 21 by immunoblot (Fig. 3c). 
Together, these data show that the outgrowth of KISS1-
expressing cells is not due to loss of KISS1 expression. In 

parallel studies, the same KISS1-expressing C8161 cells 
were still robustly suppressed for metastasis despite seed-
ing lung in vivo (Fig. 3d, e).

Discussion

While the PuMA assay did not faithfully replicate what we 
had observed in vivo for KISS1-expressing cells, the data 
set obtained afforded an opportunity to refine the imaging 
workflow so that future experiments would be more read-
ily analyzed. Objective and quantitative analysis of images 
containing data from a range of focal planes is difficult due 
to variations in signal intensity and distribution. We recog-
nize that all microscopy methods have unique strengths and 
limitations [19–21]. Methods such as confocal microscopy 
may not suffer as much from large variations in signal inten-
sity. Indeed, this workflow is not intended to substitute one 
microscopy for another. Rather, our goal was to improve 
the capacity for epifluorescence microscopy data, nearly 
ubiquitous in many labs, to be more objectively quantified. 
Automating image selection may also help reduce (remove) 
bias by applying a standardized method to image selection 
for analysis, rather than leaving the decision to a single 
observer. While we acknowledge that our initial stratifica-
tion was empiric and could be a source of potential bias, 
we also demonstrate that the complex signal differences 
between analyzable and unanalyzable image parameters 
were quantifiable and could be used objectively select of 
images useful for automated analysis in future experiments. 
This platform mirrors other machine learning approaches 
such as non-negative matrix factorization, Random Forest 
classification, or Potts models [22, 23].

Using this workflow, we measured growth of dissemi-
nated cancer cells as a function of in-focus GFP-positive sur-
face area in lung tissue. This method has immediate utility in 
the PuMA, but might also be applied to in vivo data such as 
the quantification of luciferase signal in whole animals with 
metastases [20]. While our model identified a number of fea-
tures within an image to be significant in stratifying images, 
the features identified for other types of data are likely to 
vary greatly. This flexibility lends itself to the objective anal-
ysis of a potentially broad range of biological imaging data. 
For example, comparing relative roundness versus spindle 
morphologies could assess epithelial-to-mesenchymal tran-
sition, which contributes to some cells’ metastatic or inva-
sive potential [24, 25]. Additionally, using multiple features 
of the ROI creates a stronger tool for distinguishing in-focus 
from out-of-focus ROI than would a single modality, such as 
a gradient based on pixel saturation alone [26].

Despite the disappointment that PuMA did not mimic 
in vivo results in the C8161 KISS1 melanoma model, the 
results may still have provided clues regarding mechanism 



84 Clinical & Experimental Metastasis (2018) 35:77–86

1 3

Fig. 3  KISS1 expression does not suppresses growth in the PuMA, 
but suppresses robustly in vivo. Comparison of KISS1 Growth Sup-
pression in  vivo and ex  vivo (PuMA). a Representative images of 
growth of GFP control (top) or KISS1 expressing (bottom) C8161.9 
melanoma cells at days 0, 7, 14 and 21 in the PuMA. Scale bar for 
fluorescent image is 50  µm. b Quantification of PuMA three inde-
pendent experiments by image analysis. No significant differences. 
c Immunoblot for KISS1 from conditioned media from either GFP 

control or KISS1-expressing melanoma cells grown in the PuMA 
demonstrates KISS1 remains expressed in the PuMA to D21. d Rep-
resentative images of gross lungs containing vector control (top) or 
KISS1 expressing (bottom) C8161.9 melanoma cells 5  weeks after 
tail vein injection demonstrating suppression of lung outgrowth by 
KISS1 in  vivo. n = 5 mice/group. e Quantification of macroscopic 
lung metastases
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of action. KISS1-expressing cells still proliferated. Since 
we previously showed that C8161 cells do not express the 
KISS1 receptor [18] eliminating autocrine feedback of KP54 
as a potential mechanism, the hypotheses related to parac-
rine mechanisms or alternative feedback [27] are supported. 
Three possibilities exist for the lack of consistency between 
the in vitro and in vivo data: (1) a factor required to suppress 
growth of KISS1-expressing cells is missing in PuMA; (2) 
a molecule that promotes growth of KISS1-expressing cells 
is ‘uncovered’ in PuMA; or, (3) KISS1 suppresses at a step 
other than proliferation at the secondary site and that step 
is not measured by PuMA. These data, taken together with 
results from all of the other assays measuring steps of metas-
tasis in vitro, emphasize that the ‘gold standard’ for studying 
metastasis is in vivo.
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