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Patrick Subarsky Æ Richard P. Hill

Received: 16 June 2007 / Accepted: 21 December 2007 / Published online: 10 January 2008

� Springer Science+Business Media B.V. 2008

Abstract Spatial and temporal oxygen heterogeneity

exists in most solid tumour microenvironments due to an

inadequate vascular network supplying a dense population

of tumour cells. An imbalance between oxygen supply and

demand leads to hypoxia within a significant proportion of a

tumour, which has been correlated to the likelihood of

metastatic dissemination in both rodent tumour models and

human patients. Experimentally, it has been demonstrated

that near-anoxic in vitro exposure results in transiently

increased metastatic potential in some tumour cell lines. The

purpose of this study was to examine the effect of graded low

oxygen conditions on the invasive phenotype of human

tumour cells using an in vitro model of basement membrane

invasion, in which we measured oxygen availability directly

at the invasion surface of the transwell chamber. Our results

show a relationship between culture vessel geometry and

time to achieve hypoxia which may affect the interpretation

of low oxygen experiments. We exposed the human tumour

cell lines, HT1080 and MDA MB231, to graded normobaric

oxygen (5% O2–0.2% O2) either during or prior to in vitro

basement membrane invasion to simulate conditions of in-

travasation and extravasation. A secondary aim was to

investigate the potential regulation of matrix metallopro-

teinase activity by oxygen availability. We identified

significant reductions in invasive ability under low oxygen

conditions for the HT1080 cell line and an increase in

invasion at intermediate oxygen conditions for the MDA

MB231 cell line. There were differences in the absolute

activity of the individual matrix metalloproteinases, MMP-

2, -9, -14, between the two cell lines, however there were no

significant changes following exposure to hypoxic condi-

tions. This study demonstrates cell line specific effects of

graded oxygen levels on invasive potential and suggests that

intermediate levels of low oxygen may increase metastatic

dissemination.
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Abbreviations

HIF Hypoxia inducible factor

ITS Insulin, transferrin, sodium selenite

mmHg Millimeters of mercurcy

MMP Matrix metalloproteinase

MT-MMP Membrane type matrix metalloproteinase

pO2 Partial pressure of oxygen

TIMP Tissue inhibitor of MMP

VEGF Vascular endothelial growth factor

Introduction

The concentration of oxygen within a solid tumour is

generally lower than in the corresponding normal tissue
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and spatial oxygen heterogeneity has been extensively

demonstrated in human tumours [1]. Recently, temporal

oxygen heterogeneity has also been documented in spon-

taneous canine tumours [2], small animal tumours [3–5]

and human xenograft models [6] with oxygen fluctuations

in the range of 0–10 mmHg and periods on the order of 3–

45 min. The median pO2 values in the preclinical models

are often very low, with a significant fraction of the mea-

surements below 5 mmHg. Thus tumour cells are exposed

to a range of low oxygen conditions including normal

physiological levels to anoxic levels, which may stimulate

oxygen-regulated molecular responses such as the regula-

tion of mRNA transcription by the hypoxia-inducible

factor (HIF) protein [7].

Current studies of oxygen-regulated cellular mecha-

nisms have generally examined a single low concentration

of oxygen, however early reports demonstrated that HIF-1a
protein stability and DNA-binding activity of the HIF

complex varied as a complex function of oxygen concen-

tration, increasing at marginally decreased oxygen

concentrations (as high as 5% O2) to a maximum at 0.5%

O2, followed by a sharp decline as anoxia was reached [8].

In contrast the maximal expression of VEGF mRNA,

which is regulated by the HIF transcription factor in

response to low oxygen conditions, was observed to occur

at 1.5–2.5% O2, depending on cell type [9]. The expression

of many genes is altered by hypoxic conditions and not all

are HIF-regulated [10–13]. Our present understanding of

the molecular responses to low oxygen is not consistent

with the view that there is a single critical value of low

oxygen that dominates the cellular hypoxic response.

Tumour hypoxia has been shown to predict for poor

disease-free survival and overall survival in head and neck

carcinomas, cervical carcinomas, and soft tissue sarcomas,

irrespective of treatment modality [14–19]. Furthermore

some studies have identified a relationship between tumour

hypoxia and distant metastatic disease [14, 16, 20, 21].

In vitro studies have also shown an increase in experi-

mental metastatic potential following in vitro exposure to

near anoxic conditions [22–26]. The metastatic dissemi-

nation of a tumour cell requires a number of phenotypic

abilities, such as the ability to degrade biological barriers

including basement membrane and an ability to initiate

movement through such barriers [27]. These processes are

necessary during the early stages of metastasis, as the

tumour cell invades through the local matrix of the primary

tumour into a lymphatic or vascular vessel (intravasation)

and again, when the tumour cell invades out of the vas-

culature through the local basement membrane into the

stroma of the secondary site (extravasation).

The experiments presented in this study were designed

to investigate how exposure to a range of low oxygen

conditions might alter the process of tumour cell migration

and invasion. We assumed that within an established pri-

mary solid tumour the initial events of tumour cell

dissemination and intravasation could occur under low

oxygen conditions. We developed our assay to investigate

invasion across the basement membrane matrix, Matrigel,

under both hypoxic conditions (to model intravasation) and

under normoxic conditions following hypoxic pre-exposure

(to model extravasation). We examined a range of oxygen

concentrations, from normal physiological levels (*5%

O2) to near-anoxic levels (0.2% O2). Since matrix

metalloproteinases are considered to be required for the

degradation of stromal and basement membrane matrix

[28, 29], we also examined the expression and activity of

MMPs -2 and -9, recently reported to be hypoxia-induced

[30–32], and a key player in metastatic dissemination

(MMP-14 or MT1–MMP) which may also be regulated by

hypoxia [33]. It is not clear if migration and invasion varies

directly with changing oxygen concentrations or if it is

altered at a critical concentration of oxygen. Here we

demonstrate cell-line specific changes in invasion with

respect to a range of oxygen concentrations, using two

different human tumour cell lines, HT1080 fibrosarcoma

and MDA MB231 breast carcinoma, which vary in their

intrinsic invasive ability. Matrix metalloproteinase activity

was not altered and did not associate with the invasive

phenotype.

Materials and methods

Cell lines and culture conditions

Early passage HT1080 and MDA MB231 cell cultures

were routinely cultured in a-MEM (Gibco BRL, Burling-

ton, ON) (containing penicillin/streptomycin)

supplemented with 10% FBS and passaged regularly. For

maintenance, cells were kept at 37�C in a humidified

atmosphere of air + 5% CO2. Normobaric hypoxic con-

ditions were achieved by placing cell culture vessels in a

plastic modular incubator chamber (Billups-Rothenberg,

Del Mar, CA, USA) under normal atmospheric conditions

and subsequently flushing the chamber with defined gas

mixtures containing proportions of O2, 5% CO2, and bal-

anced with N2 (Praxair, Mississauga, ON). The gas flush

was initiated at 12 l/min for 8 min, followed by continuous

flushing at 12 l/h for the remaining period of exposure.

The pO2 was routinely measured during experiments

using a fibre-optic fluorescent oxygen sensor (OxyLite

4000; Oxford Optronix, Oxford, UK). Probes were placed

as needed to measure the incubator chamber atmosphere

(using a thinly wetted probe in a shallow dish) or placed

within the medium of the culture vessel at the cell surface

layer.
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For isolation of enzymatically active MMPs, cell cul-

tures were grown in 10 cm dishes containing serum-free a-

MEM supplemented with 1x ITS Liquid Media Supple-

ment (Sigma, St. Louis, MO, USA).

VEGF and MT1-MMP ELISAs

Conditioned media was collected from cell cultures

exposed to low oxygen conditions for 24 h, centrifuged to

remove potential debris, and stored frozen at -20�C until

assayed. Ten to forty-fold dilutions of conditioned media

were prepared in a-MEM (minus FBS) and 200 ll of

diluted conditioned media was assayed in duplicate per

experiment. The human VEGF Quantikine ELISA kit

(R&D Systems, Minneapolis, MN, USA) was used to

quantify the amount of vascular endothelial growth factor

contained within the conditioned media. Total cellular

protein lysates were also prepared from the cultures and

the total cellular protein was determined (BCA Protein

Assay; Pierce Biotechnology, Rockford, IL, USA) and

used to calculate the cell concentration of the culture with

the aid of previously derived standard curves of total

protein to cell number specific to each cell line. Con-

centrations of VEGF were calculated as pg VEGF per 104

cells.

Quantification of active MMP-14 was performed by

detection of a colorimetric substrate cleavage product

processed by a detection enzyme that was itself activated

by immuno-captured active MMP-14 present in the assayed

conditioned medium (MMP-14 Biotrak Activity Assay; GE

Healthcare Life Sciences, Baie d’Urfe, QC). Total protein

cellular lysates were prepared using the manufacturer’s

supplied extraction buffer at a protein concentration of

2.6 lg/100 ll extraction buffer and assayed in duplicate

following the manufacturer’s instructions.

Western blots and immunodetection

Following treatments, adherent cells were washed with

PBS and harvested in 1 ml lysis buffer [34] supplemented

with protease inhibitors (Complete Mini Tablets; Roche

Applied Science, Laval, QC). Total protein concentration

of the cell lysates was determined using the BCA protein

assay (Pierce Biotechnology, Rockford, IL, USA). Total

protein lysates (10 lg/lane) were resolved on 8% SDS-

polyacrylamide gels and protein was transferred to a

nitrocellulose membrane via electroblotting. Nitrocellulose

membranes were blocked with 5% (w/v) nonfat milk

powder in TBST for 1 h at room temperature. The anti-

bodies used were as follows: anti-human a-MT1 [donkey]

(a kind gift provided by Gillian Murphy, University of

Cambridge, UK) and anti-b-actin [rabbit] (Rockland Im-

munochemicals, Gilbertsville, PA, USA). The blots were

incubated at RT with the indicated antibodies for a period

of 1–3 h and thoroughly washed, then incubated with

horseradish peroxidase-conjugated secondary antibodies.

Detection was by enhanced chemiluminescence according

to the manufacturer’s instructions (Immobilon Western

Chemiluminescent HRP Substrate; Millipore, Billerica,

MA, USA)

For detection of HIF1a, cell cultures (B60% confluent)

that had been exposed to controlled low oxygen condi-

tions for 24 h were washed with ice-cold PBS and

harvested in 600 ll lysis solution (0.5 M NaCl,

1.5 mM MgCl2, 10 mM Tris [pH-8.0], 5 mM EDTA,

0.1% NP-50) supplemented with protease inhibitors

(Complete Mini Tablets) and a phosphatase inhibitor

(1 mM Na3VO4). Total protein concentration of the cell

lysates was determined as described above. Total protein

lysates (60 lg/lane) were resolved as above and trans-

ferred to nitrocellulose membranes. Nitrocellulose

membranes were blocked using 1:1 solution of

PBS:blocking buffer (Odyssey Blocking Buffer; Li-Cor

Biosciences, Lincoln, NB, USA) for 1 h at room tem-

perature. Antibodies against specific proteins were as

follows: anti-human HIF1a [mouse] and anti-b-actin

[donkey]. The blots were incubated at 4�C O/N and

thoroughly washed, then incubated with infrared-sensitive

fluorescent dye-labeled secondary antibodies (Li-Cor

Biosciences). Detection was performed using the Odyssey

Infrared Imaging System (Li-Cor Biosciences). Images

shown in the figure are 8-bit .jpg images derived from the

original 16-bit .tif scans.

Gelatin zymography

Standard SDS-PAGE gels were prepared with the addition

of 1 mg/ml gelatin [35]. Conditioned media samples,

corresponding to a proportional volume from 3.0 9 105

cells, were concentrated using Centricon-30 centrifugal

filters (30 kDa NMWL) (Millipore, Billerica, MA, USA)

and the final retentate was resuspended in 16 ll MMP

dilution buffer. Just prior to sample loading, 4 ll of 4x

gel loading buffer was added. Positive controls were also

loaded to each gel (1 ng each of MMP-2 and MMP-9).

Gels were run under standard conditions until the bro-

mophenol blue dye front had just run off the end of the

gel (*100 min). Gel sandwiches were disassembled and

the gel was placed in wash buffer (2 9 30 min washes).

Subsequently, the gels were placed in activity buffer and

incubated for 18 h at 37�C in a humidified incubator.

Following this, gels were quickly rinsed with ddH2O and

then stained with 0.01% Coomassie Blue R-350 stain
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(PlusOne Coomassie PhastGel Blue R-350; GE Health-

care Life Sciences, Baie d’Urfe, QC) for 3 h. A destain

step was unnecessary and by omission it was ensured that

the gels were equivalently stained for all experiments

[36]. Gels were placed O/N in a gel storage solution and

scanned using a flat-bed scanner set in the transillumi-

nation mode (Agfa DuoScan T1200; AgfaPhoto GmbH,

Leverkusen, Germany).

Digital scans were quantified using Scion Image for

Windows (Scion Corporation, Frederick, MD, USA) pre-

viously calibrated for percent transmission (calibrated

against a density standard step tablet scanned on the Agfa

DuoScan T1200). Mean integrated transmission was cal-

culated by integrating the area under the curve.

Zymogram quantification was performed according to

methods previously described by Kleiner and Stetler-

Stevenson [37].

Matrigel invasion

Transwell invasion was performed in a modified Boyden

chamber 24-well transwell plate [38, 39]. Matrigel (BD

Biosciences, Mississauga, ON) was diluted to a final con-

centration of 1 mg/ml with a-MEM (- FBS) and 100 ll/

well was added to each transwell membrane and dried O/N

in a biological safety cabinet. Dried Matrigel layers were

reconstituted with 100 ll a-MEM (- FBS) at 37�C for 2 h.

During this period, tumour cells were prepared for seeding

by detachment from culture vessels using trypsin treatment.

Detached cells were collected and washed 2x in medium

containing 2% FBS. Cell concentrations were quantified by

a Coulter particle counter (Beckman Coulter Canada,

Mississauga, ON) and then diluted to concentrations of

5.0 9 104 to 5.0 9 105 cells/ml using a-MEM + 2% FBS.

Following rehydration, excess a-MEM was aspirated from

the transwell chambers and then 100 ll of diluted cell

suspension was seeded to the upper wells of each transwell.

The lower well was filled with 600 ll of a-MEM + 10%

FBS. Transwell plates (24-well), with the covering lid

removed, were then placed in a plastic incubator chamber

(Billups-Rothenberg, Del Mar, CA, USA) for either hyp-

oxic exposure or oxic control. Following the specified

period of invasion, Matrigel and non-invaded cells were

scrubbed from the upper surface and invaded cells

(attached to the lower membrane surface) were fixed and

stained (Dif-Qik; Dade Behring, Deerfield, IL, USA).

Membranes to be quantified were removed and perma-

nently mounted on microscope slides. The complete

surface of each membrane was visually scanned with the

aid of an eye-piece indexed grid graticule (Electron

Microscopy Sciences; Hatfield, PA, USA) at 1259 and

individual cells were counted.

Statistical analysis

The nonparametric Kruskal-Wallis test was used to test for

differences in expression of VEGF protein over the oxygen

conditions, followed by individual comparisons between

specific oxygen conditions using the Dunn’s multiple

comparison test. The data for transwell invasion experi-

ments was calculated as an invasion ratio by comparing the

number of cells invaded in each of 6 replicate transwells

per condition to the mean number of cells invading under

oxic conditions. The mean invasion ratios for each of three

independent experiments per oxygen condition were com-

pared to matched oxic control mean invasion ratios using

Student’s t-test.

Results

In vitro hypoxia

The geometry of the multi-well transwell culture dish

requires a relatively large volume of media (600 ll) to wet

the lower surface of the upper well plus a small volume

(100 ll) to hydrate the upper reservoir, resulting in a col-

umn of media 6 mm tall within each well with a relatively

small surface area, *120 mm2 available for gas exchange

with the experimental atmosphere (see diagram e in Fig. 1).

Therefore, to determine the optimal timing of the low

oxygen treatments, we investigated the change in oxygen

partial pressure within the transwell chambers during con-

tinuous flushing of the treatment chamber with defined low-

oxygen containing gas mixtures. Equilibration of the culture

medium pO2 with the defined low oxygen atmosphere was

dependent on the geometry of the culture vessel (Fig. 1).

Exposure of 10 cm round culture dishes to low oxygen

atmospheres resulted in equilibration within 2–4 h but in

the 24-well transwell chambers, the pO2 only reached that

of the experimental low oxygen atmosphere after 14–16 h.

Based on these observations, experiments examining

transwell invasion during hypoxic exposure were performed

for a period of 36 h to ensure that the culture was exposed to

low oxygen conditions for a minimum of 20–22 h.

The response of the two cell lines to hypoxic exposure

was examined through an analysis of soluble VEGF protein

production and expression/stabilization of the HIF1a pro-

tein (Fig. 2). Both cell lines expressed VEGF protein under

oxic control conditions (21% O2) but the HT1080 cell line

expressed higher levels compared to the MDA MB231 cell

line (27 ± 5.4 pg/104 cells vs. 7 ± 1.1 pg/104 cells). MDA

MB231 expressed a significantly larger amount of VEGF at

a pO2 of 2.0% or lower relative to an oxic control, whereas

the increase in VEGF production at 2.0% for HT1080 was

not significant. Increased levels of HIF1a protein occurred
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in both cell lines at oxygen levels as high as 5% O2

(Fig. 2b, d). Decreasing levels of oxygen resulted in a

further increase of HIF1a, with a maximum level observed

at 0.2% O2 in the MDA MB231 cell line and 1% O2 in

HT1080 cell line. In related studies, we have also observed

increased expression of the hypoxia-responsive gene, CA9,

in the HT1080 cell line as oxygen levels decrease from

normoxic conditions to 0.2% O2 (data not shown). Expo-

sure to oxygen concentrations as low as 0.2% O2 did not

have any effect on the cell viability/clonogenicity of either

cell line (see Supplementary Fig. 1).

Transwell invasion under hypoxic conditions

The ability of tumour cells to invade through a Matrigel

layer is dependent on layer thickness and time. In pre-

liminary experiments (data not shown) we established that

100 lg of Matrigel deposited onto the porous membrane

acted as a suitable barrier to the cell lines tested such that

1–10% of the seeded cells could invade in the specified

time period (24–36 h) under oxic conditions. The HT1080

cell line was more invasive than the MDA MB231 cell line,

with approximately 100 in 1,000 seeded cells regularly

invading (10%), whereas only *1% of seeded MDA

MB231 cells possessed invasive ability (data not shown).

Our initial experiments examined invasion through Ma-

trigel layers for 24 h showing 2 to 11-fold enhanced invasion

of MDA MB231 cells under low oxygen conditions

involving gassing with 1% O2 compared to an oxic control

(Table 1). The HT1080 cell line showed invasion under 1%

O2 of 0.7–1.9 fold. However, our oxygen measurements had

demonstrated that the time taken for the Matrigel surface,

where invasion occurs, to equilibrate with the 1% O2 gas

phase was 14 to 16 h. Therefore, to ensure that any effect on

invasion was due to the specific low oxygen condition being

tested, we extended the time of the assay to 36 h, resulting

in [ 50% of the total invasion period corresponding to a

stable and defined low oxygen concentration.

Under low oxygen conditions (B3% O2), invasion of

MDA MB231 cells was moderately increased relative to

the oxic control but showed a parabolic response trend with

a minimum level, similar to the oxic control, at 1–2% O2

(Fig. 3a). Although the overall hypoxic data set showed a

significant increase relative to the oxic control (P \ 0.05),

of the individual oxygen levels only the data at 4% O2 was
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Fig. 1 pO2 levels in the cultures during exposure to defined low

oxygen conditions. (a) A 24-well transwell culture dish exposed to

1.0% O2 under continuous flow. The upper curves are traces obtained

from an Oxylite probe placed at the porous membrane of a transwell

chamber (see Fig. 1e). The lower traces are corresponding measures

of the chamber atmosphere. (3 independent experiments shown) (b)

pO2 traces of cell cultures grown in 10 cm dishes exposed to 1.0% O2

under continuous flow. Simultaneously measured traces of the culture

dish and the chamber atmosphere are shown. (2 independent

experiments shown). (c) Representative transwell pO2 profiles of

independent experiments exposed to continuous flow flushing with

gas mixtures containing 5.0, 1.0 and 0.2% O2 respectively. (d)

Representative 10 cm dish pO2 profiles of independent experiments

exposed to continuous flow flushing with gas mixtures containing 5.0,

1.0 and 0.2% O2 respectively. (e) pO2 in the chamber atmosphere was

measured using an Oxylite 4000 with an individual fibre optic probe

placed in a thin-layer wetted dish and within the culture vessel at the

surface closest to the adherent cell population with additional fibre

optic probes
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significantly increased (P \ 0.05). In the HT1080 cell line,

the invasion pattern under hypoxia showed a similar par-

abolic response but was depressed relative to the oxic

control. At the individual oxygen levels, the data for 1% or

2% O2 was significantly decreased relative to the oxic

control (P \ 0.05) (Fig. 3c).

Transwell invasion following hypoxic exposure

To simulate extravasation in the transwell invasion assay,

we exposed the tumour cell lines (MDA MB231 and

HT1080) to low-oxygen conditions within an environ-

mental chamber and then isolated the cells under oxic

conditions and seeded them to the transwell chambers to

examine invasion under well-oxygenated conditions for a

period of 36 h. The invasive ability of MDA MB231 and

HT1080 cell lines did not show any significant change,

relative to a matched oxic control, under all low oxygen

pre-exposure conditions tested (Fig. 3b–d). The mean

invasion ratio fluctuated between 1.0 and 2.0, with rela-

tively large variability. HT1080 cells demonstrated a

trend towards increasing invasion following exposure to

oxygen levels less than or equal to 2.0%. However, for

the individual oxygen concentrations this was not sig-

nificant compared to the oxic control.

Effect of low oxygen conditions on the activity

of matrix metalloproteinases

MMPs -2 and -9 are believed to be key mediators in

invasion and metastatic progression [40] and have been

reported to be up-regulated by hypoxia. As shown in

Fig. 4a-b, HT1080 cells express MMP-2 in relative

abundance when compared to MDA MB231. Further-

more, HT1080 cells express MMP-2 primarily in the

active form, whereas active MMP-2 was undetectable in

MDA MB231 cells even though a faint zymogen form of

MMP-2 was present. In contrast, MMP-9 levels were

relatively similar between the two cell lines, although

expression of MMP-9 in HT1080 cells was mainly in the

inactive zymogen form, whereas in the MDA MB231

cells, the protein was observed primarily in its active

form. Relative quantification of MMP-2 and -9 active and

total expression in the two cell lines across the low

oxygen condition series is shown in Fig. 4c–f, demon-

strating variable expression across the low oxygen range,

lacking a clear pattern, with the possible exception of

active MMP-9, which showed a parabolic response with a

minima observed at 2–3% O2. However, these changes

were not statistically significant.

Recent studies have suggested a link between the

expression of MMP-14 (MT1-MMP), a membrane-bound

member of the matrix metalloproteinase family, and

metastatic progression [41]. In addition, MMP-14 is

involved in the activation of MMP-2 at the cell surface

through interaction with TIMP-2 [42, 43]. We investi-

gated the regulation of MMP-14 under low oxygen

conditions by analyzing both protein expression and

enzymatic activity (Fig. 5). There was a slight increase in

relative MMP-14 expression in the MDA MB231 cell

culture but this was not apparent in the HT1080 cell line.

The activity of MMP-14 across the range of low oxygen

conditions also showed no clear differences compared to
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Fig. 2 Molecular hypoxic response to 24 h exposure to defined low

oxygen conditions. VEGF protein was quantified from the condi-

tioned medium of cell cultures exposed to low oxygen conditions for

24 h using an enzyme-linked immunoassay kit. (a) MDA MB231

breast carcinoma VEGF protein production and (c) HT1080 fibrosar-

coma VEGF protein. Results are shown as mean +/- standard error

(n = 3). HIF1a expression and stabilization was examined using

immunoblotting of total cellular protein lysates of cell cultures

exposed to low oxygen conditions for 24 h. Total cellular lysates from

an unrelated cell line were used as positive (3 h hypoxic exposure)

and negative (normoxic conditions) controls. (b) MDA MB231 breast

carcinoma cells and (d) HT1080 fibrosarcoma
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the oxic control. However, the overall activity of MMP-

14 in HT1080 cells (6 ng/ml per lg total protein) was

consistently higher than that of MDA MB231 cells (3 ng/

ml per lg total protein).

Discussion

The presence of hypoxia in solid tumours has been iden-

tified as a factor that can affect the metastatic potential of

Table 1 Matrigel transwell invasion under low oxygen conditions (24 h)

Cell Line Triala Oxic (21% O2) Hypoxic (1% O2) Invasion ratioc

Avg. ± S.D.b Median Avg. ± S.D. Median

MDA MB231 1 50 ± 51 13 559 ± 357 442 11

2 1 ± 1 0 812 ± 478 894 –d

3 81 ± 67 56 203 ± 99.4 153 2.5

4 269 ± 129 219 526 ± 261 442 2.0

HT1080 1 1976 ± 791.2 1472 3666 ± 1195 3094 1.9

2 517 ± 228 502 343 ± 96.5 304 0.7

3 1003 ± 235.4 993 1145 ± 454.9 1059 1.1

a n = 7 replicate transwells/condition
b Average number of invaded tumour cells per 5.0 9 104 cells seeded
c Ratio of average hypoxic:oxic invaded cells
d Invasion ratio was not determined due to low number of oxic control invaded cells
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Fig. 3 Matrigel transwell invasion assays. (a, b MDA MB231 breast

carcinoma and c, d HT1080 fibrosarcoma) cells were seeded to the

upper wells of transwell chambers coated with 100 lg Matrigel and

(a, c) exposed to hypoxic conditions (see Figure for % O2) for 36 h or

oxic control conditions (21% O2) or (b, d) treated under low oxygen

conditions (% O2 shown on x-axis) for 24 h and then seeded, under

oxic conditions to the upper wells of the transwell chambers for 36 h.

Following the invasion period, invaded cells were stained and

quantified. Counts of invaded cells were normalized against the mean

of the oxic control for each exposure and are plotted as the

mean + S.E.M. Data is reported from a minimum of three indepen-

dent experiments containing 6 replicates each. Matched control

cultures invading under oxic conditions were prepared for each

experiment and are summarized in the figure by the open bar
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tumour cells [18]. However, although oxygen heterogene-

ity within solid tumours has also been observed, relatively

little is known about the effects of exposure to a range of

oxygen conditions on the invasive potential of tumour

cells. Furthermore, in some of the studies which have

examined the effects of hypoxia on invasion and metasta-

sis, the exact levels of oxygen to which the cells are

exposed are not well controlled. For these reasons we

investigated changes in tumour cell invasion under a range

of oxygen conditions from near anoxia to normal physio-

logical levels. Our use of the in vitro transwell invasion

assay was based on the expectation that the process of

intravasation within an established primary solid tumour

would likely occur under poor oxygen conditions, while the

process of extravasation by previously hypoxic tumour

cells would occur under well-oxygenated conditions.

We made careful measurements of oxygen levels in the

culture environment because efficient oxygen exchange

between gas and liquid phases depends on a number of

factors including liquid depth, differences in oxygen con-

tent, and agitation [44, 45]. The material of the transwell

culture plates is also critical as plastics can contribute to

back-diffusion, acting as an oxygen reservoir and releasing

oxygen into the tissue culture as the media O2 concentra-

tion declines [46, 47]. Our results identified differences in

time taken to achieve low oxygen equilibration depending

on the specific geometry of the tissue culture vessel. In

particular, the transwell chambers, which have a low sur-

face area to volume ratio, achieved equilibration only after

14–16 h, whereas in a tissue culture dish equilibration was

achieved in 2–5 h. To account for this period of equili-

bration we extended our experiments to 36 h of total

invasion time, to provide a period of 20–22 h of stability at

the desired oxygen concentration.

We also demonstrated that the two tumour cell lines

display a biological response to low oxygen conditions. An

analysis of the expression and stabilization of the HIF1a
protein in both cell lines showed a clear increase in the

amount of protein as the oxygen levels declined from

normoxic conditions (21% O2) down to levels of 1–0.2%

O2. VEGF mRNA is up-regulated by low oxygen condi-

tions via increases in mRNA transcription and mRNA

stabilization leading to an increase in protein production

[48–50]. The breast carcinoma cell line (MDA MB231)

increased expression of VEGF protein upon exposure to

low oxygen conditions, whereas the fibrosarcoma cell line

(HT1080) did not demonstrate a significant change in

soluble protein. Maximum induction of VEGF protein was

observed at 2.0% O2, similar to a quantitative study of the

relationship between oxygen levels and VEGF mRNA

production in cervical carcinoma cell lines, where half-

maximal levels of mRNA induction were observed

between 13.0 and 27.0 lM O2, which is approximately

equivalent to 1.5–3.0% O2 [9] Interestingly, both cell lines

examined in the current study have constitutive expression

of VEGF under conditions of abundant oxygen (atmo-

spheric air, 21% O2) suggesting misregulation of VEGF

expression in the two cell lines. The survival of both cell
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lines, as demonstrated by plating efficiency, was unchan-

ged under all conditions tested. Only at very low, near

anoxic conditions, was the cell survival of the HT1080 cell

line reduced by 50%. These findings suggest that both cell

lines can adapt the expression of hypoxia-sensitive mole-

cules enabling the maintenance of homeostatic conditions,

which result in cell survival and growth across a range of

low oxygen conditions.

We did not observe significant differences in invasion

under oxic conditions following low oxygen pre-condi-

tioning for either cell line but our results indicate that

invasive ability across basement membrane matrices under

low oxygen conditions is tumour cell line specific. Very

low oxygen conditions significantly inhibited the invasive

ability of the HT1080 cell line and, for both cell lines, we

observed an interesting parabolic relationship between

oxygen level and invasion with minima at 1–2% O2. In

both cell lines, invasion at 4.0 and 5.0% O2 was increased

relative to the oxic control and this increase was significant

in the MDA MB231 cell line at 4.0% O2.

The differences we observed between the cell lines with

respect to invasion at very low oxygen levels (B2.0% O2)

may be due to differences in hypoxia tolerance. A study of

malignant glioma cell lines showed that prolonged exposure

to low oxygen conditions resulted in marked differences

among the cell lines in their ability to down-regulate oxygen

consumption. Differences between the cell lines were also

identified in the expression of VEGF mRNA following

hypoxic exposure [51]. A further study [52] found differ-

ences in mitochondrial membrane potential and ATP

production between hypoxia-sensitive and hypoxia-tolerant

glioma cell lines. It was suggested that cells which were

able to down-regulate energy consumption were able to

preserve ATP stores and were thus more likely to be

hypoxia-tolerant. By maintaining an energy balance under

hypoxic conditions the cell may be able to carry out energy

dependent processes such as cell movement and invasion,

although low oxygen levels had no effect on plating effi-

ciency in either cell line. Our results also show that chronic

exposure to low oxygen conditions does not permanently

alter invasive ability. The invasive ability of the HT1080

cell line was inhibited under low oxygen conditions but

recovered within a short period of time under oxic condi-

tions to levels at or above that of the oxic control.
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Our results are in contrast to reported findings of

enhanced invasion of MDA MB231 cells during exposure

to 1.0% O2 for 24 h [30], although our initial experiments

did show increased invasion after 24 h at 1% O2 [26,31].

The experimental systems used to expose the cultures to

low oxygen conditions in the previous studies were dif-

ferent than ours and, unfortunately, direct measurements of

the oxygen within the media layer were not performed in

these earlier studies. However, given the long time period

needed for oxygen to decline from normoxic to hypoxic

levels in our transwell system, it is very possible that a

stable period of hypoxic exposure was achieved only for 8–

10 h during a 24 h exposure in the previous studies and the

majority of invasion may have occurred during the period

of relative higher oxygen concentrations.

We also examined the activity of MMPs-2, -9, and -14

(MT1-MMP), key molecules involved in the metastatic

process [53], following exposure to low oxygen conditions.

In the MDA MB231 cells we observed relatively little

change in the expression of MMP-9 or the ratio of acti-

ve:total enzyme. The expression of MMP-14 was variable

across the oxygen range, however any change in activity

was not significant. The expression profiles of MMP-9 and

MMP-14 matrix metalloproteinases did not follow the

patterns observed in the invasion profile of MDA MB231

tumour cells across the oxygen series. In the HT1080 cell

line the ratio of active:total MMP-2 enzyme was relatively

unchanged across the hypoxic range although the quanti-

fication of total enzyme generally decreased as the oxygen

concentration was lowered. The MMP-9 profile demon-

strated a parabolic shape, decreasing in activity to a

minima observed at 3.0% O2 and then increasing as the

oxygen concentration was further lowered. The shape of

this profile was similar to that observed for invasion

although the minima did not match exactly. Whether these

small changes in individual MMP activities can act syn-

ergistically in reducing the invasive ability of the HT1080

cell line as oxygen levels decrease is unclear.

Earlier reports suggested that the activity of MMP-9 was

increased upon exposure of cells to 1% O2 [30] in contrast

to our findings. A more recent publication suggests that an

observed hypoxia-enhanced invasion at 1% O2, of MDA

MB231, was due to changes in cellular localization of

MMP-14 as opposed to increases in mRNA expression or

protein production [31]. We did not observe enhanced

invasion at 1.0% O2, but it is possible that this discrepancy

may be due to the differences between the experimental

systems used to induce low oxygen conditions in the culture

medium. Other groups have reported that they have been

unable to find correlations and/or have found a decrease in

specific MMPs upon hypoxic exposure [54–59].

The observation of repressed tumour cell invasion at low

oxygen conditions with the recovery or increase of

invasion at intermediate oxygen concentrations suggests

that small reductions in oxygen from normal physiological

levels may preferentially lead to the dissemination of

tumour cells. Intra-tumoural oxygen heterogeneity is a

pathological feature of solid tumours and there is increas-

ing evidence of temporal oxygen heterogeneity (often

referred to as acute hypoxia) within solid tumours [2–6].

With temporal oxygen heterogeneity, it is possible that

tumour cells nearer to the imperfect vasculature of a solid

tumour may be exposed to small decreases in oxygen that

would enhance the regulation of invasive processes, lead-

ing to dissemination of tumour cells into the vasculature.

Cells further from the vascular system would be at a dis-

advantage for invasion not only because of the greater

distance to be traversed but also due to exposure to lower

oxygen conditions which could inhibit invasive processes.

In support of this view, in vivo tumour models exposed

to repeated cycles of hypoxic exposure lead to increased

metastatic dissemination [60, 61]. Furthermore, a recent

study by Rofstad et al [62] using two human melanoma

xenograft models, suggested that the acute hypoxic fraction

of cells within an experimental tumour contributes more to

metastatic potential than the chronic hypoxic cell fraction.

The effects of temporal oxygen heterogeneity and its

potential contribution to metastatic dissemination is cur-

rently being addressed in both animal models and cell

culture models. Experimental control of in vitro models

with respect to absolute oxygen level and time of exposure

is needed to clarify the range of oxygen which is most

conducive to metastatic processes and to further elucidate

if temporal fluctuations in oxygen concentrations that occur

within solid tumours can influence invasion differently

from the patterns demonstrated here. Such a study would

require different experimental techniques than those here

since it is not practical to achieve rapid changes in oxygen

concentration in transwell chambers as demonstrated in

Fig. 1.

In summary, we have demonstrated that low oxygen

conditions of an intermediate level below average normal

arterio-venous oxygenation values (*40 mmHg) are most

effective in enabling or enhancing the invasion of tumour

cells through basement membrane matrices (simulating

intravasation) but that prior exposure to different low

oxygen levels had relatively little effect on invasion under

oxic conditions (simulating extravasation). The changes in

invasive ability do not correlate strongly with a change in

any one matrix metalloprotease molecule. An important

observation is the finding that the invasive capacity of the

HT1080 cell declines at low oxygen levels. Together with

the observation that intermediate oxygen levels show a

small enhancement in invasion, this result suggests that

hypoxic cell populations relatively closer to the vasculature

may represent the primary source of metastatic cells and
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may be a critical target population for successful disease

treatment.
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