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Abstract
Worldwide, colon cancer is among the most common cancer entities. Understanding the molecular background is the key to 
enable accurate stage determination, which is crucial to assess optimal therapy options. The search for preoperative biomark-
ers is ongoing. In recent years, several studies have proposed a diagnostic and prognostic role for miRNAs in cancer. Aim 
of this study was to evaluate miRNA expression patterns correlating with tumor stage, especially lymph node metastasis, in 
primary colon carcinoma tissue. Screening was accomplished using  GeneChip® miRNA v3.0 arrays (Thermo Fisher Sci-
entific, Waltham, MA, USA) and validated via  TaqMan® qPCR assays (Thermo Fisher Scientific, Waltham, MA, USA) to 
investigate miRNA expressions in 168 FFPE and 83 fresh frozen colon carcinoma samples. Regarding lymph node status, 
analyses displayed no significantly differential miRNA expression. Interestingly, divergent expression of miR-18a-5p, miR-
20a-5p, miR-21-5p, miR-152-3p and miR-1973 was detected in stage pT1. Although miRNAs might not represent reliable 
biomarkers regarding lymph node metastasis status, they could support risk assessment in stage T1 tumors.
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Introduction

Colon cancer is the third most common cancer worldwide 
[1]. Metastasis, which is the major cause of colon cancer 
related mortality, evolves from a complex multistep process 
in which lymph nodes often are affected prior to other organs 
and contribute to further dissemination of cancer cells to 
additional sites [2]. Accurate staging, using the tumor-node-
metastasis (TNM) system (UICC, 7th edition), is crucial to 
determine treatment options and prognosis [3]. The dif-
ferentiation of UICC stage III (tumors positive for lymph 
node metastasis) from high and low risk stage II (negative 
for lymph node metastasis, with or without risk factors like 
T4) has a major impact on prognosis, treatment benefit and 
therapy regimen options [4]. Furthermore, early treatment 
start was associated with a higher benefit [5]. This is also 
the case in other cancer entities (e.g. gastric, rectal or breast 
cancer), where the clinical assessment of tumor stage allows 
their neoadjuvant treatment, providing significant benefits 
for the patients [6–9]. A further rationale for neoadjuvant 
treatment is the higher treatment compliance compared 
to adjuvant treatment, and tumor shrinkage and cell death 
might reduce the risk of cell shedding during operation [10]. 
Another important argument in favor of neoadjuvant treat-
ment concepts is that it allows for tumor chemosensitivity 
testing, which might have implications for duration and type 
of therapy. Due to this, preoperative systemic treatment has 
recently been an issue also in colon cancer. Several studies 
aim to show efficacy and safety for the neoadjuvant treatment 
with capecitabine and oxaliplatin, for example, and interim 
findings are promising [11–13]. Future clinical concepts 
for enhancing efficacy of multimodal treatment in colon 
cancer could include the option of timing systemic therapy 
before resection of the tumor. The prerequisite for this, how-
ever, is an accurate staging to separate high risk stage II 
and stage III from low risk stage II and stage I disease to 
prevent overtreatment. Based on biopsy results or imaging 
techniques, this is, unfortunately, challenging. Additional 
biomarkers to facilitate a more precise staging prior to sur-
gical excision are necessary, in order to enable earlier treat-
ment. Furthermore, the molecular differences between colon 

carcinomas extending into superficial epithelial layers (T1; 
tumor invades submucosa) presenting lymph node metas-
tasis and those invading deep into the intestinal wall (T4) 
without lymph node metastasis need further investigation. 
Additionally to the metastatic niche, also early alterations in 
the primary tumor might contribute to the varying onset of 
lymph node metastasis [14–17].

MicroRNAs (miRNAs) are small (18–24 bases), non-
coding, regulatory RNA molecules. Aberrant miRNA 
expression associated with cancer was first described by 
Calin and colleagues [18]; since then, miRNAs have been a 
major subject of cancer research. Several groups proposed 
miRNA expression profiles able to distinguish colorectal 
cancer from normal tissue as well as specific tumor stages 
and metastasis [19–22]. However, the distinction of lymph 
node positivity from negativity in primary lesions was not 
discussed extensively.

In this work we investigated miRNA expression in early 
colon carcinoma stages excluding distant metastasis. Along 
with comparing formalin-fixed paraffin-embedded (FFPE) as 
well as fresh frozen primary tumor tissue from lymph node 
negative with lymph node positive tumors, the question of 
T stage dependent miRNA expression was addressed. This 
was achieved with miRNA screening in test samples and 
validation via qPCR in a large cohort.

Materials and methods

Tissue samples

FFPE primary tumor tissue samples from 168 patients 
as well as fresh frozen primary tumor and corresponding 
benign colon tissue specimens from 83 patients, who under-
went surgical excision due to colon cancer without neoadju-
vant treatment prior to surgery at the hospital Barmherzige 
Schwestern Linz between 2007 and 2014 and between 2011 
and 2014, respectively, were collected. Clinical informa-
tion and diagnosis including TNM (tumor-node-metastasis) 
staging according to UICC criteria were accessed from the 
pathological and medical records and are listed in Table 1 
[3]. Patients with known hereditary colon cancer, other his-
tological types than adenocarcinomas and distant metastases 
at time of diagnosis and collection were excluded. FFPE 
tissue was chosen, as it represents a standard method for 
long-term storage and therefore a substantial set of samples 
were available. Furthermore, FFPE tissue facilitates deter-
mination of tumor portion. Hence, for each FFPE specimen 
the standard protocol of hematoxylin and eosin staining 
was performed on adjacent slices and the tumor fraction 
was marked by pathologists to ensure that only tissue with 
a tumor content of more than 80% was included for RNA 
isolation [23]. Additionally, frozen tissue specimens were 
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available from the hospital’s tumor bank for further valida-
tion of specific miRNAs in pT3 and pT4 (regarding pT1 
the sample number was not sufficient for analysis). Ethical 
approval for this retrospective study was granted from the 
hospital’s ethics committee.

RNA isolation

Total RNA was extracted from two to five 7–10 µm slices 
of FFPE material using the RecoverAll™ Total Nucleic 
Acid Isolation Kit for FFPE (Thermo Fisher Scientific, 

Waltham, MA, USA) according to the manufacturer’s 
instructions with the modification of agitated protease 
digestion at 50 °C for 20–40 min.

PeqGOLD TriFast™ (VWR, Radnor, PA, USA), an 
optimized guanidinium thiocyanate-phenol-method, was 
applied for total RNA isolation from fresh frozen sam-
ples according to the manufacturer’s instructions with 
overnight RNA precipitation. Tissue homogenization was 
achieved through automated mechanic disruption with the 
gentleMACS™ Dissociator (Miltenyi Biotec, Bergisch 
Gladbach, Germany).

Table 1  Clinicopathological 
parameters of all patients (all 
M0)

FFPE formalin-fixed paraffin embedded, n quantity, WT wild type, n/a not available, MSS microsatellite 
stable, MSI microsatellite instable
a Following mutations in KRAS were detected: c.G35A, c.G38A, c.A183T, c.G34A n = 1, c.G34T n = 1, 
c.G35C, c.G35T, c.G38A, c.32_37dupCTG GTG 

FFPE (n = 168) Frozen (n = 83)

n % n %

Median age at diagnosis (years/range) 72 22–95 71 31–89
Gender
 Male 95 57 50 60
 Female 73 43 33 40

Tumor location
 Right (cecum, ascending, hepatic flexure) 90 54 20 24
 Left (sigmoid, descending, splenic flexure) 70 42 43 52
 Transverse 8 5 20 24

T category
 pT1 19 11 0
 pT2 27 16 0
 pT3 95 56 70 84
 pT4 27 16 13 16

N category
 Negative 100 60 50 60
 Positive 68 40 33 40

Histological grade
 G1 20 12 3 4
 G2 106 63 51 61
 G3 42 25 29 35
KRAS
 WT 25 15 61 18 22 62
 Mutationa 16 9 39 11 13 38
 n/a 127 75 54 65

MSS/MSI status
 MSS 10 6 77 20 24 83
 MSI 3 2 23 4 5 17
 n/a 155 92 59 71

Treatment
 Fluorouracil-based (therefrom with Oxaliplatin) 27 (13) 16 9 (5) 5
 Capecitabine-based (therefrom with Oxaliplatin) 23 (4) 19 20 (5) 12
 Best supportive care 107 63 51 30
 n/a 2 1 3 2
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RNA concentration and purity were determined via pho-
tometric measurement. Additionally miRNA quality was 
assessed in the array quality control workflow.

miRNA array

GeneChip® miRNA arrays v3.0 (Thermo Fisher Scientific, 
Waltham, MA, USA) were conducted from 20 nodal nega-
tive and 20 nodal positive samples (test samples), inves-
tigating expressions of 1733 human mature miRNAs in 
each sample. According to the manufacturer’s instructions, 
300 ng RNA was biotinylated using the FlashTag™ Biotin 
HSR RNA Labeling Kit and hybridized to the chip, which 
was stained, washed and scanned.

qPCR

TaqMan® miRNA qPCR assays (Thermo Fisher Scientific, 
Waltham, MA, USA) were performed with the Applied Bio-
systems 7900HT Fast Real-Time PCR System according to 
the manufacturer’s instructions, using 10 ng total RNA for 
cDNA synthesis with the  TaqMan® microRNA Reverse 
Transcription Kit (Thermo Fisher Scientific, Waltham, 
MA, USA). The real-time PCR was conducted in triplicates 
in 10 µL reactions utilizing the  TaqMan® Fast Advanced 
Mastermix (Thermo Fisher Scientific, Waltham, MA, USA) 
with the appropriate cycler protocol. Detailed information 
on  TaqMan® miRNA qPCR assays is provided in Supple-
mental Table 1. RNU6B was used for normalization.

Statistical analyses

Array normalization (RMA: Robust Multi-Array Average) 
and quality control were carried out by use of the expres-
sion console software (Thermo Fisher Scientific, Waltham, 
MA, USA). Statistical analyses were performed using the 
statistical software environment R/Bioconductor (http://
www.r-project.org) and the packages limma (linear models 
for microarray data) and affy [24–26]. Only human mature 
miRNAs with an IQR > 0.1 (interquartile range) and a 
standard detection quality (p < 0.06) were included in the 
analyses. The adjusted p value (adj. p) for multiple hypoth-
esis testing was determined using the Benjamini–Hochberg 
method. Nested F was applied as post-hoc analysis for paral-
lel testing correction (corr. p).

For qPCR analysis, RNU6B served as endogenous con-
trol. Delta threshold cycle (ΔCq) values were calculated by 
the SDS2.2.2 software (Thermo Fisher Scientific, Waltham, 
MA, USA) and relative expression values (fold change, FC) 
were calculated as  2−ΔΔCq, using the comparative Cq method 
[27]. Welch’s T test, paired T test or Welch’s ANOVA and 
Tukey-HSD/Tukey–Kramer post-hoc analysis were used to 
determine significance (p < 0.05, α = 0.05). Survival analysis 

was conducted using the Kaplan–Meier method (log rank, 
p < 0.05), for which median was used to stratify for high and 
low expression.

Results

Lymph node metastasis

Expressions of 1733 human mature miRNAs were inves-
tigated in 40 test samples (FFPE tissue) with equal lymph 
node status and T stage distribution (all M0) via miRNA 
array screening. Comparison of 20 lymph node negative 
(stage I/II) and 20 node positive samples (stage III) dis-
played no miRNA with a significant differential expression 
[criteria: fold change (FC) > 1.5, adj. p < 0.05] (Supplemen-
tal Table 2). This was consistent with lymph node status 
investigation in two RNA deep sequencing data sets (The 
Cancer Genome Atlas, TCGA) of colorectal cancer (n = 255, 
n = 323) (Supplemental Fig. 1) [28].

To validate these array findings, for four miRNAs (miR-
18a-5p/-20a-5p/-20b-5p/-203a-3p), which displayed differ-
ences between lymph node negative and positive samples at 
analysis without p value adjustment and the highest average 
expression levels within this group, qPCR was conducted 
in test and 128 validation FFPE tissue samples. Addition-
ally, two miRNAs (miR-378a-3p/-422a) displayed divergent 
expression in test samples regarding lymph node metastasis 
within T stages and were therefore also investigated in 128 
validation FFPE tissue samples regarding lymph node sta-
tus in general. qPCR data exhibited no significant expres-
sion differences of these six miRNAs regarding lymph node 
status.

T stage comparison

Comparing T stages (acc. to UICC criteria), irrespective of 
nodal status, revealed several differentially expressed miR-
NAs according to array screening (nested F test, corr. p < 0.1, 
FC > 1.5) (Supplemental Table 3). Of these, the six miR-
NAs (miR-10b-5p/-21-5p/-152-3p/-378a-3p/-422a/-1973) 
additionally displaying average expression values A > 2.00 
were selected for validation via qPCR. Furthermore, qPCR 
data from the four miRNAs, available from the investigation 
regarding lymph node metastasis, were also analyzed regard-
ing T stage dependent expression.

Investigating T stage dependent expression differences 
of ten miRNAs via qPCR in test and validation samples 
(both FFPE tissue) revealed significances for following 
miRNAs (Fig. 1). Stage pT1 displayed significantly lower 
expression (α = 0.05, FC > 2) of miR-18a-5p compared to 
pT2 and pT3, miR-20a-5p versus pT4, miR-21-5p versus 
pT4, miR-152-3p versus pT2 and pT4, and significantly 

http://www.r-project.org
http://www.r-project.org
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higher expression of miR-203a-3p and miR-1973 com-
pared to pT3. The highest miRNA down- and up-regu-
lation in pT1 was detected for miR-18a-5p (4.49-fold) 
and miR-1973 (3.09-fold), respectively. For miR-20b-5p 
and miR-203a-3p significantly decreased expression was 
observed in pT3 compared to pT4, while miR-18a-5p dis-
played an increase in pT3 versus pT4. miR-10b-5p, miR-
378a-3p and miR-422a did not show significant expression 
differences in T stage comparison.

Lymph node status within T stage

Analyses of qPCR data regarding lymph node expression 
differences within T stages displayed aberrant expres-
sion for miR-378a-3p and miR-422a in stage pT3 and for 
miR-203a-3p in stage pT4 (Supplemental Fig. 2). Based 
on power calculation results, the expression of these three 
miRNAs was analyzed in additional FFPE as well as frozen 
tissue samples to investigate nodal metastasis-associated 

Fig. 1  miRNA expression in 
T stages. Graphs depict qPCR 
results of miRNAs showing sig-
nificant differential expression 
regarding T stage comparison 
in FFPE samples (miR-18a-
5p/-20a-5p/-20b-5p/-203a-3p 
in 19 pT1, 27 pT2, 95 pT3 and 
27 pT4 samples; miR-10b-
5p/-21-5p/-152-3p/-1973 in 19 
pT1, 27 pT2, 30 pT3 and 27 
pT4 samples). miR-18a-5p/-
20a-5p/-21-5p/miR-152 display 
lower expression and miR-1973 
higher expression in stage pT1. 
Endogenous control: RNU6B, 
relative expression was calcu-
lated using the  2−ΔΔCq method 
[27], x-axis: compared groups, 
y-axis: log2 relative quantity, 
error bars depict standard 
deviation, asterisks indicate sig-
nificance according to Welch’s 
ANOVA and Tukey post-hoc 
test (α = 0.05) and FC > 2
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expression in greater detail. miR-378a-3p and miR-422a 
were investigated in 65 FFPE and 70 frozen stage pT3 sam-
ples and for miR-203a-3p 13 frozen stage pT4 samples could 
be obtained. Regarding expression of miR-378a-3p and miR-
422a in FFPE tissue, the differences couldn’t be confirmed 
in the enlarged cohort. Results of the frozen samples dis-
played a marginal decrease in lymph node positive samples 
(Supplemental Fig. 3). miR-203a-3p displayed no significant 
expression difference.

Tumor versus non‑tumor colon tissue

Additionally, stage pT3 and pT4 tumor tissue was compared 
to corresponding non-tumor colon tissue regarding miR-
378a-3p/-422a and miR-230a-3p expression, respectively. 
This revealed a significantly higher expression of miR-
378a-3p and miR-422a in control tissue compared to stage 
pT3 tumor tissue (Fig. 2). For miR-203a-3p no significant 
expression variation could be observed.

Histological grade, KRAS mutation status, survival

Investigation of miRNAs expression pattern correlation 
with histological grade displayed no significant differences 
(Supplemental Fig. 4). According KRAS mutation status, 
no significantly aberrant miRNA expression was detected 
(Supplemental Fig. 5). Survival analyses did not display a 
correlation of miRNA expression levels with survival (Sup-
plemental Fig. 6).

Discussion

Accurate stage determination is crucial to assess colon 
cancer patients’ outcome and treatment options. Lymph 
node metastasis has an important prognostic value and 
often constitutes the step prior to increasing tumor malig-
nancy such as distant spread [2, 29]. The deeper the pri-
mary tumor invades surrounding colon tissue layers, the 
greater the likelihood for lymph node metastasis [30]. 
Nevertheless, in some cases tumors are found reaching 
deep into adjacent tissue layers, but without exhibiting 
detectable lymph node metastasis. Furthermore, some 
localized tumors already infiltrate lymph nodes despite 
their presumably lower malignancy potential. Reasons for 
this inconsistency might be found in the primary tumor. 
The small regulatory miRNAs gained importance as pos-
sible biomarkers in various malignancies regarding devel-
opment and progression [31]. Aberrant expression was 
also reported in colorectal cancer metastasis [22]. This 
prompted us to investigate whether specific miRNAs affect 
the primary tumor’s initial invasive potential, especially 
regarding lymph node metastasis.

In this study we analyzed the expression of 1733 human 
mature miRNAs in a test cohort of 40 colon cancer patients 
and validated a set of miRNAs in a larger cohort of FFPE 
samples. As FFPE constitutes the standard method for 
long-term sample storage, a substantial amount of sam-
ples was available and furthermore, detailed information 
on tumor content could be provided. Additionally, fresh 
frozen colon cancer samples (available from the hospital’s 
tumor bank established 2010) were analyzed regarding the 
expression of selected miRNAs for further validation.

Comparing lymph node positive with lymph node 
negative primary colon cancer samples, no miRNA dis-
played significant expression alteration in array screen-
ing data. For a more thorough investigation of this issue, 
we compared our data with two RNA deep sequencing 
data sets from the TCGA to explore mutually differen-
tially expressed miRNAs [28]. Supporting the first results, 
the analyses displayed no common aberrantly expressed 
miRNAs regarding lymph node comparison in all three 
data sets (Supplemental Fig. 1). qPCR verification was 
conducted for the miRNAs, which displayed differences 
(significance without p value adjustment) between the two 
groups and the highest average expression, in order to vali-
date array findings in a larger cohort. The validation con-
firmed the initial screening displaying uniform expression 
in lymph node comparison. Most of the previous findings 
regarding miRNA expression in lymph node metastasis 
were evaluated in cohorts including rectal cancer and more 
advanced TNM stage IV, i.e. exhibiting distant metasta-
sis. Slaby et al., Xiong et al. and Huang et al. reported 

Fig. 2  Tumor (TU) versus control (CO) tissue of frozen samples. 
Graphs picture results of comparison between tumor (n = 69) and cor-
responding non-tumor (n = 69) colon tissue in frozen samples. Both, 
miR-378a-3p and miR-422a, display a significantly lower expression 
in tumor tissue with a 3.33 and a 3.14-fold decrease, respectively. 
Endogenous control: RNU6B, relative expression was calculated 
using the  2−ΔΔCq method [27], x-axis: compared groups, y-axis: log2 
relative quantity, error bars depict standard deviation, significance 
according to paired T test (p < 0.05)
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upregulation of miR-21 and miR-137, respectively, to be 
associated with lymph node positivity, while Wang et al. 
described decreased expression of miR-195 in lymph node 
positive tumors [32–35]. These reported expression dif-
ferences could not be detected in our colon cancer sample 
pool without distant metastasis.

Rectal cancer is prevalently distinguished from colon 
cancer, because the two carcinoma types differ not only in 
prognosis, but also in therapy options—e.g. neoadjuvant 
treatment is applied in certain stages of rectal cancer [8, 36, 
37]. Furthermore, also regarding miRNA expression sev-
eral reports described differences between colon and rectal 
cancer, e.g. increased miR-31/-1973 and decreased miR-
126 expression in rectal compared to colon cancer [38, 39]. 
Slattery et al. reported an association of aberrant miR-21 
expression with mortality in rectal cancer but not in colon 
cancer [40]. However, reports are not entirely consistent, 
since Nielsen et al. didn’t observe such correlation in stage 
II rectal cancer, but they found a positive correlation of 
miR-21 expression with short disease-free survival in stage 
II colon cancer [41]. Because of the reported inconsistent 
effect of miRNAs and their seemingly different functions 
in various cancer types, a stage specific regulatory potential 
might explain the varying results. Therefore, separate analy-
sis of miRNA expression in rectal and colon cancer should 
be considered.

Another question we addressed was miRNA expression 
variation between T stages. Interestingly, we detected several 
miRNAs with differential expression in stage T1 compared 
to the other T stages. miR-18a-5p, miR-20a-5p, miR-21-5p 
and miR-152-3p were significantly decreased in stage T1, 
while miR-1973 showed a higher expression. Currently, sev-
eral parameters are investigated for risk assessment of T1 
tumors (differentiation grade, lymphovascular invasion etc.) 
and the discussion whether their oncologically correct exci-
sion represents a necessity to avoid recurrence or constitutes 
an evitable burden for patients is ongoing [36, 42–44]. These 
miRNAs might provide supporting information as additional 
factors in decision-making.

miR-18a-5p and miR-20a-5p belong to the miR-17 ~ 92 
cluster. In previous reports their elevated expression was 
detected in colon adenocarcinoma and colorectal cancer 
(CRC) compared to non-tumor control or adenoma tissue 
and was associated with adenoma to carcinoma progression 
[45–48]. Correspondingly, miR-18a targets for instance 
comprise anti-angiogenic factor thrombospondin 1 (TSP-1) 
or tumor suppressors involved in transforming growth fac-
tor beta (TGF-β) signaling, namely SMAD2 and SMAD4 
[49, 50]. Similarly, also miR-20a-5p has been shown to tar-
get SMAD4 and TGF-β receptor II (TGFBRII) within this 
pathway important in mediating cell proliferation [50, 51]. 
Additionally miR-20a-5p involvement in preventing apopto-
sis via targeting pro-apoptotic BH3 interacting domain death 

agonist (BID) and BCL2 interacting protein 2 (BNIP2) has 
been documented [52, 53]. No association of miR-20a-5p 
and miR-18a-5p expression to clinicopathological param-
eters has been reported in the literature [47]. However, miR-
18a-5p has also been shown to induce apoptosis in colon 
cancer cells via targeting heterogeneous nuclear ribonu-
cleoprotein A1 (hnRNP A1) and was linked to a decreased 
mortality hazard in colorectal cancer [40, 54]. Additionally, 
Humphreys et al., observing reduced cancer cell growth in 
association with high miR-18a levels, detected the cell cycle 
control gene cell cycle division 42 (CDC42) as target and 
proposed a regulatory function for this miRNA in colorec-
tal cancer within the oncogenic miR-17 ~ 92 cluster [55]. 
Interestingly, although in our results miR-18a-5p displayed 
significant decrease in stage T1 compared to T2 and T3, 
significance could not be detected regarding the compari-
son stage T1 versus T4. Results even displayed a significant 
decrease in stage T4 compared to T3. These findings under-
line the reported versatile function of miR-18a and suggest 
that low miR-18a-5p and miR-20a-5p expression could be 
linked to lower malignant potential. The miRNAs might only 
be involved in regulation of initial steps in tumor progres-
sion (e.g. invasion beyond the submucosa), while their role 
in further tumor progression (excluding distant metastasis) 
is limited.

Regarding miR-152, previous studies indicated tumor 
suppressor attributes in CRC, where phosphoinositide-
3-kinase regulatory subunit 3 (PIK3R3) has been identi-
fied as target [56, 57]. This, however, is contradictory to 
the results from our cohort, since we detected decreased 
expression in stage T1. On the other hand, also lack of 
significant expression variation in colon cancer has been 
described [58]. Because of this variability and the relatively 
low number of literature findings, this miRNA should be 
further investigated to elucidate its expression pattern. Also 
the distinct analysis in colon and rectal cancer should be 
taken into account.

miR-21 presented decreased expression in pT1 cases of 
our cohort. It represents one of the highly investigated miR-
NAs displaying aberrant expression in carcinoma tissue. 
The majority of reports attributed oncogene properties to 
miR-21. Its expression was found to be elevated in differ-
ent carcinoma types as well as in metastatic tissue and was 
associated with a short disease-free survival [33, 41, 59–62]. 
Documented miR-21 targets comprise tumor suppressors 
e.g. phosphatase and tensin homolog (PTEN), sprouty RTK 
signaling antagonist 2 (SPRY2), BCL2, apoptosis regula-
tor (BCL2) or programmed cell death 4 (PDCD4), many of 
them represent tumor suppressor genes involved in regula-
tion of cell cycle or apoptosis and for some even effect on 
chemotherapy response has been observed [33, 63–65]. Fur-
thermore, involvement in inflammation has been reported. 
Accumulation of prostaglandin E2 (PGE2), which is induced 
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by pro-inflammatory cyclooxygenase 2 (COX-2) due to per-
sistent inflammation, has been shown to increase miR-21 
expression, which in turn caused further decrease of tumor 
suppressor PDCD4, thereby facilitating cancer progres-
sion [66]. This supports the role of miR-21 as important 
biomarker and therapy target in many carcinoma types. On 
the other hand, several groups could not detect significant 
aberrant expression, neither among CRC subgroups nor in 
association with clinicopathological parameters [40, 67, 
68]. Also lack of connection with survival has been docu-
mented, similar to the results observed in our cohort [40]. 
This underlines the complexity of the miRNA network also 
within cancer progression.

Little evidence is available on differential expression of 
miR-20b-5p in colon or colorectal cancer. Elevated expres-
sion of miR-20b-5p in CRC and association with targeting 
phosphatase and tensin homolog (PTEN) was suggested 
[69]. However, also its down regulation was detected in vari-
ous colorectal cancer types [70]. Since we detected elevated 
expression in stage pT4, which represents the stage with the 
deepest invasion of the primary lesion into the surrounding 
tissue layers, our results rather suggest an oncogenic poten-
tial of miR-20b-5p in colon cancer.

For miR-203a-3p our results did not show a clear correla-
tion with tumor progression. A significantly lower expres-
sion was detected in stage pT3. Chiang et al. detected inverse 
correlation with pT stage (T2 + 3 versus T4) and tumor size 
and reported decreased expression of miR-203 in colorectal 
cancer (without distant metastasis) compared to control [71]. 
This could not be confirmed in our results, as stage pT4 
colon cancer displayed no significant difference compared 
to matched non-tumor tissue. A tumor suppressive function 
of miR-203 is described in various cancer types, and has 
recently also been shown in colorectal cancer by Deng et al. 
[72–75]. In line with this, zinc finger protein 217 (ZNF217) 
and eukaryotic translation initiation factor 5A2 (EIF5A2), 
promoting proliferation (the former) and invasive potential 
(both), have been documented as miR-203 targets [75, 76].

miR-1973 expression displayed inverse correlation with 
pT stage in our cohort. Literature reports are inconclusive, as 
along with elevated expression in CRC also aberrant expres-
sion comparing colon and rectal cancer was observed, thus 
suggesting a separate investigation for colon and rectal car-
cinoma [38, 39, 77]. Predicted targets for miR-1973 include 
cyclin D1 (CCND1) and PIK3R1, both associated with 
oncogenic potential in colon cancer [78–81].

To thoroughly address possible lymph node status corre-
lation with miRNA expression, we also investigated altera-
tions within T stages. Initial detection of elevated miR-
378a-3p and miR-422a expression in stage T3N0 FFPE 
tissue compared to stage T3 with lymph node metastasis 

prompted us to further investigate these miRNAs in an 
enlarged cohort as well as in frozen samples. Stage T3 
represents an interesting cohort, since a large number of 
colon cancer cases are diagnosed at that stage and prog-
nosis is difficult to determine due to high variability. How-
ever, analyses of the additional FFPE tissue specimens did 
not confirm these differences. Only in the frozen tissue 
samples a marginally lower expression of miR-378a-3p 
and miR-422a in T3 tumors with lymph node metastasis 
was detected. Some reports discovered decreased expres-
sion of miR-378a-3p and miR-422a in lymph node positive 
specimens but, in contrast to our cohort, they included 
patients with distant metastases or rectal cancer [20, 82, 
83]. However, Li et al., who investigated FFPE tissue, did 
not show significant differences for miR-378a-3p, similar 
to our findings in FFPE specimens [84]. Corresponding to 
decreased miR-422a and miR-378a-3p levels in metasta-
sis, telomerase reverse transcriptase (TERT) and vimentin 
(VIM)—both associated with invasion—have been docu-
mented as targets, respectively [82, 85].

Consistent with our findings in frozen colon tumor and 
corresponding control tissue, miR-378a-3p and miR-422a 
were reported to be down-regulated in CRC tumor speci-
mens [20, 82–84, 86, 87].

No correlation of miRNA expression with survival, 
KRAS mutation status or histological grade was detected 
in ten miRNAs analyzed via qPCR. Although high miR-21 
and miR-18a expression levels have been associated with 
unfavorable outcome/survival in colon cancer, our results 
are in line with reports observing no such connection [40, 
59, 88]. Low miR-378a expression has been reported to 
correlate with mutated KRAS, which could not be con-
firmed in our cohort [89]. Variation in cohort distribution 
might account for differing results, as our cohort included 
colon cancer without distant metastasis.

Although thoroughly investigating a large cohort, a 
limitation of this study is the small number of T1 samples 
due to the low detection frequency of this stage.

In conclusion, our results suggest that miRNAs are 
not suitable as early biomarkers in colon biopsy samples 
to determine lymph node metastasis prior to surgery in 
our population. T stage comparison revealed differential 
expression of miR-18a-5p, miR-20a-5p, miR-21-5p, miR-
152-3p and miR-1973 in early tumor development, i.e. 
stage pT1 tumors. These miRNAs might serve as addi-
tional parameters for deciding on the necessity of onco-
logically correct tumor excision, thus we propose their 
validation in a larger colon cancer cohort.

Funding This project received a research grant from “Krebshilfe 
Oberösterreich”.
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