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Abstract Metastatic lesions are the leading cause of

death among cancer patients. These lesions usually origi-

nate from clonal proliferation of single tumor cells

dispersed from the primary tumor into the circulation

which finally arrest in the capillary bed of distant organs.

The microenvironment within the circulation of potential

metastatic target organs provides a variety of pro- and anti-

metastatic stimuli regulating the onset of organ colonisa-

tion by metastatic tumor cells. Mechanical shear stress,

anoikis and cell mediated cytotoxicity within the micro-

circulation probably clear most circulating tumor cells.

Adhesion, and eventually extravasation, are essential initial

interactions of circulating tumor cells with distant organs

and can provide escape from the cytotoxic environment

within the circulation. Adhesion to the capillary wall is

mostly controlled by the organ-specific availability of

adhesion molecules on tumor cells, the endothelium, and

the composition of the underlying extracellular matrix. The

availability of pro-adhesive and pro-migratory paracrine

signals provided by the organ specific microenvironment

can further initiate the onset of metastatic organ colonisa-

tion. Tumor cell and microenvironment factors regulating

survival within the microcirculation, adhesion and extrav-

asation of tumor cells are highlighted in the review.
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Introduction

Most patients dying from solid organ cancer are victims of

metastatic cancer growth rather than local tumor pro-

gression. Lymph node and even more distant organ

metastasis is the most relevant prognostic factor for

patients with epithelial derived tumors and usually in other

tumor entities. For example, UICC stage II colon cancer

patients with locally limited tumor progression have a

cancer-specific 5-year survival rate of *75% or more

while the cancer-specific 5-year survival decreases for

UICC stage III patients with regional lymph-node metas-

tasis to *45% and for patients in UICC stage IV with

distant organ metastasis to *13% [1]. Similarly, although

breast cancer is a much more heterogeneous disease the

metastatic spread has the most important impact on

patients’ outcome [2]. The importance of hematogenous

dissemination is also suggested by data showing that

tumor cells in the blood or the bone marrow can have a

strong prognostic impact [3].

During the progression of cancer disease, the colonisa-

tion of distant organs by circulating tumor cells marks the

turning point from a localized, potentially curable disease,

to a systemic, usually incurable disorder. At the same time,

the growth of cancer metastasis appears not to be a matter

of chance. Tumor cells usually show a remarkable prefer-

ence to choose certain tissues and organs for formation of

secondary tumor nodes [4]. For example, bones are the

preferred metastatic sites for breast, certain lung and

prostate cancer, but rarely a target for colorectal cancer.

The adrenals are a typical metastatic target for small cell

lung cancer but rarely affected by kidney cancer [5]. This

organ distribution indicates that metastasis formation is a

highly orchestrated, multi-step process rather than random

proliferation at distant sites.
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The whole process has been outlined in the literature as

the ‘metastatic cascade’, a series of well defined interre-

lated steps leading to the formation of a clinically overt

metastatic lesion. All of these steps must be completed, and

failure of any step usually results in metastatic insuffi-

ciency [6]. Although most models or pathways of

metastasis formation, respectively, use more or less linear

follow-up of the cascade [7], this tumor progression should

be considered as a network of mostly physiological pro-

cesses occurring in a pathologic context. This network’s

control mechanisms of feedback loops and regulated steps

left the physiological range of function. Some of these

aspects will be discussed below. As a consequence dis-

section of single steps or mechanisms of metastatic

progress, respectively, has to consider this problem and

limits their applicability for individual human beı́ngs,

which is a known problem in the clinical situation.

The metastatic cascade is likely initiated by epithelial-

mesenchymal transition (EMT) that enables stationary,

polarized epithelial cells to migrate, invade surrounding

tissues and eventually detach from neighbouring cells and

their microenvironment [8]. Although the molecular bases

of EMT have not been completely elucidated, several

interconnected transduction pathways and a number of

signalling molecules potentially involved have been iden-

tified. These include growth factors, receptor tyrosine

kinases, Ras and other small GTPases, Src, beta-catenin

and integrins, which are frequently or exclusively, related

to cell adhesion and migration processes. Most of these

pathways converge on the down-regulation of the epithelial

molecule E-cadherin, an event critical in tumour invasion

and a ‘master’ programmer of EMT [9–11]. This local

invasion is usually followed by intravasation into blood

and/or lymphatic vessels and dispersion of the tumor cells

into the systemic circulation. Survival within the circula-

tion and resistance to anoikis of single, circulating tumor

cells or small cell clusters, enable the arrest of these cells

within the microcirculation of potential metastatic target

organs and eventually extravasation into their parenchyma

[6, 13]. Tumor cells may then either be cleared by local

defence mechanisms [12] or they escape these host defence

mechanisms, sometimes entering a state of dormancy.

Subsequently, surviving tumor cells can also undergo clo-

nal proliferation and initiation of neo-angiogenesis to form

clinically overt metastatic lesions [6, 13].

At least since James Ewing [14] challenged Stephen

Paget’s [15] ‘seed-and-soil’ concept in the early 1930s, the

mechanisms of tumor cell arrest in distant organs is a

matter of debate. Indeed, cancer cells dispersed from colo-

rectal cancers, for example, draining via the potal vein into

the liver likely give rise to liver metastases, later followed

by lung metastases. Futhermore, examining autopsy data,

Weiss et al. found an association of metastatic incidence

and organ blood flow consistent with the mechanical

hypothesis of metastatic pattern [16]. However, both

hypotheses are not mutually exclusive. Tumor type specific

distribution of metastatic growth cannot solely be

explained by anatomical considerations of blood supply in

most cases. An extraordinary example for the organ spe-

cific metastatic capacity comes from observations in

women with peritoneal carcinomatosis from ovarian can-

cer, whose ascites has been surgically drained into the

venous circulation. Although viable tumor cells gained

access to the systemic circulation, autopsy studies revealed

that lung metastasis (the first capillary bed the drained cells

reached) were found only in a minority of patients. Fur-

thermore, tumor cell deposits in the lung did not often

develop into clinically relevant lung metastases [17, 18].

Virtually any step of the metastatic cascade, is poten-

tially regulated in an organ specific manner. Some of these

pathways may provide redundant routes for successful

metastasis formation. From the basis of the traditional

‘seed and soil’ hypothesis, several concepts were devel-

oped to emphasize the organ specific character of different

steps of the metastatic progression. The ‘adhesion theory’

stresses the role of organ specific adhesive interactions of

tumor cells in the capillary bed of potential target organs.

In analogy to the homing of leukocytes into specific organs

and sites of inflammation by chemotactic migration, the

evolution of the ‘migration’ or ‘chemotaxis theory’ was

triggered by the discovery of chemokine receptor expres-

sion in tumor cells and their role for organ specific

metastases formation [19]. Furthermore, the ‘‘growth factor

theory’’ emphasises the organ specific availability of

growth factors and their receptors supporting survival and

proliferation of metastatic tumor cells colonizing distant

organs.

We will further highlight the tumor cell–host organ

interface with respect to cell adhesion and extravasation as

very early, ‘kick-off’ events for the colonization of distant

organs by circulating and metastasizing tumor cells.

Shear stress and other mechanical forces in the

circulation

The circulation itself represents a highly toxic environment

for disseminating tumor cells. Mechanical destruction of

circulating tumor cells is the first line of defence in the host

microenvironment acting against hematogenous cancer

spread. Although even small tumors can release a large

number of tumor cells into the circulation [20, 21] the vast

majority of tumor cells are rapidly cleared from the cir-

culation. Cancer cells circulating in the blood are subjected

to intense mechanical stress by shear forces caused by

blood flow. Especially in narrow capillaries required
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sphere-to-cylinder shape-transformation is lethal to a

majority of tumor cells [22–25]. The same holds true for

the deformation within the microvasculature of contracting

skeletal and heart muscle [26, 27].

These shear forces acting on tumor cells are very intense

in small capillaries. At the same time this deformation of

circulating cells within narrow capillaries enables intense

contacts of the tumor cell surface’s adhesion molecules

with potential ligands at the capillary walls and tumor cell

adhesion may be initiated. This is caused by enlarged

contacting surface areas of deformed cells resulting in

increased availability of cell adhesion molecules and

longer time for the establishment of adhesive bonds. In

addition, close contact between these cell adhesion mole-

cules and their potential ligands at the microvessel surface

enable binding of adhesion molecules with shorter extra-

cellular domains, such as integrins with higher mechanical

resistance, that also supports the formation of initial and/or

stable interactions [28]. This is supported by the observa-

tion, that microtubules and actin filaments are involved in

the regulation of initial adhesive steps during distant

metastasis formation. Actin disruption with resulting

enhanced deformability led to an increase in the numbers

of adherent tumor cells similar to lymphocytes and

monocytes [29, 30]. In contrast, disruption of microtubules

with increased cellular stiffness inhibited early adhesive

interactions between circulating tumor cells and host organ

microvasculature [31].

Shear stress, however, is not only a potentially lethal

environmental condition for tumor cells. Shear forces and

tension alone can induce functional reactions in circulating

tumor cells, but also in leukocytes, platelets, or endothelial

cells (EC) [32, 33]. For example, these mechanical forces

can activate intracellular signalling cascades, such as focal

adhesion kinase [31, 34]. Moreover, the organization and

structure of cytoskeletal components, such as actin, can

also be modified by external forces [35]. Since integrins

appear to be directly involved in early steps of metastasis

formation [41, 42], cell signalling and regulatory processes

that modulate their affinity and/or avidity may therefore

influence metastatic tumor cell adhesion or migration into

host organs at ECM components [36].

Therefore, the tumor cells’ balance between mechanical

destruction and adhesion initiation by biophysical forces

appears to be a regulatory mechanism for hematogenous

cancer spread.

The role of tumor cell adhesion and migration for

metastasis formation

Epithelial and mesenchymal cancer cells are usually

adhesion dependent and their occurrence within the blood

circulation can initiate anoikis, a special form of apoptosis

due to the lack of adhesion. Therefore, anoikis limits the

available ‘circulation time’ of cancer cells and their

resistance to this process can act as an additional rate

limiting factor within the metastatic cascade. The most

effective way for a circulating tumor cell to escape this

initiation of cell death is the establishment of adhesive

interactions within metastatic target organs [37]. Impor-

tantly, tumor cell adhesion appears to be limited to the

capillary bed of potential metastatic target organs with the

suitable microenvironment for their survival whereas their

adhesion to large vessel walls seems to be negligible in

vivo (Fig. 1).

Fig. 1 The circulation provides a cytotoxic environment for metas-

tasising tumor cells (TC). Circulating, non-adherent tumor cells may

be destroyed by mechanical forces within the circulation or may

undergo anoikis due to the lack of adhesive interactions. Platelets (Pl)

and fibrin (Fb) associate with tumor cells and protect them against the

attack of natural killer cells (NK) and may also facilitate adhesion to

the endothelium. TC adhesion to the microvasculature may be

initiated by adhesive interactions with endothelial cells (EC) mediated

by sialylated selectin ligands, for instance, but can also take place by

integrin mediated adhesion to the extracellular matrix (ECM), that

may be directly accessible due to a fenestrated endothelial lining (e.g.

liver) or can be exposed after TC induced retraction of EC. EC and

ECM present chemotactic chemokines (C), inducing migration and

extravasation of TC
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Very recent as well as historic work is still challenging

the concept of specific tumor cell adhesion at the capillary

system of distant metastasis target organs. Especially

intravital fluorescence microscopy revealed conflicting

results with respect to the underlying mechanisms of tumor

cell arrest within the capillary bed of distant host organs.

For example, mechanical arrest of rat colon carcinoma

cells by size restriction within the liver was described using

intra-vital fluorescence microscopy by different groups in

murine models [38–40]. Using similar systems, other lab-

oratories found specific tumor cell adhesion to capillary

walls and particularly defined involved sets of adhesion

molecules [41, 42]. For example, biological behaviour of

fluorescence labelled colon carcinoma cells entering the

hepatic microcirculation has been monitored by in vivo

microscopy of the liver after injection into rats. Single

tumor cells entering the sinusoids were found passing the

microcirculation without any sign of mechanical arrest, but

other tumor cells were able to establish stable adhesions at

the sinusoidal capillary wall leaving a remaining perfused

vessel lumen [43]. Similarly, integrin mediated adhesion of

human HT1080 sarcoma cells to laminin-5, a component of

the basement membrane underlining pulmonary endothe-

lial cells [44], demonstrated specific interactions of these

cells with pulmonary microvessels not requiring vessel

occlusion [45].

In contrast, using different technical applications of

intravital microscopy, various studies demonstrated initial

arrest of melanoma, CHO, and colon carcinoma cells that

appeared to be due to size restriction, based on measure-

ments of cell and vessel diameters [38, 46, 47].

Since these investigations rely on the relationship

between diameters of the microvessels and tumor cells,

their deformability and biophysical factors, the choice of

model systems may have severe impact on the observed

cellular behaviour. For example, site of injection, number

of tumor cells per blood volume, investigated animal spe-

cies (rat, mouse, rabbit) compared to the origin of the

tumor cells (human, rat, murine) and some technical

aspects of the microscopic techniques can also severely

impact intravital observations of circulating tumor cells.

Tumor cell interaction with blood components

Morphologic observations showed tumor cells closely

associated with platelets arrested in the microvasculature

and much evidence indicates that circulating tumor cells

can also interact with leucocytes and/or the coagulation

system. Early work from the 1970s and 1980s showed that

platelet–tumor cell interaction can facilitate metastatic

spread in vivo [48]. For example, genetically induced

platelet dysfunction impaired experimental metastasis for-

mation in a syngenic mouse model using Lewis lung

carcinoma and B16-BL6 melanoma cells [49].

Specific adhesive systems seem to provide selective

mechanisms for these interactions. The altered surface

glycosylation is a common feature of carcinoma cells and

notably in epithelial cancer cells with high expression of

sialyl Lewisa/x as selectin ligands has been associated with

poor prognosis [50, 51] suggesting a potential role of these

cell adhesion molecules in the metastatic process. The

adhesion of platelets and tumor cells seems to be mainly

mediated by P-selectin and sialyl Lewisa/x on the tumor

cells’ surface, but other non-mucin ligands. Glycoproteins

and integrin aIIbb3 (GpIIb/IIIa) may also be involved

[52, 53, 55]. While inhibition of P-selectin mediated

adhesion of tumor cells and platelets impaired metastasis

formation of syngenic MC-38 colon and Lewis lung car-

cinoma cells in a mouse model [46, 47] their adhesive

interactions are not limited to these direct contacts.

The aggregation of platelets around tumor cells can also

involve thrombin and fibrin. For example, addition of

thrombin and activated platelets can stimulate adhesion of

melanoma cells in mice with PAR-4 deficient platelets.

Their platelets are usually unable to respond to thrombin

resulting in a reduced ability to support melanoma metas-

tasis [54]. Furthermore, the inhibition of platelet aggregation

using heparin that potently inhibits P-selectin, or using the

GpIIb/IIIa antagonist XV454 [55] can impair experimental

metastatic spread of tumor cells. However, clinical trials

using the anticoagulant Warfarin acting in a different,

platelet independent way failed to improve patients’ out-

come. Interestingly in experimental settings platelet

inhibition only reduced the number of metastatic lesions but

did not affect organ distribution or size of the metastatic foci.

Moreover, the anti-metastatic effect of platelet inhibition

using heparin was limited to the initial 5 h after tumor cell

inoculation [53]. This indicated that platelets are able to

interfere with early events of organ colonization [46].

Activated platelets in concert with thrombin can also

enhance melanoma tumor cell adhesion to EC and suben-

dothelial matrix components like fibronectin and

vitronectin [56, 57]. There is evidence that platelet derived

12(S)-HETE, a lipoxygenase metabolite of arachidonic

acid, may promote tumor cell extravasation by induction of

enhanced EC retraction, a prerequisite for tumor cell

extravasation and escape from the toxic intravascular

environment [58].

The role of platelets in the metastatic network, however,

is not limited to proadhesive processes. A very effective

innate defence mechanism of potential metastatic host

organs against their colonization are Natural Killer (NK)

cells that can effectively clear tumor cells arrested in

capillaries by lysis following close physical contact [59]
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(see below). Aggregating platelets and fibrin meshworks

can form a potent shield around metastasizing tumor cells

that seems to prevent this contact with NK cells and,

therefore, early clearance of the tumor cells within the

microvasculature of host organs [46, 60].

For arrest in the capillary bed of target organs tumor

cells can also ‘hijack’ polymorphnuclear neutrophils

(PMNs) to enhance their metastatic capacity. Many tumor

cells express inter-cellular adhesion molecule-1 (ICAM-1)

to a certain extent enabling them to adhere to PMNs during

their presence in the blood circulation. In vitro this het-

erotypic cell adhesion promoted tumor cell arrest to EC due

to indirect recruitment of PMNs’ adhesion molecule rep-

ertoire. For example, C8161 melanoma cells, deficient of

sLeX or other sialylated glycoproteins, express ICAM-1.

Using heterotypic adhesion via ICAM-1 and b2-integrins

these cells can recruit PMNs’ E-selectin ligands for indirect

adhesion to ECs [60–62]. Additionally, co-cultured PMNs

also promoted transendothelial migration of tumor cells

In vitro [63], a process influenced by shear forces of fluid

flow as well [62]. Furthermore, human LS180 colon car-

cinoma cells express mucin-type sialylated proteins

enabling heterotypic adhesion to ECs, platelets and leu-

kocytes via E-, P- and L-selectins, respectively [64, 65].

P-selectin and L-selectin deficient mice were less suscep-

tible to experimental metastasis from LS180 colon

carcinoma cells than wild-type mice [53].

Natural killer cells (NK) and Kupffer cells (KC) in the

liver

Discovered in rat liver in the 1970s [66], natural killer cells

(Pit cells) have proven to lyse many types of tumor cells

in vitro and to reduce metastasis formation in vivo. NK

cells are found in the liver, blood and bone marrow. Upon

challenge by melanoma cells, NK cells have been found to

redistribute to liver and lung. After tumor cell injection an

80% increase in the number of NK cells in the lung was

observed within 60 min that normalized after 210 min.

[67]. Similar results with a somewhat longer time interval

were reported for liver NK cells upon colon cancer chal-

lenge [68]. NK cells obviously act through different

pathways to eliminate tumor cells in host organs. They

were shown to induce apoptosis in rat colon carcinoma

cells by the perforin/granzyme pathway following granule

exocytosis [69, 70] or the FAS/FAS-L pathway [71] in

vitro within a few hours. But recently also perforin and

interferon-gamma independent elimination of melanoma

cells was demonstrated in vivo [67]. It has been known for

a while, that NK cell activity can reduce liver and lung

metastasis from melanoma and Lewis lung carcinoma cells

in mice by acting during extravasation and/or the early

post-extravasation period [72]. For example, Timmers

et al. [12] showed that Pit cell activity cleared the majority

of intravascularly located colon carcinoma cells reaching

the liver within 6 h. Grundy et al. [67] described the

elimination of the majority of injected cells in mice lungs

in vivo within the initial 60 min. at which most NK cells

were present within the lungs. In these, and in other studies

[73, 74], NK cell elimination was associated with increased

metastases formation.

Kupffer cells (KC), liver residing macrophages located

within the sinusoids, were also observed in close contact

with NK cells and tumor cells [12]. They also exhibit

efficient cytolytic activity against tumor cells in vitro

[75, 76], but are also an important sources of chemotactic

mediators for tumor cell extravasation (see below). For

example, KC depletion resulted in reduced metastasis

formation in the liver in a syngenic murine colon carci-

noma model [77].

NK cells and KC seem to act synergistically in this first

line defence mechanism. The contribution of the single cell

population to tumor cell elimination seems to be target

dependent [12, 73]. On the other side, these cells can be

utilized by circulating tumor cells for initial steps of

metastasis formation pointing to a bivalent role of KC and

NK cells.

Tumor cell–endothelial cell interactions

Initial arrest and attachment of circulating tumor cells in

the secondary organs are believed to be crucial events for

hematogenous metastasis, but the actual processes under

living conditions remain a matter of debate. The adhesion

of microvascular ECs and circulating tumor cells repre-

sents an initiating event of organ colonisation. As blood

vessels are generally lined with endothelial cells, circulat-

ing tumor cells, similar to leukocytes, can utilize

endothelial cell specific adhesion molecules, such as

selectins or intercellular adhesion molecules (ICAM’s), to

interact with these cells before they touch the underlying

basement membrane in the further course of extravasation.

For example, the expression of ICAM-1 on pulmonary

endothelial cells after stimulus and subsequent binding of

neutrophils is a first step leading to lung injury. A similar

process may dictate the binding of tumor cells to the pul-

monary endothelium during metastasis formation [78].

Hence, also endothelial cell surface molecules may play a

role in organ-specific settlement of tumor cells [36]. For

example, inhibition of tumor cell adhesion to endothelial

cells by anti-TF (Thomson–Friedenreich factor) resulted in

increased survival in a mouse model for spontaneous breast

cancer metastases without impairing tumor cell prolifera-

tion [79].
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Real-time intravital microscopy analysis of circulating

tumor cells revealed a very rapid arrest in sinusoidal ves-

sels near terminal portal venules within 0.4 s after cell

injection, but in contrast to leucocytes, no evidence of a

‘‘rolling’’-like movement along EC surfaces was observed

for various tumor entities [43, 80]. In addition, other

authors reported that adhesion of colon cancer cells to

sinusoidal endothelial cells of the liver was never observed.

Instead, ECs retracted rapidly and interactions were

observed only between cancer cells and hepatocytes

[40, 81]. Microscopic studies revealed trans-endothelial

tumor cell projections indicating interactions of these cells

with underlining extracellular matrix. Furthermore, tumor

cells can induce apoptosis of endothelial cells, but also

increase their E-selectin surface expression, in turn, facil-

itating further tumor cell adhesion to the endothelium [82].

These functional in vivo studies demonstrate that adhesive

interactions of tumor cells and ECs likely initiate organ

colonisation, but have a more transient character. There are

obviously not morphologic correlations for these func-

tional, transient events. In addition, several reports

indicated that tumor cells can induce production of cyto-

toxic nitric oxide (NO) by endothelial cells and thereby

functioning as a host organ defence mechanism [83].

The interactions between circulating tumor cells and ECs

are influenced by many other factors that are beyond the

scope of this review. The organ specific distribution and

characteristics of the latter cells, however, are undoubted

determinants or, at least, important cofactors for the suc-

cessful colonization of distant host organs during metastasis

formation [84].

Tumor cell–matrix interactions

Interactions of cells, both tumor cells and host tissue cells,

with the extracellular matrix (ECM) play a pivotal role in

many of the aforementioned phenomena of tumor pro-

gression, such as anchorage-(in)dependent growth, any step

of the metastatic cascade/network and angiogenesis [85].

Cellular contacts with the ECM are mediated via various

cell adhesion molecules [86], among which are integrins,

members of the immunoglobulin superfamily, cadherins

[87], and membrane-bound proteoglycans, such as synde-

cans and glypicans [88].

Besides quantitative modulation of the expression of a

number of cell adhesion molecules, qualitative alterations

of their activity and affinity can provide oncogenic mech-

anisms for the aquisition of aggressive (metastatic)

phenotypes and prediction of the metastatic pattern [89].

Integrin-mediated interactions of tumor cells with ECM

components appear to be among the most important

determinants for organ-specificity of the metastatic process

and are sometimes referred to act as oncogenes or tumor

suppressor genes [90, 91]. The expression of various inte-

grins is altered on tumor cells compared to normal tissue

cells [92]. However, it is not clear whether this ‘‘integrin

switch’’ in primary tumor cells is a consequence or a cause

of malignant transformation. Nevertheless, several experi-

mental data corroborate the view, that certain integrins,

such as a5b1 [93], indeed may change the growth behav-

iour, neoangiogenesis and anchorage independent survival

(anoikis) of normal cells and therefore act as oncogenes or

tumor suppressor genes. Some of these transformed func-

tions are directly or indirectly related to the metastatic

process. However, none of the integrins is currently con-

sidered as a metastasis supressor gene in contrast to the cell

adhesion molecules E-cadherin that is involved in EC

interactions (see below) [94].

One way in, which integrins interfere with metastasis, is

their regulatory effect for tumor cell motility. For example,

the integrins a2b1 and a3b1 seem to play a role in onco-

genic transformation and metatasis formation [95, 96].

Contradictory results about their involvement may be

explained by the dual role of integrins with impaired cell

adhesion at the primary site and requirement of new ECM–

tumor cell interactions for colonization of distant organs.

Furthermore, integrins allow tumor cells to settle in tissues

with an ECM composition different to their home tissue

[97, 98].

Integrins not only transmit signals from the ECM into

the cells and vice versa, but also provide important

anchorage points for the cells. They are the basis for static

cell adhesion, contraction of the pericellular ECM and cell

migration [99]. Primary tumors can scatter single cells as

well as cell clusters [20], that also may dissociate under

flow physiologic flow [100]—a condition that can influence

their ability and mode of cell motility. As opposed to the

mostly integrin-mediated fibroblast-type of migration with

formation of filopodia and lamellipodia, tumor cells can

also migrate independently of integrins, resulting in an

amoeboid type of migration [101]. Similar to the protozoic

amoeba, these cells migrate through the meshwork of

ECM-molecules, without establishing firm adhesions or

getting in close contact to them [102]. However, the role

and extent of amoeboid motility has been investigated for

primary tumor progression in skin chambers and in vitro

[103], but not in metastatic target organs.

As the liver sinusoids contain fenestrated endothelial

layers circulating tumor cells may directly contact the

ECM of the Dissés space, a potential mechanisms for liver

tropism for metastatic colonization by many tumor entities

[104]. Liver metastasis formation may therefore be possi-

ble by direct integrin-mediated interactions of tumor cells

with the stromal liver ECM [41, 42]. For example, inves-

tigating adhesive and invasive interactions of circulating
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human colon carcinoma cells within the hepatic micro-

vasculature by intravital fluorescence microscopy our

group could show that their adhesion within the liver

sinusoids appears to be mediated not only by the selectin

ligand sialyl-Lewisa (sLea) but also by the integrins a6b1

and a6b4 [41]. Furthermore, avb5 and avb6 seem to be of

paramount importance for this metastatic tumor cell

adhesion [42]. In contrast, for the subsequent extravasation

and invasive migration into the liver parenchyma, the a2b1

integrin, but also the integrins a1b1 and a6b4, appear to be

necessary, whereas inhibition of av-integrins did not affect

this step of metastasis within the liver [41, 42].

For CHO cells avb3 integrins may function to promote

extravasation in the liver through a process possibly med-

iated by vitronectin produced by this organ [105].

Melanoma cells seem to prefer avb3 integrin-mediated cell

adhesion when colonizing lymph nodes [106] Mediating

adhesion and migration on ECM components of the bone,

this integrin may also govern the metastatic colonization of

bones as a specific target for metastases of breast and

prostate carcinoma [107–109].

Not only tumor cells have an altered expression of cell

adhesion molecules, but also the stromal ECM of meta-

static sites usually differs from the one surrounding the

primary tumor and that of healthy host organs. Corre-

sponding to the specific expression of binding molecules at

tumor cell surfaces the composition of ECM components in

different potential host organs can determine the avail-

ability of adhesive interactions as prerequisites for

metastatic colonization. For example, various types of the

collagen family, different laminins, fibronectin and vitro-

nectin provide adhesive ligands in an organ-specific matter

[88, 110]. Additionally, soluble matrix proteins, such as

osteopontin [111, 112], hyaluronectin [113] or sialoprotein

[114], among others, can also participate in these adhesive

interactions. Additionally, the stroma contains a variety of

paracrine factors, such as growth factors, cytokines and

hormones, many of which are associated with ECM mol-

ecules and are released from their storage sites by highly

regulated cleavages of the ECM molecules that can be

initiated by metastasizing tumor cells. Both the growth

factors and the ECM components which regulate their

availability result in a very specific microenvironment for

every tissue. Thus, not only haptotactic but also chemo-

tactic cues may account for the tissue-specific metastasis

formation. For example, the bone marrow stroma-derived

ECM molecule osteonectin acts chemotactically on breast

and prostate cancer cells, both of which commonly

metastasize in bone, but is not chemotactically functional

on tumor cells which do not colonize bones [115].

In the liver, fibronectin and type IV collagen appear to

provide the matrix for initial tumor cell arrest, whereas

type I collagen that branches from the space of Dissé

between hepatocytes in the liver parenchyma seems to act

as guide for colon and hepatocellular carcinoma cell

extravasation (unpublished data). In contrast, for early

arrest of HT1080 cells in the pulmonary vasculature

interactions of a3b1 integrins with laminin-5 in exposed

basal membranes can provide both a molecular and struc-

tural basis for cell arrest during pulmonary metastasis

[116].

A hallmark of malignant tumor cells is their ability to

penetrate tissue barriers including distant organ sites which

are otherwise cell-impermeable, especially the basement

membrane. However, although differences between various

organs may be related to metastatic patterns these pro-

cesses are not specific for secondary tumor colonization.

The role of various proteases for invasive phenotypes is

beyond the scope of this review and reviewed elsewhere

[117, 118].

Chemokines regulate tumor cell ‘‘homing’’to metastatic

sites

Chemokines are small, pro-inflammatory cytokines that are

involved in a variety of immune reactions including

infection, inflammation, and tissue repair [119]. In addi-

tion, they play a significant role in trafficking of several

cell types during embryogenesis [120]. First data on che-

mokine receptor expression on epithelial cancer cells came

from Youngs et al. [121] when they initially described

chemotactic response of human breast cancer cells to a

variety of chemokines and from Müller et al. [19] when

this group first demonstrated in vivo that the functional

expression of the chemokine receptors CXCR4 and CCR7

governed experimental breast cancer metastasis to lung and

lymph nodes. For example, human MDA-MB 231 breast

cancer cells respond to the CXCR4-ligand CXCL12 (SDF-

1a) by directed migration (chemotaxis) and this ligand is

highly expressed in typical breast cancer metastatic sites

like lung, liver, and lymph nodes. Subsequently CXCR4

revealed to be the most prominent chemokine receptor on

solid cancer cells but other receptors, such as CCR6,

CCR7, or CXCR3, have also been associated with the

organ selectivity of cancer metastasis formation in different

models and clinical observations [122].

Chemokines can exhibit multiple actions on tumor cells.

Via expression of their receptors cancer cells can mimic, in

part, lymphocyte behaviour [123, 124]. For example,

CXCR4 has been demonstrated to be relevant for the

outgrowth of syngenic CT26 colon carcinoma microme-

tastases rather than the colonization of the mouse liver

[125]. In contrast, Cardones et al. [126] showed that

CXCR4 inhibition can impair lung metastasis formation of

melanoma cells only when administered in the early phase
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of organ colonization. In a similar way, the colonization of

the liver by mouse plasmocytoma cells appears to be reg-

ulated by the chemokine receptor CCR6 [127].

Upon chemokine stimulation small cell lung cancer cells

(SCLC) exhibit facilitated adhesion to bone marrow stoma

cells by integrin activation, chemotaxis and matrix

invasion [124]. For example, CXCL10 significantly

up-regulated invasion-related properties in colon carci-

noma cells. This chemokine promoted MMP-9 expression

and induced cell adhesion to and migration at laminin-1

[122]. In breast cancer cells activation of CXCR4 resulted

in phosphorylation of focal adhesion kinase (FAK) and

RAFTK/PyK2, key signalling proteins that interact with

Src and PI3-kinase during cell adhesion and migration,

among others. These signalling events can result in

increased adhesion to endothelial cells or matrix compo-

nents, such as fibronectin, and they can mediate tumor cell

invasion via secretion of degradative enzymes, such as

MMP-2 and MMP-9 [128, 129].

In metastatic target organs chemokines are presented in

various ways with usually organ specific patterns of ligand

availability. Organ specific ECs and tissue related macro-

phages, such as Kupffer cells in the liver, appear to be the

most important sources of the chemokines that can mediate

metastasis formation within various organs. For example,

bone marrow stroma cells are dominant sources of CX

CL12 that mediates integrin activation, adhesion and

migration of various tumor cells through bone marrow

endothelium [124, 130]. Lymphatic endothelial cells that

express CCL21 as ligand for the chemokine receptor CCR7

seem to be responsible for metastasis formation of mouse

melanoma cells to regional lymph nodes after injection into

the footpad [131]. In addition to endothelial cells lining the

capillary wall of target organs, chemokines can also be

presented to circulating tumor cells by extracellular matrix

components, such as fibronectin, where these ligands can

be immobilized comparable to other paracrine factors (e.g.

growth factors). At least in T-cells, this type of chemokine

presentation induces cell polarization and migration events

even without the establishment of a concentration gradient

[132]; similar mechanisms can be also assumed for tumor

cells.

Conclusion

The adhesive interactions between metastasizing tumor

cells and potential target organs have to be considered as

important and rate-limiting parts of the tumor progression

processes that finally result in the formation of distant

metastases. This interface is involved in a number of var-

ious steps acting in a concert and mostly relying on each

other. Therefore, we suggest to consider the metastatic

process more as a network than a straight cascade. The

intense effort to understand this network has brought some

clinically relevant novelties, such as anti-integrin treatment

[133] or chemokine targetting [134], among others. The

complexity and interrelationships between the various

aspects of the metastatic process, however, are still only

partially understood and may require improvements of the

models used for their investigation.
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theýre not just for matrix anymore. Curr Opin Cell Biol 13:534–540

119. Mackay CR (2001) Chemokines: immunology’s high impact

factors. Nat Immunol 2:95–101

120. Schier AF (2003) Chemokine signaling: rules of attraction. Curr

Biol 13:R192–R194

121. Youngs SJ, Ali SA, Taub DD et al (1997) Chemokines induce

migrational responses in human breast carcinoma cell lines. Int J

Cancer 71:257–266

122. Zipin-Roitman A, Meshel T, Sagi-Assif O et al (2007) CXCL10

promotes invasion-related properties in human colorectal car-

cinoma cells. Cancer Res 67:3396–3405

123. Burger JA, Burger M, Kipps TJ (1999) Chronic lymphocytic

leukemia B cells express functional CXCR4 chemokine recep-

tors that mediate spontaneous migration beneath bone marrow

stromal cells. Blood 94:3658–3667

124. Burger M, Glodek A, Hartmann T et al (2003) Functional

expression of CXCR4 (CD184) on small-cell lung cancer cells

mediates migration, integrin activation, and adhesion to stromal

cells. Oncogene 22:8093–8101

125. Zeelenberg IS, Ruuls-Van Stalle L, Roos E (2003) The che-

mokine receptor CXCR4 is required for outgrowth of colon

carcinoma micrometastases. Cancer Res 63:3833–3839

126. Cardones AR, Murakami T, Hwang ST (2003) CXCR4 enhan-

ces adhesion of B16 tumor cells to endothelial cells In vitro and

in vivo via beta(1) integrin. Cancer Res 63:6751–6757

127. Dellacasagrande J, Schreurs OJ, Hofgaard PO et al (2003) Liver

metastasis of cancer facilitated by chemokine receptor CCR6.

Scand J Immunol 57:534–544

128. Kucia M, Jankowski K, Reca R et al (2004) CXCR4-SDF-1

signalling, locomotion, chemotaxis and adhesion. J Mol Histol

35:233–245

129. Fernandis AZ, Prasad A, Band H et al (2004) Regulation of

CXCR4-mediated chemotaxis and chemoinvasion of breast

cancer cells. Oncogene 23:157–167

130. Wang J, Loberg R, Taichman RS (2006) The pivotal role of

CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer

Metastasis Rev 25:573–587

131. Wiley HE, Gonzalez EB, Maki W et al (2001) Expression of CC

chemokine receptor-7 and regional lymph node metastasis of

B16 murine melanoma. J Natl Cancer Inst 93:1638–1643

132. Pelletier AJ, van der Laan LJ, Hildbrand P et al (2000) Pre-

sentation of chemokine SDF-1 alpha by fibronectin mediates

directed migration of T cells. Blood 96:2682–2690

133. McNeel DG, Eickhoff J, Lee FT et al (2005) Phase I trial of a

monoclonal antibody specific for alphavbeta3 integrin (MEDI-

522) in patients with advanced malignancies, including an

assessment of effect on tumor perfusion. Clin Cancer Res

11:7851–7860

134. Ishida T, Ueda R (2006) CCR4 as a novel molecular target for

immunotherapy of cancer. Cancer Sci 97:1139–1146

Clin Exp Metastasis (2008) 25:171–181 181

123


	The tumor cell-host organ interface in the early onset �of metastatic organ colonisation
	Abstract
	Introduction
	Shear stress and other mechanical forces in the circulation
	The role of tumor cell adhesion and migration for metastasis formation
	Tumor cell interaction with blood components
	Natural killer cells (NK) and Kupffer cells (KC) in the liver
	Tumor cell-endothelial cell interactions
	Tumor cell-matrix interactions
	Chemokines regulate tumor cell ‘‘homing&rdquo;to metastatic sites
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


