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Abstract Bone metastasis accounts for the vast majority

of breast cancer (BC) metastases, and is related to a high

rate of morbidity and mortality. A number of seminal

studies have uncovered gene expression signatures

involved in BC development and bone metastasis; each of

them points at a distinct step of the ‘invasion-metastasis

cascade’. In this review, we provide most recently dis-

covered functions of sets of genes that are selected from

widely accepted gene signatures that are implicate in BC

progression and bone metastasis. We propose a possible

sequential pattern of gene expression that may lead a

benign primary breast tumor to get aggressiveness and

progress toward bone metastasis. A panel of genes which

primarily deal with features like DNA replication, survival,

proliferation, then, angiogenesis, migration, and invasion

has been identified. TGF-b, FGF, NFjB, WNT, PI3K, and

JAK-STAT signaling pathways, as the key pathways

involved in breast cancer development and metastasis, are

evidently regulated by several genes in all three signatures.

Epithelial to mesenchymal transition that is also an

important mechanism in cancer stem cell generation and

metastasis is evidently regulated by these genes. This

review provides a comprehensive insight regarding breast

cancer bone metastasis that may lead to a better under-

standing of the disease and take step toward better

treatments.
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Metastasis, a complex multistep event

Breast cancer (BC) metastasis is the leading cause of

cancer related deaths among women (metastasis; the spread

of tumor cells from primary site to distant organs) [1, 2].

More than 70 % of BC patients in advanced stage develop

bone metastases which are related to high rate of morbidity

and mortality [3, 4]. The vast majority of researchers have

focused to identify the underlying molecular and cellular

mechanisms of this complex phenomenon. Developing

gene expression signatures, involved in certain stages of

BC metastasis, are among seminal discoveries that may let

to understand the basics involved in the ‘invasion-metas-

tasis cascade’, and consequently the generation of effective

therapies against metastasis.

‘Invasion-metastasis cascade’ represents a multistep

process that consists a set of sequential events, in which

tumor cells invade from primary site, disseminate through

circulation, and reconstitute secondary tumors at distant

tissue(s) [5]. It has been investigated that breast tumor cells

encounter a plenty of changes when disseminating from

primary to distant sites, including changes in gene

expression pattern [6], and in the states of stemness [7],

that define clonal evolution and cancer stem cell (CSC)

theories, respectively. Genetic alterations and subsequent

shift in cellular events and states must be considered in the

context of different microenvironments in different steps of

metastasis in order to uncover mysteries of the complex

process of metastasis cascade.

Clonal evolution and CSC theories are two models for

tumor heterogeneity, cancer development, and metastasis

that are widely accepted [8, 9]. Clonal evolution theory

indicates that different lineages of cancer cells are devel-

oped during multistep genetic and epigenetic alterations,

which lead to acquiring different features required for
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tumor development and metastasis [10]. On the other hand,

CSCs, which have features of self-renewal, tumorigenesis,

multilineage differentiation, motility, invasiveness and

apoptosis resistance, are believed to be required for the

development and maintenance of several forms of human

cancers, including BC. Based on the CSC theory, tumor

cells are not naturally alike, based on the state of stemness,

and are organized in a hierarchical pattern in which CSCs

are considered to be at the top of the apex [11–13]. It is

believed that both models of clonal evolution and CSC can

be applied in cancer development and metastasis, and that

tumors heterogeneity can be generated from both of them

[8].

The pattern of gene expression is likely the most critical

determinant of CSC state. A quite sophisticated program

that leads to expression of a group of genes, and simulta-

neously suppression of others, directs all features of a

tumor cell in a precise time. Gene expression signatures

have been developed since more than a decade for a variety

of diseases like cancer metastasis. Gene signatures that

have been developed for BC metastasis are ostensibly

behind-the-scene forces of cellular events. In this study, we

provide most recently discovered functions of sets of genes

that are selected from seminal widely accepted gene sig-

natures. We then propose a possible sequential pattern of

gene expression that may lead to a benign primary breast

tumor to get aggressiveness and progress toward bone

metastasis. We also discuss most prominent molecular

mechanisms involved in BC bone metastasis.

Gene signatures associated to breast cancer progression

and bone metastasis

A number of seminal studies have uncovered gene

expression signatures involved in BC development and

metastasis; each of them points at a distinct step of the

‘invasion-metastasis cascade’ (Tables 1, 2, 3, 4) [14–16].

Today, these findings have entered to the diagnosis as

predictors of disease outcome in BC patients [17]. Partic-

ularly, such discoveries have heralded the new era of

personalized medicine, while predicting the clinical out-

come of patients based on a set of distinct gene expression

patterns [18]. Although improving, our understanding of

the exact molecular and, most importantly, cellular mech-

anisms of BC metastasis is poor, and therefore reliable

treatments are lacking. Analysis of data resulting from high

throughput genome wide assays, and translation of the

molecular pattern to cellular mechanisms/pathways may

provide novel perspective to understand the complex nat-

ure of metastasis, and subsequently develop new thera-

peutic strategies. Among studies that have provided gene

signatures for BC progression and bone metastasis, the

ones by van’t Veer et al., Smid et al., and Kang et al. are of

most seminal and widely accepted.

van’t Veer’s signature

Several studies regarding gene expression pattern in BC

have been developed since more than a decade (Table 1).

Earliest ones [19–23] were not quite sufficient to be uti-

lized for predictive and therapeutic purposes. This may be

because of the inconsistency in different studies (e.g.,

different kinds of primary tumors), and abundance of het-

erogeneity in tumors. The first highly applicable reported

gene signature, by van’t Veer and colleagues (van’t Veer’s

signature), have established a 70-gene prognosis profile

from primary tumors of young BC patients. (Table 2

comprises a panel of selected genes from van’t Veer’s

signature, based on their significant expression in most

poor prognosed patients, and the status of being well

studied). They identified a set of genes strongly predicting

distant metastasis in patients who were lymph node nega-

tive, called poor prognosis signature [14]. Their finding

uncovered a pattern of gene expression required for pri-

mary tumor cells to become invasive; capable to evade

from primary site.

van’t Veer’s signature comprises genes associated to a

well-orchestrated program for the regulation of different

features required for primary tumors to grow and escape

from primary site, including cell cycle, DNA replication,

proliferation, tumorigenesis, survival, angiogenesis,

migration, and invasion (Table 2). In particular, among

those, CCNB2, CCNE2, MCM6, TSPYL5, NUSAP1,

CMC2, ECT2, ORC6, DTL, PRC1, MELK, EGLN1,

SLC2A3, RAB6B, ESM1, RAD21, CDC25B, CDK16,

CENPA, PGK1, MAD2L1, CKS2, BUB1, FGF18, WISP1,

and IGFBP5 are known regulators of cell cycle, DNA

Table 1 Gene signatures associated to breast cancer metastasis

Gene signature

(authors)

Type of study Year of

study

Perou, C.M.

et al.

In vitro, and in vivo (human primary

breast tumor)

1999

Perou, C.M.

et al.

In vivo (human primary breast tumor) 2000

Zajchowski,

D.A. et al.

In vitro 2001

Sorlie, T. et al. In vivo (human primary breast tumor) 2001

West, M. et al. In vivo (human primary breast tumor) 2001

van’t Veer, L.

J. et al.

In vivo (human primary breast tumor) 2002

Kang, Y. et al. In vitro, and in vivo (mouse metastatic

bone metastatic tumor)

2003

Smid, M. et al. In vivo (human primary breast tumor) 2006
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Table 2 van’t Veer’s signature of breast cancer poor/good prognosis genes

Gene symbol Gene description Functions and features

Cell cycle/DNA replication/proliferation/tumorigenesis/survival

CCNB2 Cyclin B2 Cell cycle control [24], Serves as oncogene, and potential biomarker of

unfavorable prognosis [125], TGF-b-mediated cell cycle control [27]

CCNE2 Cyclin E2 Cell cycle control [24], resistance to both endocrine therapy and CDK4

inhibition [126], increase in pathogenesis and kinase activity [127]

MCM6 Mini-chromosome maintenance proteins DNA replication, and growth [25]

TSPYL5 TSPY-like 5 Suppression of p53 [128], cell growth via regulation of p21 and PTEN/AKT

pathways [129]

NUSAP1 Nucleolar and spindle associated protein 1 Activation by E2F1 [130], spindle organization in mitosis thorough cdk1

activation [131, 132]

CMC2 COX assembly mitochondrial protein 2 homolog Cytochrome C oxidase biogenesis [133]

ECT2 Epithelial cell transforming sequence 2 oncogene Cell cycle progression and proliferation [134], mesenchymal amoeboid

transition [135] and migration [136]

ORC6 Origin recognition complex, subunit 6 Proliferation [137]

DTL Denticleless E3 ubiquitin protein ligase homolog Tumor growth [138], proliferation, survival, and metastasis [139, 140]

PRC1 Protein regulator of cytokinesis 1 Proliferation [141]

MELK Maternal embryonic leucine zipper kinase Proliferation of tumor and CSCs, and inhibition of apoptosis [142–145]

EGLN1 egl-9 family hypoxia-inducible factor 1 Proliferation, survival [146], target of HIF [147], involved in the processing of

TGF-b1 [28], angiogenesis [148], maintenance of epithelial differentiation

[149]

SLC2A3 Solute carrier family 2 (facilitated glucose transporter),

member 3

Preferential glucose uptake in TICs [150], induced by HIF [151]

IGFBP5 Insulin-like growth factor binding protein 5 Cell survival, cell adhesion through activation of integrin-linked kinase (ILK)

and Akt, and reduces migration [152]

RAB6B Member of RAS oncogene family Tumor proliferation, malignant transformation [153]

ESM1 Endothelial cell specific molecule-1 Tumor growth, and metastasis through NFjB pathway [31], angiogenesis [154]

RAD21 Double-strand-break repair protein rad21 homolog Sister chromatid cohesion in mitotic cells [155], DNA repair [156], and

estrogen-mediated regulation of MYC [36]

CDK16 Cyclin dependent protein kinases Cell proliferation [157]

CDC25B Cell division cycle 25B Cell proliferation [158], overexpression of c-myc [37]

CENPA Centromere protein A Tumor progression, cell cycle regulation, survival [159], chromosomal

instability [160]

PGK1 Phosphoglycerate kinase 1 Increase in the expression of CXCR4, angiogenic switch, tumor growt h [45],

target of PPARc (cell proliferation) [161], and induce bone metastasis [44]

MAD2L1 Mitotic arrest-deficient 2 L1 Cell proliferation [162], tumorigenesis [163]

CKS2 Cdc28 kinase subunit 2 Tumorigenesis, proliferation, apoptosis resistance [164, 165]

BUB1 Mitotic checkpoint serine/threonine kinase Cell proliferation [166, 167]

Angiogenesis/migration/invasion

FLT1 Vascular endothelial growth factor receptor Angiogenesis and vasculogenesis [168, 169], formation of premetastatic niche

and bone directed metastasis of breast cancer [43]

EXT1 Exostosin glycosyltransferase 1 Bone development [170], migration [171]

DIAPH3 Diaphanous-related formin 3 Motility/migration and the formation of filopodium in tumor [172–174]

CDC42BPA Serine/Threonine protein kinase Tumor cell invasion [175], migration [176]

EXOC7 Exocyst complex component 7 Angiogenesis [177], migration [178]

NMU Neuromedin U Tumorigenicity, metastasis [179], cell migration, invasiveness, tumor cell

dissemination [180]

VEGF Vascular endothelial growth factor Angiogenesis [181, 182], metastasis [183], EMT [41]

MMP9 Matrix metalloproteinase Induction of VEGF [184, 185], EMT, invasion and metastasis [39, 40]

FGF18 Fibroblast growth factor 18 Cell survival [186], growth, migration, invasion through NFjB pathway,

angiogenesis [32, 187]

WISP1 WNT1 inducible signaling pathway protein 1 WNT1/b-catenin responsive oncogene [188], survival [189], induction of the

expression of VCAM1 [190], increase the expression of MMP2 and migration

through FAK, MEK, ERK, p65 and NF-jB pathways [33], involved the

regulation of TGF-b1 to control osteoblast function [191], metastasis to bone

[192]

TGFB3 Transforming growth factor, beta 3 Induction of breast CSCs [30], involved in the induction of MMPs, EMT, and

invasion through MAPK pathway [29], induced by HIF-1 [193], induced by

Snail/Slug/b-catenin-TCF4 pathway [194], induction of apoptosis [195]
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replication, proliferation, and survival [24–26]. Upregula-

tion of these genes can be considered as the first require-

ments of primary tumor for its growth in order to be

prepared for dissemination. Afterward, ECT2, EGLN1,

ESM1, FLT1, EXT1, DIAPH3, EXOC7, NMU, CDC42BPA,

VEGF, MMP9, FGF18, WISP1, and TGF-b3, are well-

known pivotal elements that participate in angiogenesis,

migration, and invasion. Tumor cells which express these

genes seem to be adept for invasion from primary site

(please see Table 2 for detail functions of gene products).

A variety of key molecular mechanisms are regulated by

van’t Veer’s signature gene products. Remarkably, TGF-b

signaling pathway likely plays important roles in the reg-

ulation of cell cycle, proliferation, induction of EMT,

CSCs, and MMPs [27–30] (Table 2). Furthermore, NFjB

signaling is also involved in this level of tumor progression

taking part in tumor growth and metastasis by the media-

tion of ESM1, FGF18, and WISP1 [31–33]. In this step, the

transcription factor MYC, which is well known for its

association to breast tumor proliferation [34, 35], may also

play important roles as is shown to be regulated by at least

two of van’t Veer’s signature genes including RAD21 and

CDC25B [36, 37]. Notably, ‘epithelial to mesenchymal

transition’ (EMT), a process that is shown to be essential

Table 3 Smid’s signature of breast cancer bone metastasis genes

Gene

symbol

Gene description Functions and features

TFF1 Trefoil factor-1 Oncogenicity [196], cell survival, anchorage-independent growth [52],

angiogenesis, migration, and invasion [51], protect the mucosa from

insults, stabilize the mucus layer and affect healing of the epithelium

[197]

TFF3 Trefoil factor-3 Tumor progression and dissemination [198], regulation of VEGF

expression induced by hypoxia [55], protect the mucosa from insults,

stabilize the mucus layer and affect healing of the epithelium [197]

AGR2 A protein disulfide isomerase; anterior gradient

homolog 2

Tumor growth, cell migration, cellular transformation [199], cancer cell

survival [200], metastasis [201], and production of intestinal mucus

[202]

NAT1 Arylamine N-acetyltransferase-1 Cell growth, anchorage independent growth, E-cadherin (cell–cell

contact) inhibition, and invasion [203, 204]

CRIP1 Cysteine-rich intestinal protein-1 Cellular growth and differentiation [205]

RND1 Member of the Rho GTPase family Disassembly of actin filament structures, and loss of cell adhesion [206]

TSPAN1 Tetraspanin 1 Cell growth, migration, and invasion [207, 208]

FGFR3 Fibroblast growth factor receptor 3 Cellular proliferation, survival, migration, angiogenesis [97]

SCUBE2 Signal peptide CUB (complement proteins C1r/C1 s,

Uegf, and Bmp 1)-EGF domain-containing protein2

Growth inhibitory effects, antagonizing bone morphogenetic protein, and

suppressing the b-catenin pathway (interacting with E-cadherin) [63,

209], enhance the Sonic Hedgehog signaling activity [210]

CEACAM6 Carcinoembryonic antigen-related cell adhesion

molecule 6

Tumorigenesis, disruption of cell polarity, and anoikis resistance [211,

212]

TOM1L1 Target of Myb-1 Like Enhancement of IL2-Jak2-STAT3 signaling pathway [213], and

involvement of EGF signaling [214]

KRT16 Keratin 16 Migration and invasion [215]

FGFBP1 Fibroblast growth factor binding protein1 Angiogenesis, enhancement in FGF-1- and FGF-2-dependent

proliferation, FGF-2-induced ERK activation, and migration [59, 216,

217]

FOXO3A Forkhead box class O3A transcription factor Suppression of tumor cells; Regulation the expression of p27/Kip1, cyclin

D1, and cyclin E, induction of apoptosis through Bim and FasL [218–

222], regulation of glycolysis downstream of Akt through

transcriptional control of Tsc1 [223], and repression of ER-a [224], and

estrogen-dependent proliferation [225], repression of VEGF [226],

promotion of invasive migration through MMP9 and MMP-13

upregulation [62]

KRT6B Keratin 6B Migration and invasion [215]

SNAI1 Snail transcription factor Induction of EMT, invasion, and metastasis [57] by suppressing

E-cadherin [227], and cell cycle, and induction of apoptosis resistance

[228]

TMSB15A Thymosin beta 15a Tumor progression and metastasis [229], motility [230]
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for tumor dissemination and metastasis of breast carcino-

mas [38], is enhanced through at least two of genes in this

signature including MMP9 and VEGF. These two factors

play determining roles in preparing a hospitable microen-

vironment in which emitted signals trigger EMT in order to

induce/maintain CSCs [39–42]. On the other hand, two of

genes in this panel may tend to trigger primary tumor cells

to metastasize to bone, including FLT1 and PGK1 [43, 44].

PGK1 increases the expression of CXCR4, which is one of

the most important bone metastasis factors [45]. FLT1 also

provide a premetastatic niche in bone and direct bone

metastasis of BC [43]. Together, above information suggest

the involvement of key regulators like TGF-b, NFjB, and

MYC, as well as the process of EMT in first steps of BC

metastasis within the primary tumor.

Biological functions of genes in van’t Veer’s signature

define the hallmarks of cancer. Tian and colleagues have

recently shown that van’t Veer’s signature gene products

Table 4 Kang’s signature of breast cancer bone metastasis genes

Gene

symbol

Gene description Functions and features

Angiogenesis, migration/invasion, EMT

MCAM Melanoma cell adhesion molecule Migration, invasion, tumorigenicity [231], motility [232], angiogenesis [233, 234],

EMT [232, 235], and metastasis [236]

PTK7 Protein tyrosine kinase 7 Cell cycle regulation, EMT [237], motility [238], regulation of WNT/planar cell

polarity pathway [239], invasion, angiogenesis [240], and target of MMP14 [241]

RGCC Regulator of cell cycle Induction of EMT, migration, and invasion via NFjB signaling [242], interact with

Smad3 to promote TGF-b1 mediated EMT [65, 69]

CTGF Connective Tissue Growth factor Induction of EMT-like cell fate [243], protection of the vasculature [244], hypoxia

induced [245] angiogenesis [246], migration and invasion [247] through MMP-13

upregulation, and FAK, ERK, NFjB pathways [79], mediation of Smad-dependent

TGFb signaling to regulate mesenchymal cell proliferation [71], involve in bone

metastasis [80, 84], and upregulated by EGF [248]

FGF5 Fibroblast growth factor-5 Autocrine and paracrine dependent cell growth, enhance the MAPK signaling [78],

angiogenic and mitogenic factor [249, 250], survival and migration [251]

ADAMTS1 A disintegrin and metalloprotease with

thrombospondin motifs protein 1

Tumor growth and metastasis [252], migration [253, 254], endothelial invasion

[255], inhibition of angiogenesis [256, 257], induce bone metastasis [81]

CXCR4 Chemokine (C-X-C motif) receptor 4 Modulating the trafficking of both cancer and normal stem cells [258], induction of

bone metastasis [82], survival, proliferation, angiogenesis [259], migration,

invasion through WNT/b-catenin pathway [260], upregulation/activation by TGF-

b1 [72, 73], HIF [261], and Akt [262], and BMP4 [263], induces EMT [264],

induces and maintains stemness in cancer stem cells [265]

IL11 Interleukin-11 TGF-b dependent [15, 74, 75] bone metastasis [74, 83–85], motility [266], and

invasion via PI3K, Ras, STAT3, MAPK, and JNK mediation [267–269], induce

production of RANKL [3]

MMP1 Matrix metalloproteinase-1 Tumorigenesis [270], induce bone metastasis [81], invasion, release IGF, FGF and

TGF-b [76], vascular remodeling [271], induced by WNT signaling [272], MAPK

[273], and BMP4 [263], activates PAR1 [270], roles in tumor extravasation [274]

Growth/angiogenesis inhibition

FHL1 Four and a half LIM protein 1 Interaction with oestrogen receptors (ERs), breast cancer cell growth regulation

[275], interaction with Smads 2,3,4 and suppress tumor growth and migration

[276], suppression of VEGF [277]

DUSP1 Dual specificity phosphatase 1 Target of TGF-b1, inhibition of p38/MAPK and JNK [68, 278, 279]. Target of p53

and triggers apoptosis [280, 281], and involved in the auto-regulation of VEGF

[282]

SOCS2 Suppressor of cytokine signaling 2 Suppression of proliferation and growth [283], prolactin-induced mammary gland

development [284], enhance IL-2 and IL-3 signaling [285]

FST Follistatin Stimulation by TGF-b2 [70] and BRCA1 [286], Inhibition of BMPs [287–289],

inhibition of activin [290], increase mTOR signaling via Smad3 [77], downstream

of WNT4 signaling [291], inhibition of angiogenesis [292]

Survival and microenvironmental factors

SLC4A7 Solute carrier family 4, sodium

bicarbonate cotransporter, member 7

Major determinant of pH(i) in breast cancer primary tumor and metastasis [293]

NCF2 Neutrophil cytosolic factor 2 Target of p53 in activation of ROS and inhibition of apoptosis [294]
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functionally meet all the six hallmarks of cancer defined by

Hanahan and Weinberg, including sustained proliferation,

anti-growth signaling evasion, cell death resistance,

immortality, angiogenesis, and invasion/metastasis [46].

They identified interconnected networks and showed that

these genes are regulated by key tumorigenic factors like

TP53, RB1, MYC, JUN and CDKN2A [47]. Interestingly,

van’t Veer’s signature may also reflect the two additional

hallmarks of next generation, including reprogramming of

energy metabolism and evading immune destruction [1].

Adjustments of energy metabolism in order to fuel cell

growth and division, is of most important features that lead

to uncontrolled proliferation in neoplasms. Glycolytic

fueling has been shown to be one of the most essential

mechanisms in the reprogramming of energy, and associ-

ated with activated oncogenes like RAS, MYC, mutant

tumor suppressors like TP53, certain signaling pathways

like PI3K/Akt/PTEN, and hypoxia inducible factor

1(HIF1) [48, 49]. Now, as Tian and colleagues showed, and

also from functions of certain genes including TSPYL5,

CMC2, CDC25B, EGLN1, SLC2A3, RAB6B, and TGF-b3

(see details of functions in Table 2), van’t Veer’s signature

likely associates with the seventh hallmark of cancer,

reprogramming of energy metabolism. As for the eighth

hallmark, evading immune destruction, it has been shown

that tumors that produce transforming growth factor

(TGF)-b escape from immune surveillance, mainly by

selective and direct suppression of the T cell cytotoxic gene

responses [50]. Intriguingly, TGF-b signaling is undeniably

of key factors in van’t Veer’s signature. Together, it seems

that functions of gene products of van’t Veer’s signature

also meet the two additional next generation hallmarks of

cancer, in addition to the first six ones.

Smid’s signature

Focusing on bone metastasis, Smid and colleagues have

established a panel of genes in BC patients that are

implicated to bone relapse (Smid’s signature). They ana-

lyzed primary tumors of lymph node negative BC patients

who, subsequently, had developed metastases. A set of 69

genes was identified to be differentially expressed in

patients who had experienced bone metastasis versus

patients with metastasis to other sites. (Table 3 comprises a

panel of selected genes from Smid’s signature that are

significantly overexpressed and have been better studied).

Notably, they developed classifier of tumors that metasta-

size to bone that was applicable in clinic [16].

Smid’s signature provides a pattern of gene expression

in primary tumors that obligates them to metastasize to

bone. Genes in Smid’s signature participate in essential

features of metastasis including tumor growth, prolifera-

tion, survival, angiogenesis, migration, and invasion

(Table 3). Among those, TFF1, TFF3, AGR2, NAT1,

CRIP1, TSPAN1, FGFR3, CEACAM6, and TMSB15A may

be categorized to play roles in cell growth/proliferation,

and survival. Importantly, a number of genes in this sig-

nature take part in angiogenesis that include TFF1, TFF3,

FGFR3, and FGFBP1. Thereupon, the vast majority of the

genes in this panel which have seminal roles in migration

and invasion are reported to be TFF1, TFF3, AGR2, NAT1,

RND1, TSPAN1, FGFR3, CEACAM6, KRT16, FGFBP1,

FOXO3A, KRT6B, and SNAI1. Interestingly, TFF1, TFF3,

and FGFR3 are present in all above categories, and

seemingly play pivotal roles in the process of BC metas-

tasis to bone.

Well-characterized crucial molecular mechanisms are

controlled by Smid’s signature gene products. Trefoil fac-

tor-1 (TFF1), that was the most differentially expressed

gene associated to bone metastasis in Smid’s signature, is

ascertained to play roles in cell survival, anchorage-inde-

pendent growth, angiogenesis, migration, and invasion in

breast (and also other) tumor cells [51–54]. TFF3 induces

angiogenesis by the regulation of VEGF, under the control

of hypoxia [55]. AGR2, NAT1, FGFR3, and TSPAN1 have

shown to play roles in tumor growth/proliferation/survival

and/or migration/invasion. CRIP1, CEACAM6, and

TMSB15A regulate tumor growth/proliferation and sur-

vival. RND1, KRT16, KRT6B, FOXO3A, and SNAI1

induce migration/invasion. It should be noted that, SNAI1

(also SNAIL) has determined to play pivotal roles as a

master regulator of EMT [38, 56–58]. On the contrary,

SCUBE2, and FOXO3A have generally shown to encode

suppressors of tumor growth/proliferation, inducers of

apoptosis, and repressor of angiogenesis. SCUBE2, and

FOXO3A, although, are distinguished to play roles in line

with induction of invasiveness, and metastasis, by regula-

tion of Hedgehog signaling and matrix metalloproteinases,

respectively [59–62] (Table 3).

Critical signaling pathways are associated with the

genes in the Smid’s signature. Apparently, fibroblast

growth factor (FGF) signaling takes fundamental parts in

this circuit, as FGFR3 and FGFBP1 that are directly linked

to this pathway are two important overexpressed genes in

this panel. ERK signaling is likely involved through acti-

vation by FGFBP1 [59]. In addition, epidermal growth

factor (EGF) and Janus kinase-signal transducers and

activators of transcription (JAK-STAT) signaling path-

ways are demonstrated to be enhanced by TOM1L1 [63].

Together, from the above mentioned findings, it seems that

the genes in Smid’s signature direct a complex program in

which tumor cells proliferate and survive, then further

induce and maintain angiogenesis, and finally enhance

migration and invasion. Passing these two steps of gene

expression (van’t Veer’s and Smid’s signatures), tumor

cells are capable to invade, intravasate, and survive in
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circulation, heading to bone. These two sets of genes may

be regulated in an overlapped, or in a sequential pattern.

Kang’s signature

Focused on the gene expression pattern of breast tumor

cells heading to bone, Kang and colleagues investigated a

multigenic program in highly aggressive osteolytic BC

metastatic cells (Kang’s signature) (Table 4 comprises a

panel of selected genes from Kang’s signature that are

significantly overexpressed and have been better studied)

[15]. Their work provided a framework for the identifica-

tion of genes mediating metastasis to different organs.

Although Kang’s signature was established in animal

model, it has recently been confirmed in human BC

patients as well [64]. These genes mostly encode secreted

and cell membrane proteins, and are associated to the

preparation of a compatible metastatic niche.

Kang’s signature provides a panel of genes that may be

categorized into four groups including: angiogenesis,

migration/invasion, EMT, and growth/angiogenesis inhi-

bition. Of those, MCAM, PTK7, CTGF, FGF5, and CXCR4

play critical roles in angiogenesis. MCAM, PTK7, RGCC,

CTGF, FGF5, ADAMTS1, CXCR4, IL-11, and MMP1 are

well-known essential factors for tumor migration/invasion.

Notably, a number of key genes in this signature encode

important inducers of EMT and CSC features including:

MCAM, PTK7, RGCC, CTGF, and CXCR4. RGCC and

Smad3 direct the induction of EMT through regulation of

SNAIL and SLUG EMT transcription factors [65]. CXCR4

activates several signaling pathways, including AKT [66],

a process in which Src plays a critical role [67]. It should

be noted that, some genes in Kang’s signature controver-

sially function against tumor growth or angiogenesis

(fourth group). Those include FHL1, DUSP1, SOCS2, FST,

and ADAMTS1 (see below). SLC4A7 and NCF2, which are

not categorized in these groups, play roles in preparing the

microenvironment and inhibition of apoptosis, respectively

(Table 4). From the above mentioned information,

MCAM, PTK7, CTGF, and CXCR4 are categorized into all

first three groups, and likely play critical roles in the last

steps of BC bone metastasis.

Genes in Kang’s signature function toward controlling

principal signaling pathways, and govern a sophisticated

signaling network that leads to a successful metastasis.

Table 4 demonstrates undeniable deviation in the regula-

tion of key signaling pathways, like TGF-b, WNT, NFjB,

FGF, and MAPK, as underpinning functions of genes

associated to bone metastasis. Almost half of the genes in

this panel, including DUSP1, RGCC, FST, CTGF, CXCR4,

IL-11, and MMP-1, are directly linked to the TGF-b sig-

naling [65, 68–76]. FST also increase mTOR signaling via

Smad3 [77]. PTK7, FST, CXCR4, and MMP-1 take part in

the regulation of WNT signaling, and remarkably, RGCC

and CTGF function via NFjB pathway. FGF5 mediate

FGF signaling, and enhance MAPK pathway [78]. CTGF

also act through ERK and FAK pathways [79]. Impor-

tantly, distinct gene expression pattern of Kang’s signature

specifically direct disseminated tumor cells to overt bone

metastasis. CTGF, ADAMTS1, CXCR4, IL-11, and MMP1

are considered crucial inducers of bone metastasis [80–85].

Together, it seems that for a successful bone metastasis

such sophisticated signaling network is required, which is

controlled by the power of gene expression regulation.

Breast cancer bone metastasis; a multistep cascade

of events

Several studies have reported genes that are associated with

BC bone metastasis, from which some prognostic tools are

provided in order to obtain best available treatments for

individual BC patients. However, a comprehensive under-

standing of the nature of metastasis is yet to be investi-

gated. Accordingly, due to the short knowledge of this

complex phenomenon, well-suited therapies are lacking. In

this review, we aimed to use published gene signatures,

which have been shown to be significantly linked to pro-

gression and metastasis of BC to bone, to unmask a

sequential pattern of gene expression that leads to coloni-

zation of breast tumors in bone.

Primary breast tumors cells ought to arrange a pro-

grammed gene expression pattern for their growth, sur-

vival, and invasion. Therefore, programs related to cell

cycle progression, proliferation, apoptosis resistant, angi-

ogenesis, invasion, and distant colonization need to be

directed by nucleus. Genes in van’t Veer’s and Smid’s

signature seem to provide such well-coordinated program

for tumor cells, as both signatures are derived from primary

tumors of BC patients, who developed metastasis (in gen-

eral) and bone metastasis, respectively [14, 16]. We

thought that genes in these two signatures likely express in

a time period that primary tumor: first get committed to

metastasize, and second committed to metastasize to bone.

Then, as is obvious in Tables 2 and 3, primary tumor first

get ready for metastasis, and then get features of invasion,

and intravasation. Tumor cells, then, acquire bone specific

directing features of homing, extravasation, micro-coloni-

zation, and eventually macro-colonization (metastatic col-

onization) from the genes in Kang’s signature (Table 4)

(Fig. 1). This is likely because Kang’s signature is pri-

marily derived from metastatic breast tumor cells from

bone lesions [15]. Importantly, key genes in Kang’s sig-

nature including MMP-1, CXCR4, FGF5 and CTGF,

which was initially determined from study on metastatic

MDA-MB-231 cells and mouse model, have been recently
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confirmed in patients with BC and prostate cancer [64].

Figure 2 also shows deviation toward particular functions

in each signature. In van’t Veer’s signature almost two out

of third number of genes (24 out of 35) are in the category

of proliferation. In Smid’s signature 13 out of 17 genes are

in the category of migration. In Kang’s signature 9 out of

16 genes are involved in functions of migration and inva-

sion. This may show the evolutionarily pattern of tumor

progression and metastasis in BC bone metastasis.

A set of well-defined genes govern key molecular

pathways, and are the behind-the-scene forces of BC bone

metastasis. Genes from van’t Veer’s, Smid’s, and Kang’s

signatures control signaling pathways that have been con-

sidered as pivotal driving forces of tumor progression and

metastasis. TGF-b, FGF, NFjB, WNT, PI3K, and JAK-

STAT signaling pathways are induced/enhanced by genes

of van’t Veer’s, and Smid’s signatures in primary breast

tumor cells. On the other hand, TGF-b, FGF, NFjB, WNT,

and PI3K pathways are also induced/enhanced by genes of

Kang’s signature in bone colonized tumor cells. In both

primary and distant tumors EMT program is induced by

these pathways, and also several genes such as SNAI1 and

MMP9 in primary tumor, and MCAM, PTK7, CXCR4,

RGCC, and CTGF in distant metastatic tumors (Fig. 3)

(Tables 2, 3, 4).

Smad-dependent and Smad-independent TGF-b signal-

ing pathways are essential for EMT and BC metastases

[86–88]. Smad3 and Smad4 dependent TGF-b signaling

have been shown to be indispensable for the induction of

EMT and metastasis [89–91]. Smad transcription factors

orchestrate overexpression of several important genes

involved in EMT and metastasis, including SNAIL, TWIST,

and ZEB families of transcription factor coding genes [92].

TGF-b also participates in the activation of several key

signaling pathways such as Ras/ERK, and PI3K/Akt, called

Smad-independent pathways, and regulates cell growth,

survival, cytoskeletal reorganization, migration, and inva-

sion [93]. For instance, MMP9 is shown to be induced by

TGF-b-induced Akt-dependent ERK pathway [94]. TGF-b
stimulation leads epithelial cells to obtain mesenchymal-

like features, and capability of migration, invasion, and

dissemination through circulation to distant sites of

metastasis, and features of stemness [95].

FGF signaling also acts as an important inducer of EMT

and metastasis [96]. FGFs regulate a wide range of bio-

logical functions such as proliferation, survival, and

Fig. 1 Sequential gene expression pattern, from primary tumor to

metastatic colonization. van’t Veer’s, Smid’s, and Kang’s gene

signatures shows a sequential pattern of expression that leads to

breast cancer progression, metastasis. Genes in van’t Veer’s signature

are mostly involved in the regulation of cell cycle, DNA replication,

Proliferation, tumorigenesis, and survival, therefor, are essential for

primary tumor cells to be prepared for invasion and metastasis. On the

other hand some genes in this signature act toward angiogenesis,

migration, and invasion. ESM1, ECT2, and EGLN1 are present in both

categories and likely play important roles in primary steps of tumor

metastasis. Genes in Smid’s signature also play essential roles in cell

growth, proliferation, survival, angiogenesis, migration, and invasion.

Tumor cells that overexpress genes in these two signatures seem to be

able to invade and intravasate from primary site and disseminate

through circulation. TFF1, TFF3, and FGFR3 are present in all three

categories. Genes in Kang’s signature are mostly associated to

angiogenesis, migration/invasion, EMT, and CSC factors. Many

genes in this signature have been directly linked to bone metastasis of

breast cancer. MCAM, PTK7, and CTGF are common genes in three

categories. Genes in Kang’s signature likely act toward homing,

extravasation, formation of micrometastasis, and eventually meta-

static colonization, in order to end this journey. Abbreviations: EMT

epithelial to mesenchymal transition, CSC cancer stem cells
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migration [97], and likely play pivotal roles in bone

metastasis of BC [16]. NFjB is also an important inducer

of EMT, and act through direct activation of SNAIL and

ZEB family of transcription factors [98, 99]. Interestingly,

it is believed that the cooperation of NFjB and TGF-b
signaling pathways is critical for EMT and cancer metas-

tasis [100, 101]. Wnt signaling is among the most impor-

tant pathways involved in the induction of EMT and breast

CSCs [86, 102, 103]. Notably, WNT and TGF-b signaling

pathways likely induce an mutually reinforcing autocrine

signaling network that is indispensable for constant

expression of EMT associated transcription factors and

CSC niche [87, 104]. PI3K signaling pathway is well-

known for its important roles in the induction of EMT and

metastasis [105]. Intriguingly, it has been shown that PI3K

signaling is essential for autocrine/paracrine TGF-b asso-

ciated motility, invasiveness, and metastasis [106]. JAK-

STAT signaling pathway has an essential regulatory role in

growth and proliferation of breast CSCs [107]. JAK-STAT

signaling is associated with essential features such as sur-

vival, cell cycle regulation, self-sufficiency in growth and

metastasis [108, 109]. Importantly, JAK2 also interacts and

activates PI3K and RAS signaling molecules [110].

Hypoxia and hypoxia inducible factors (HIFs) seem to

have pivotal roles in BC bone metastasis. HIF directly

regulates several genes from van’t Veer’s, Smid’s, and

Kang’s signatures. TFF3, EGLN1, SNAI1, MMP9,

TGFB3, SLC2A3, and CTGF are of genes that are directly

regulated by hypoxia. In fact, HIFs are of the essential

preliminary factors that trigger gene expression programs

that lead to tumor progression and metastasis, and play

critical roles in the induction of EMT and stemness state in

CSCs [111]. Hypoxia and HIFs are likely essential factors

in the regulation of on and off states of EMT between

primary and secondary tumors. In primary tumors, local-

ized hypoxia mediates HIFs to be activated, and therefore

move toward EMT/CSC induction and metastasis. At the

secondary sites, however, with likely no hypoxic environ-

ment, lack of hypoxia and other factors lead to the rever-

sion of EMT and CSC features. This phenomenon is

essential for metastasis of differentiated carcinomas [87,

112] (for a comprehensive review see Ref. [112]).

It seems that a comprehensive signaling network con-

sisting of TGF-b, FGF, NFjB, WNT, PI3K, and JAK-

STAT is indispensable for breast tumor cells to progress to

overt bone metastasis. Essential links between key bone

metastatic factors, such as vascular cell adhesion molecule

1 (VCAM1), receptor activator of nuclear factor jB ligand

(RNAKL), parathyroid-hormone related peptide (PTHrP),

and BACH1 with these pathways further confirms this

Fig. 2 Genes in van’t Veer’s, Smid’s, and Kang’s signatures are each

deviated toward distinct functions. Certain numbers of genes in each

signature are involved in certain functions categorized into: prolif-

eration (blue), survival (green), angiogenesis (red), migration

(yellow), and invasion (brown). Several genes have common

functions, which are located in interconnected territories of circles.

Red highlighted genes have functions against the corresponding

feature (circle). Size of the circles shows the deviation toward that

function in each signature. (Color figure online)
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signaling network. VCAM1 Promotes bone metastasis by

attracting and tethering osteoclast progenitors that express

a4 integrin and facilitating their maturation [113, 114], and

induces PI3K-Akt signaling by the mediation of Ezrin

[115]. RANKL regulates bone resorption [116], migration

[117], invasion [117, 118], bone metastasis [3, 117, 119,

Fig. 3 Well-orchestrated genes govern key molecular pathways, and

are the behind-the-scene forces of breast cancer bone metastasis.

Genes in van’t Veer’s, Smid’s, and Kang’s signatures govern a

comprehensive signaling network in primary and secondary breast

tumors. TGF-b, FGF, JAK-STAT, NFjB, WNT, and PI3K pathways

in primary tumor, and TGF-b, FGF, NFjB, and PI3K pathways in

secondary tumor are regulated by genes in these three signatures. In

the primary tumor the six signaling pathways build a comprehensive

signaling network that lead toward tumor growth, proliferation,

survival, angiogenesis, migration, and invasion. In primary tumor (up-

left), genes from van’t Veer’s, Smid’s signatures and their related

signaling molecules are showed. HIF seem to have profound effects in

primary tumor development and dissemination. Notably, several

genes and signaling cascades induce EMT, and therefor CSC

associated features. Intravasated tumor cells form the population of

circulating tumor cells that disseminate, home, and extravasate into

the secondary organ (bone). Importantly, the majority of differenti-

ated circulating tumor cells (yellow) cannot survive the inhospitable

environment while in circulation, and a small proportion of CSCs

(red) are able to reach distant sites and form metastasis. In metastatic

tumor (down-right), genes from Kang’s signature lead to activation of

the five pathways, which build a comprehensive signaling network

that governs features like invasion, migration, EMT, and CSC

formation. It is important to mention that, tumors in primary and

secondary sites can be different or identical regarding their state of

differentiation. In most cases secondary tumors are at the same level

of differentiation as primary tumor, or even more differentiated. But

in some cases, like triple negative breast cancer, both primary and

secondary tumors are mostly mesenchymal, and secondary tumors are

even more mesenchymal (not shown in this figure). Abbreviations:

TGF-b: transforming growth factor-beta, FGF: fibroblast growth

factor, JAK-STAT: Janus kinase/signal transducers and activators of

transcription, NFjB: nuclear factor kappa B, WNT, and PI3K:

phosphatidylinositol 3 kinase, HIF: hypoxia inducible factor, EMT:

epithelial to mesenchymal transition, CSC: cancer stem cells. (Color

figure online)
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120], and induces tumorigenesis, EMT, stemness [121],

and the upregulation of MMP1 [118]. PTHrP can be

induced by TGF-b [122], and activates CTGF through

protein kinase A/C and ERK pathways [80]. BACH1 is a

common regulator of several bone metastasis genes,

including MMP1 and CXCR4 [123], induced by TGF-b
[124].

Genes play the central role in development and diseases.

Controlling the cellular pathways is one of the most critical

duties of genes, in which reciprocal feedbacks play

essential roles. Gene expression pattern in a given cell

likely relates the story of a journey in which the cell is

born, grow, proliferate, and/or die. Regulating the cellular

behavior is the most critical tasks of gene expression

machinery. Malignant behavior in cancers is tightly con-

trolled their by gene expression pattern. Connection of

gene signatures discussed in this review may provide novel

insight toward better understanding the journey in which

tumor cells get features of malignancy and metastasize to

distant sites, and therefore providing best fit treatments for

any individual cancer.
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