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Abstract Breast cancer is the second leading cause of

cancer death in women and metastasizes to bone in greater

than 80 % of advanced-disease patients. Once breast can-

cer bone metastases are established, the disease is incurable

and drives numerous complications that increase morbidity

and diminish patients’ quality of life. Many mechanisms

have been implicated in bone metastases of breast cancer.

The critical role of Wnt signalling pathway inhibition in

initiating bone lesions has been demonstrated in a variety

of bone diseases and tumours. Overexpression of dickkopf-

1 (Dkk1) protein, a negative regulator of the Wnt/b-catenin

pathway, has been found in breast cancer cell lines that

form osteolytic metastases preferentially and in serum from

breast cancer patients with osteolytic bone metastases.

Further understanding of the mechanistic role of Dkk1 as a

link between primary breast tumours and secondary oste-

olytic bone metastases may facilitate development of anti-

Dkk1 antibody therapeutic tools.
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Background

Breast cancer continues to be the most frequently diagnosed

malignancy among women, with an estimated 1.38 million

new cases being diagnosed worldwide each year. There are

458,000 deaths per year from breast cancer, making it the

most common cause of female cancer death [1]. Bone is the

preferred site of metastatic recurrence, arising in greater than

80 % of patients with advanced breast cancer [2]. Compli-

cations resulting from bone metastases include pain, reduced

mobility, and reduced quality of life. In addition, patients are

at considerable risk of skeletal related events (SREs), such

as hypercalcemia, fracture, and spinal cord compression, and

often require surgery, radiotherapy or both [3]. Metastatic

sequelae account for approximately two-thirds of the costs

associated with breast cancer treatment [4].

Elucidation of the fundamental mechanisms responsible

for breast cancer metastasis to bone, including identifying

specific biomarkers of inter-/intra-tumour spatial and meta-

static potential, is required to improve patient risk stratifica-

tion such that the best current therapies for particular patients

can be selected. Moreover, a better mechanistic understanding

may reveal promising new therapeutic targets. This review

discusses the available evidence for the role of the Dkk1

protein, a Wnt signalling inhibitor, in breast cancer-induced

bone metastasis and the potential therapeutic benefits of Dkk1

antibody therapy as a new strategy for decreasing breast

cancer burden in osteolytic bone metastases.

Pathophysiology of bone metastases

Physiologic bone homeostasis is the result of the coordi-

nated activities of three separate cell lineages: the

haematopoietic stem cell lineage, which leads to the
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formation of bone-resorbing osteoclasts, the mesenchymal

stem cell lineage, which leads to the formation of bone-

forming osteoblasts, and the bone-maintaining osteocytes

[5]. Osteoblasts and their precursors express several

mediators that regulate osteoclastogenesis and osteoclast

activity. The receptor activator of nuclear factor kappa B

ligand (RANKL), a member of the tumor necrosis factor

(TNF) receptor superfamily, is produced both in mem-

brane-bound and soluble forms. Binding of RANKL to

transmembrane receptor activator of nuclear factor kappa B

(RANK) on the cell surface of osteoclasts and osteoclast

precursors promotes their proliferation and maturation.

Osteoprotegerin (OPG), another member of the TNF

receptor superfamily, functions as a potent anti-osteoclas-

togenic cytokine by acting as a competitive decoy receptor

for RANKL, thereby inhibiting RANK-RANKL interaction

[6, 7]. The OPG/RANKL/RANK triad of proteins has been

shown in genetic and pharmacologic studies to play a

critical role in bone resorption [8]. Furthermore, macro-

phage colony stimulating factor, which is produced by

several cell types including osteoblasts and stromal cells,

activates an intracellular cascade upon binding its receptor

c-fms, which is expressed on the surface of osteoclastic

cells. This binding leads to proliferation and differentiation

of osteoclast precursors and survival of mature osteoclasts

[9]. Other osteoblast-produced cytokines including TNF,

interleukin (IL)-1, IL-6 and IL-7 have been shown to play

important roles in amplifying osteoclastogenesis and

intensifying osteoclastic resorption [10].

The coupling of bone resorption to bone formation is

essential for the correct function and maintenance of the

skeletal system. The arrival of cancer cells within the bone

microenvironment perturbs the resorption-formation bal-

ance, leading to excess bone loss or formation. The ability

of cancer cells to metastasize is characteristic of advanced

disease and occurs only after the gradual accumulation of a

necessary set of pro-metastatic mutations [11]. Primary

breast tumours are heterogeneous in nature, and cancer

cells with vastly distinct capacities can exist within a single

tumour. Large scale gene expression analyses and

microarrays have identified several gene signatures that can

distinguish between non-metastatic and metastatic cells

derived from the same primary tumour [12, 13], and have

identified genes that cooperate in breast cancer metastasis

to bone [14, 15]. Cancer cell metastasis is a multistep

process consisting of local invasion and intravasation at the

primary site, survival in systemic circulation, and

extravasation and colonization at the distant sites [16].

Once distant from the primary tumour site and resident in

the bone marrow, cancer cells and other cell types within

the bone microenvironment establish tumour cell micro-

metastatic foci within the marrow or the so-called bone

metastatic niche [17]. Resident metastatic cells secrete

various factors that promote the release of growth factors

from the bone matrix, creating a vicious cycle that renders

bone metastases incurable [18].

Bone metastases in breast cancer are characterized pri-

marily by increased osteoclast activity and bone destruc-

tion [19]. Osteolytic bone metastases are present in 80 % of

patients with stage IV disease [20]. Metastatic breast cells

secrete factors that are capable of both RANKL-dependent

and -independent activation of osteoclast formation, lead-

ing to bone resorption. Tumour-derived Jagged1 engages

Notch pathway receptors in pre-osteoclasts directly, pro-

moting their differentiation into mature, multinucleated

osteoclasts [21]. On the other hand, parathyroid hormone-

related protein (PTHrP) increases bone resorption indi-

rectly by stimulating RANKL expression and inhibiting

OPG expression by osteoblasts and bone stromal cells [22].

Inhibition of PTHrP with neutralizing antibodies has been

shown to reduce osteolytic lesions produced by MDA-MB-

231, a subpopulation of breast cancer cells that have the

potential to induce osteolytic bone, in mouse models [23].

Elevated expression of both PTHrP and CXCR4A (a

member of the chemokine superfamily that regulates cell

migration and targeting) were identified in a study of breast

cancer patients who developed skeletal metastases [24]. Li

et al. 23–25 demonstrated that PTHrP ablation not only

delays breast cancer initiation and primary tumour pro-

gression, but also inhibits expression of the metastasis

marker CXCR4 in primary breast tumours. IL-6 also

increases osteoclast formation and activity via the RANK

ligand pathway, whereas IL-8 acts directly and indirectly

on osteoclasts [26, 27].

As bone is resorbed, growth factors that are stored in

bone matrix, such as insulin like-growth factor-I and

transforming growth factor-b (TGF-b), are released and

stimulate the proliferation of breast cancer cells. TGF-b is

released in its active form during osteoclastic resorption

and stimulates PTHrP production by tumour cells [28]. In

addition, TGF-b regulates several genes that are responsi-

ble for enhanced bone metastases such as IL-11 and con-

nective tissue growth factor [29]. Bone loss can result from

increased bone resorption as well as decreased bone for-

mation. Wnt proteins and bone morphogenetic proteins

(BMPs) are important regulators of osteoblast activity and

proliferation [30, 31]. Gregory et al. proved that the

injection of the MDA-MB-231 human breast cancer cells

into bone tissue of immunodeficient mice caused a signif-

icant down-regulation of osteoblast activity in the bone

remodeling cycle. mRNA expression of dickkopf-1 (Dkk1)

and Noggin, inhibitors of Wnt signalling and BMP sig-

nalling, respectively, was confirmed in the MDA-MB-231

cell line [32].

Although ongoing clinical trials targeting breast cancer

bone metastases may identify effective treatments, further
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study of the molecular interactions between invading

tumour cells and host bone cells is required to inform the

development of new effective treatments for this chal-

lenging clinical problem. This review is focused on the role

of Wnt signalling in breast cancer-induced bone metastases

with special attention being given to its inhibitor, the Dkk1

protein.

Wnt signalling in breast cancer and bone
metastases

Wnt signalling

The Wnt family consists of 19 members that share a signal

sequence of approximately 350 amino acids with a con-

served pattern of 23–24 cysteine residues [33]. They act in

a variety of cellular processes in both the adult organism

and the developing embryo, including cell growth, cell

proliferation and motility, generation of cell polarity, and

apoptosis [34, 35]. Historically, Wnt proteins have been

grouped into two classes, canonical and noncanonical,

based on their activity in cell lines or in vivo assays.

Noncanonical Wnts activate the planar cell polarity path-

way (PCP) and the Wnt/Ca?2 pathway [36]. Canonical

Wnts stabilize b-catenin, thereby activating transcription of

T cell factor/lymphoid enhancing factor (TCF/LEF). In the

absence of Wnts, glycogen synthase kinase (GSK3b), axin,

adenomatous polyposis coli (APC), and casein kinase I

(CKI) form the b-catenin destruction complex, which

phosphorylates b-catenin, enabling it to be degraded by

proteasomes. In the ‘off state’, extracellular Wnt ligands

can interact with various secreted antagonists and cells

maintain low cytoplasmic and nuclear levels of b-catenin.

When Wnt concentrations exceed the buffering capacity of

Wnt inhibitors, Wnt signalling is initiated by binding of the

Wnt protein to one of the 10 members of the frizzled (FZD)

receptor family; Wnt-FZD then binds low-density

lipoprotein-related protein-5 (LRP5) or LRP6. The resul-

tant complex activates Dishevelled (Dvl), a protein that

draws Axin away from the destruction complex and

antagonizes its ability to phosphorylate b-catenin, thereby

preventing b-catenin destruction. Thus the ‘on state’

involves increasing the post-translational stability of b-

catenin. As b-catenin levels rise, the protein accumulates

and translocates to the nucleus, where it interacts with

TCF/LEF transcription factors and enhances expression of

their target genes (Fig. 1) [37]. The relative activation of

the canonical or noncanonical signalling pathways depends

on the receptor complement [38, 39].

Wnt pathway activation is modulated by several secre-

ted protein families that can be divided into two functional

classes. The first class includes the frizzled related protein

(sFRP) family and Wnt inhibitory protein (WIF) family,

which bind directly to Wnts, thereby functioning as Wnt

antagonists for both canonical and noncanonical signalling

[40]. The second class includes the dickkopf (Dkk) family

and the sclerostin (SOST) family that bind to the LRP5/

LRP6 component of the Wnt receptor complex, inhibiting

Wnt/b-catenin signalling [41].

Wnt signalling and bone homeostasis

Wnts play a central role in controlling embryonic bone

development and bone mass [42]. They are also essential in

postnatal bone regenerative processes, such as ectopic bone

formation and fracture repair [43]. Osteoblasts are the main

cellular targets of Wnt actions in bone. Canonical Wnt

signalling controls osteoblasts on several levels. Firstly,

Wnt signalling can affect osteoblast commitment by

blocking adipogenesis and directing mesenchymal pro-

genitors to become either osteoblasts or chondrocytes [44].

Secondly, Wnt signalling modulates osteoblast prolifera-

tion. Specifically, the Wnt pathway components, Dkk1 and

sFRPs, are upregulated markedly during the late phase of

osteoblast differentiation, suggesting that a negative Wnt

feedback loop may control the last steps of osteoblast

maturation [45]. Thirdly, Wnt signalling affects osteoblast

function. LRP5-deficient mice display a decrease in bone

matrix deposition [46], and osteoblasts overexpressing a

constitutively active mutant of b-catenin show an increase

expression of the collagens type I a1 and a2 genes.

Moreover, Wnt signalling increases the expression of OPG

in osteoblasts and stromal cells, whereas b-catenin-defi-

cient osteoblasts exhibit elevated expression of RANKL

and diminished expression of OPG [47]. Thus, osteoblast-

selective deficiency of b-catenin affects bone resorption as

well as bone formation.

The Wnt/b-catenin pathway has previously been shown

to be critically involved in other forms of bone malignancy,

including multiple myeloma (MM) [48] and prostate can-

cer bone metastasis [49]. Hence, it is reasonable to suspect

that this pathway may be important in breast cancer-bone

metastasis as well.

Wnt signalling in breast cancer and its metastasis

into bone

Wnt signalling has emerged as a critical mediator of cell–

cell singling events during both embryogenesis and adult

tissue maintenance, and the association of deregulated

Wnt/b-catenin signalling with cancer has been well docu-

mented. b-catenin is a multifunctional protein involved in

both cell–cell adhesion and signal transduction [50]. Con-

stitutive activation of b-catenin signalling leads to exces-

sive stem cell renewal/proliferation that predisposes cells
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to tumorigenesis [51]. Wnt signalling appears to be

involved in numerous aspects of mammary development,

including cell fate determination, maintenance of mam-

mary progenitor cell populations, branching morphogene-

sis and alveolar differentiation [52, 53].

The identification of Wnt1 as a key oncogene in natu-

rally occurring mouse mammary tumours [54] led to

intense investigation of Wnts and the potential involvement

of their signalling in breast cancer over the last three

decades. Mutation of APC and overexpression of a stabi-

lized mutant of b-catenin induced mammary tumorigenesis

in a mouse model [55]. Wnt/b-catenin pathway dysregu-

lation, as evidenced by abnormal Wnt expression, Wnt

antagonist secretion, and APC inactivation, has been

observed in human breast cancer [56–58]. Moreover, with

respect to b-catenin itself, nuclear b-catenin has been

observed in as many as 63 % of breast cancers [59].

Nuclear staining of b-catenin and overexpression of its

downstream target cyclin D1 have been associated with a

worse prognosis of breast cancer and with metastasis [60,

61]. Moreover, Chen et al. showed that TM40D-MB breast

cancer cells, which have a high potential for bone metas-

tasis, exhibit significantly higher endogenous b-catenin

signalling activity than TM40D cells, which do not

metastasize to bone. In addition, they observed that inac-

tivation of the b-catenin pathway inhibited osteoblast dif-

ferentiation in a tumour-bone co-culture system, as

indicated by decreased alkaline phosphatase activity [62].

Although there is strong evidence, reviewed above, indi-

cating that Wnt signalling in cancerous breast tissue can drive

tumour cell growth and invasiveness, the underlying mecha-

nisms mediating these effects remain unclear. Johnson et al.

showed that induction of Wnt/b-catenin signalling in highly

metastatic breast cancer cells significantly increased Gli2 and

PTHrP gene expression and promoter activity [63]. PTHrP

promotes the release of TGF-b, which in turn upregulates

tumour-derived Gli2 and PTHrP expression and stimulates

tumour cell proliferation in bone [64].

Epithelial-mesenchymal transition (EMT) is an essential

developmental process that enables reprogramming of

polarized epithelial cells towards a motile, mesenchymal

phenotype. Aberrant EMT activation can endow cancer

cells with the migratory and invasive capabilities associ-

ated with metastatic competence [65]. Moreover, tumour

progression is driven by a small subpopulation of cancer

cells termed cancer stem cells (CSCs) that exhibit the
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Fig. 1 Canonical Wnt/b-catenin signalling pathway. In the on state,

canonical Wnt signalling is activated. Wnt protein binds to one of the

10 members of the frizzled receptor family; Wnt-FZD then binds

LRP5 or LRP6. The resultant complex activates Dvl, a protein that

draws axin away from the destruction complex and antagonizes its

ability to phosphorylate b-catenin, thereby preventing b-catenin

degredation. If b-catenin is not degraded, it accumulates and

translocates to the nucleus where it binds to the TCF/LEF transcrip-

tion factor and enhances target gene expression. In the off state,

canonical Wnt signalling is inactivated. In the presence of Wnt

antagonists (Dkk1, SFRP or WIF), the phosphorylation complex

(GSK3b, CK1, Axin and APC kinases) becomes active and

phosphorylates b-catenin
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ability to self-renew and to regenerate the phenotypic

heterogeneity of the parental tumour [66]. Mani et al. found

that induction of EMT also generates cells with stem-cell-

like properties [67]. In addition, studies suggest that Wnt

signalling contributes to the induction and maintenance of

CSC states activated by the EMT program [68]. Lamb et al.

found that Wnt pathway gene expression was increased in

malignant breast tissue compared to normal breast tissue,

and this expression was predictive for recurrence within

subtypes of breast cancer. Furthermore, activation of Wnt

signalling was significantly higher in breast cancer stem

cell-enriched populations than in normal breast stem cell-

enriched populations [69]. These findings suggest that Wnt

activation might be limited to a subpopulation of cancer

initiating stem cells.

Conversely, other studies failed to find evidence for Wnt

pathway activation in human breast tumours [60, 70], or

even an association between b-catenin expression and

outcome or metastasis [71, 72]. This discrepancy between

findings may be due to tumours not being classified into

molecular subtypes. Understanding the molecular mecha-

nisms by which Wnt/b-catenin signalling components can

act in the bone-tumour microenvironment is important,

biologically as well as clinically, for the future develop-

ment of anti metastatic strategies.

Dkk1 in breast cancer and bone metastases

Dkk1 and bone homeostasis

The Dkk family consists primarily of four secreted proteins

in vertebrates (Dkk1, 2, 3, 4) [73]. The most studied

member of the family is Dkk1 protein which was discov-

ered due to its ability of blocking Wnt signalling required

for head induction during early Xenopus embryogenesis

[74]. Dkk1 prevents activation of Wnt signalling by bind-

ing to the Wnt co-receptor LRP5/6 [75]. Dkk1 also inter-

acts with the single-pass transmembrane receptor proteins

Kremen1 and Kremen2 [76] (Fig. 1). Thus, Dkk1 forms a

ternary Dkk1/LRP6/Kremen complex, which promotes

endocytosis of LRP, making it unavailable for interaction

with Wnt. This Wnt signalling modulation can be achieved

by Dkk1, 2, and 4 proteins which bind the same effectors

(LRPs or Kremens), but not Dkk3, which does not block

canonical Wnt signalling. Dkk4 appears to be functionally

indistinguishable from Dkk1, whereas Dkk2 appears to be

a poor inhibitor of Wnt signalling [77], perhaps in part,

because Dkk2 cannot be expressed at the same high levels

achieved by Dkk1. In addition, Dkk2 seems to activate

Wnt/b-catenin signalling in Xenopus embryos [78, 79].

Therefore, we will focus on the involvement of Dkk1 in

breast cancer-bone metastasis.

Binding of Dkk1 to LRP5 is a key regulator for bone

mass. In humans, LRP5 gain-of-function mutations are

associated with high bone mass [80], whereas loss-of-

function mutations lead to osteoporosis pseudoglioma

syndrome, which is characterised by low bone density [81].

Reduced expression of Dkk1 in mice haploinsufficient for

the Dkk1 gene results in a high-bone-mass phenotype,

whereas transgenic mice overexpressing Dkk1 exhibit

osteopenia [82, 83]. Finally, diverse evidence indicates that

Dkk1 is also a major determinant of bone and joint

pathology in inflammatory arthritis. Dkk1 neutralisation in

TNF transgenic mice was found to provide complete pro-

tection from inflammatory bone loss by preventing TNF-

mediated functional impairment of osteoblast and

enhanced osteoclast activity [84]. Weng et al. showed that

attenuation of Dkk1 expression in cartilage and subchon-

dral bone tissue promotes expression of b-catenin and

survival of chondrocytes and osteoblasts in the osteoar-

thritic joint microenvironment [85].

Several lines of evidence demonstrate that Dkk1 coun-

teracts Wnt-mediated effects on bone via stimulation of

osteoclast activity and inhibition of osteoblast formation

and differentiation (Fig. 2). Constitutive expression of

Dkk1 has been shown to promote adipogenic differentia-

tion in 3T3-L1 preadipocytes [86]. In vitro examination of
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Fig. 2 Wnt signalling and Dkk1 in bone development. Wnt sig-

nalling enhances bone formation by directing the developmental

program of mesenchymal stem cells toward osteoblast formation.

Mature osteoblasts upregulate OPG, which blocks RANKL-induced

osteoclastogenesis, resulting in inhibition of bone resorption. Dkk1

inhibits osteoblast formation and differentiation by diverting progen-

itors toward adipogenesis. Preosteoblasts enhance bone resorption by

boosting RANKL-induced osteoclastogenesis
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C3H10T1/2 osteoprogenitor cells revealed that Msx2, a

homeodomain transcription factor first identified in osteo-

blasts, inhibited Dkk1 promotor activity and reduced RNA

polymerase association with Dkk1 chromatin [87]. In

addition, Dkk1-mediated inhibition of Wnt signalling was

found to limit OPG expression, thereby shifting the

OPG:RANKL ratio in favour of bone resorption [88].

Dkk1 in breast cancer and its metastasis into bone

Dkk1 overexpression in solid tumours is associated with

worse survival [89]. However, the significance of Dkk1

expression in breast cancer progression and prognosis

remains inconclusive. Some studies have shown that Dkk1

acts as a putative tumour suppressor in breast cancer cells

via the suppression of Wnt signalling [90, 91] or via

mechanisms independent of b-catenin-dependent tran-

scription [92]. As mentioned above, the Wnt pathway

influences self-renewal in the context of stem cells and

cancer. Agur et al. showed that high concentrations of

Dkk1 decreased mammosphere formation in both primary

breast cancer cells and breast cancer cell lines by diverting

proliferating cancer stem cells toward differentiation.

Consequently, Dkk1 represents a potential target for abla-

tion in differentiation therapy [93]. On the other hand, Sato

et al. observed elevated expression of Dkk1 in four out of

six human breast cancer types and found that 65.1 % (110/

169) of breast cancer patients examined in their study had

Dkk1 positive serum [94]. Forget et al. showed that Dkk1

is preferentially expressed in ER and PR-negative tumours,

in tumours from women with a family history of breast

cancer, and in primary tumours from patients with axillary

lymph node invasion [95]. In addition, increased expres-

sion of Dkk1 was confirmed in hormone-resistant breast

cancer cell lines, and Dkk1 expression in triple negative

cancers was associated with poor outcome in these patients

[96]. Moreover, elevated Dkk1 levels in the serum of breast

cancer patients have been associated with shorter overall

survival and relapse-free survival [97]. These contradicting

observations may be due to differences in tumour type,

tumour stage, tissue origin (epithelial or mesenchymal), or

cellular subtypes.

Bone is the most frequent site of metastasis for several

forms of cancer, including breast cancer. Evidence sug-

gests that Wnt signalling and Dkk1 are involved in bone

metastasis. Breast cancer-induced bone metastases are

typically osteolytic, but occasionally osteoblastic lesions

can occur. The most extensive data suggesting that Dkk1

promotes osteolytic metastasis come from studies of MM-

associated bone disease [98, 99]. Few studies have inves-

tigated the role of Dkk1 in bone metastasis secondary to

breast cancer showed that Dkk1 serum levels in women

with breast cancer Voorzanger-Rousselot et al. and bone

metastasis were higher than those in healthy age-matched

controls and in women with metastases at sites other than

bone [100]. Dkk1 was expressed by osteolytic breast can-

cer cell lines but not by osteoblastic lines. A subpopulation

of breast cancer MDA-MB-231 cells known as the MDA-

MB-231/bone cell line (MDA-231-BO) metastasize

exclusively in bone and produce larger osteolytic lesions

than the parental line [101]. Mice inoculated with MDA-

231-BO cells, which developed radiologic and histologic

evidence of skeletal lesions, had six-fold higher bone

marrow levels of Dkk1 than control non-inoculated mice

[102]. Moreover, Bu et al. demonstrated that MDA- MDA-

231-BO cells exhibit increased levels of Wnt/b-catenin

signalling and Dkk1 expression compared with MDA-MB-

231 cells, and these changes were associated with inhibi-

tion of osteoblast differentiation and OPG expression.

These effects could be neutralized by a specific anti-Dkk1

antibody [103]. Taken together, these observations indicate

that Dkk1 may have a pathophysiological role in skeletal

metastasis of breast cancer.

Some studies have demonstrated that Dkk1 is a down-

stream target of b-catenin-mediated transcriptional activity

in several cell lines [104]. Nevertheless, because Dkk1 is

relatively recently discovered inhibitor of Wnt/b-catenin

signalling, the mechanisms by which breast cancer cells

can avoid Dkk1 inhibition have to be identified. Menezes

et al. postulated that excessive Dkk1 may accumulate in

cancer cells but be unable to regulate the Wnt pathway due

to malfunction of some component downstream of Dkk1.

However, in surrounding bone cells with intact Wnt/b-

catenin signalling, Dkk1 appears to function normally

when it is up-regulated in a paracrine fashion [105]. If this

hypothesis is confirmed experimentally, new therapeutic

strategies to neutralize Dkk1 might be used in the treatment

of breast cancer-induced bone metastasis.

The specific targeting of Wnt activation in bone may be

achievable by targeting Dkk1 or SOST. Like Dkk1, SOST

inhibits osteoblast differentiation by binding the Wnt co-

receptors LRP5/6 on the surface of osteoblasts [106].

Indeed, SOST-neutralizing antibodies have been shown to

have a strong anabolic effect in osteoporotic patients [109].

Mendoza-Villanueva et al. 109 showed that the Runt-re-

lated transcription factor 2, contributes to the formation of

osteolytic bone metastases in breast cancer through induc-

tion of SOST expression [83], which is restricted to osteo-

cytes [107]. Likewise, although Dkk1 is expressed widely

during development, it is relatively restricted to bone (os-

teoblasts and osteocytes) in adult mice [108]. Thus, sys-

temic administration of Dkk1 or SOST antagonists, may

affect bone tissue selectively, favouring endogenous Wnt

signalling-mediated increase in bone formation without

affecting Wnt signalling in other tissues. There have not yet

been clinical trials testing SOST antibody effects in cancer-
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induced bone diseases. Therefore, further studies are

required to determine whether SOST contributes to the

development of bone metastases in vivo.

Therapeutic approaches

Currently, approved pharmaceutical approaches for tar-

geting bone metastases are limited to agents that interfere

with osteoclasts-mediated bone resorption, including bis-

phosphonates and anti-RANKL antibody denosumab [110].

However, the discovering that osteolytic lesions result not

only from enhanced osteoclast-mediated bone resorption,

but also from inhibition of bone formation led to the

development of therapeutic strategies aimed at restoring

osteoblast function. A number of preclinical in vitro and

in vivo studies have defined the role of Dkk1 antibodies as

a potential therapy for MM-associated bone disease [111].

In addition, two different anti-Dkk1 antibodies are being

tested clinically in phase 1 and 2 trials, respectively, in

patients with MM. Although, final results from these

studies have not been published yet, preliminarily, they

indicate a favourable safety profile and proof of anabolic

activity [112, 113]. In contrast to myeloma, the role of

Dkk1 antibodies in the treatment of breast cancer bone

metastasis is less well characterised.

In a study by Rachner et al., treatment of breast cancer

cells with zoledronic acid regulated alkaline phosphatase

and OPG production arising from Dkk1 suppression via

inhibition of protein geranylgeranylation. In line with the

in vitro data, breast cancer patients receiving adjuvant

zoledronic acid exhibited a 60 % decrease in serum Dkk1

levels after 12 months of treatment [114]. Another recent

study showed that postmenopausal breast cancer patients

treated with aromatase inhibition had a modest decrease in

Dkk1 serum levels which correlated with increased bone

mineral density of the femoral neck and the total hip [115].

Experimental stimulation of bone turnover has been shown

to increase skeletal metastases in several animal models,

suggesting that high bone turnover should be countered

with anti-resorptive drugs [116]. Taken together, the liter-

ature suggests that Dkk1 is a mediator of malignant bone

disease and that further studies concerning its potential as a

novel therapeutic target are warranted.
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