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Abstract
Quantifying the vulnerability of population to multi-faceted climate change impacts on 
human well-being remains an urgent task. Recently, weather and climate extremes have 
evolved into bivariate events that heighten climate risks in unexpected ways. To investi-
gate the potential impacts of climate extremes, this study analyzes the frequency, magni-
tude, and severity of observed and future compound hot-dry extremes (CHDEs) over East 
Africa. The CHDE events were computed from the observed precipitation and maximum 
temperature data of the Climatic Research Unit gridded Timeseries version five (CRU 
TS4.05) and outputs of climate models of Coupled Model Intercomparison Project Phase 6 
(CMIP6). In addition, this study quantifies the population exposure to CHDE events based 
on future population density datasets under two Shared Socioeconomic Pathways (SSPs). 
Using the 75th/90th and 25th/10th percentile of precipitation and temperature as threshold 
to define severe and moderate events, the results show that the East African region experi-
enced multiple moderate and severe CHDE events during the last twenty years. Based on a 
weighted multi-model ensemble, projections indicate that under the SSP5-8.5 scenario, the 
frequency of moderate CHDE will double, and severe CHDE will be 1.6 times that of base-
line (i.e., an increase of 60%). Strong evidence of an upward trajectory is noted after 2080 
for both moderate and severe CHDE. Southern parts of Tanzania and northeastern Kenya 
are likely to be the most affected, with all models agreeing (signal-to-noise ratio, SNR > 1), 
indicating a likely higher magnitude of change during the mid- and far-future. Consequen-
tially, population exposure to these impacts is projected to increase by up to 60% for mod-
erate and severe CHDEs in parts of southern Tanzania. Attribution analysis highlights that 
climate change is the primary driver of CHDE exposure under the two emission pathways. 
The current study underscores the urgent need to reduce  CO2 emissions to prevent exceed-
ing global warming thresholds and to develop regional adaptation measures.
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1 Introduction

Reports of the Intergovernmental Panel on Climate Change (IPCC) show that extreme 
weather and climate events, including extended megadroughts, flash floods, wildfires, and 
compound extremes, have been recorded in several regions of the world due to the net 
effect of human-caused global warming (IPCC et al. 2021). This has resulted in unprec-
edented destruction of infrastructure, colossal economic losses, deaths, and displacement 
of people from their homes. Recently, several studies have detected a general increase in 
the frequency, magnitude, and severity of compound extremes (events that occur concur-
rently), such as compound hot-dry extreme (CHDEs) in the context of global warming, 
threatening sustenance, water availability, and ecological systems (Hao et al. 2013; Agha-
kouchak et  al. 2020; Pendergrass et  al. 2020; Wu et  al. 2021). CHDE, characterized by 
high air temperature (i.e., hot extremes) and low atmospheric humidity (i.e., dry extremes) 
often result in severe disasters such as flash droughts and heatwaves among others (Zhang 
et al. 2023). Improved knowledge of their variability, future evolution, and net effect on the 
human population is required for informed planning of adaptation measures against poten-
tial impacts across vulnerable regions such as sub-Saharan Africa.

Numerous studies have shown disproportionate impacts of compound extremes across 
various parts of the world under both historical and future climatic conditions (Zhang et al. 
2021, 2022; Zhou et  al. 2023; Ullah et  al. 2023; Tabari and Willems 2023; Zhao et  al. 
2023). For example, Sun et  al. (2023) reported a severe impact of compound heatwaves 
in Southeast Asia (SEA) that will affect the younger generation born in the 2010s com-
pared to those born in the 1980s. The study noted that Indonesia would be the region most 
affected by compound extremes, thus calling for heat-stress adaptation strategies in such 
locations. Over Europe, a recent study (Dosio et  al. 2023) reported that CHDEs would 
affect the region of the Iberian Peninsula at least twice every three years, and up to about 
60% of the entire region is projected to be affected even under a low emission scenario. 
Zhang et al. (2022) noted that the large expanse of arid and semi-arid regions, such as the 
Sahara, Mediterranean, and parts of Central America, will experience the largest popula-
tion exposure to compound extremes. The net effect of compound extremes was quantified 
in a recent study, with findings showing that up to about 119 million additional people 
globally will be affected by bivariate events (Tabari and Willem 2023). Such emerging 
studies highlight the urgent need to implement mitigation strategies to alleviate the impact 
of CHDEs on human society.

While the studies mentioned above have quantified the impact of CHDEs across vari-
ous parts of the world, few studies have been conducted over the continent of Africa to 
estimate the observed or projected changes of CHDEs and their impact on vulnerable 
populations. Many existing studies that focus on the entire globe consider the African 
continent as a single averaged zone, thus, overlooking regional variations and specific 
vulnerabilities (Hao et al. 2020; Wu et al. 2021; Meng et al. 2022; Bevacqua et al. 2023). 
Currently, few regional studies have been conducted to characterize the spatiotemporal 
scales of compound events. For instance, in Africa, Camara et al. (2022) employed the 
Regional Climate Models version 4 (RegCM4) to characterize the changes in CHDE 
events along the Sahara Desert. The study established that restoration of the Sahara 
Desert could adversely affect the occurrences of CHDEs. Meanwhile, Obahoundje et al. 
(2023) examined the impact of changes in upper atmospheric layer aerosols on com-
pound temperature and precipitation extremes over Africa using Coupled Model Inter-
comparison Project phase five (CMIP5 GCMs). Findings include notable future changes 
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in both variables compared to the historical period. Similarly, employing downscaled 
models from the Coordinated Regional Climate Downscaling Experiment-Coordinated 
Output for Regional Evaluations (CORDEX-CORE), Weber et  al. (2020) also noted a 
pronounced increase in the frequency of compound extremes, particularly under high 
 CO2 emission scenarios in Africa. These existing studies have pointed out some impor-
tant findings that warrant further analysis to deepen our understanding of the potential 
impacts of emerging extremes on vulnerable populations and regions, such as the Afri-
can continent.

Compared to other sub-regions in Africa, East Africa (EA) remains the most suscep-
tible sub-region that continues to experience recurrent CHDE due to prolonged droughts 
and heatwave events (AghaKouchak 2020; Funk et al. 2023; Ayugi et al. 2022). A recent 
study by Muheki et al. (2024) reported that the region will experience an increase in the 
area affected by the compound extremes, with the strongest increase for joint heatwaves 
and wildfires (+ 940% by 2100 under the representative pathways concentration (RCP) 6.0 
relative to the present day). Moreover, the study reported that in addition to heatwaves and 
wildfires, the region will experience an increase in compound river flood and heatwave 
events (> 900% in the far-future). The recent unprecedented occurrence of eight consecu-
tive drought episodes since late 2016, coupled with heatwaves, has affected millions of 
people, with an estimated aid cost exceeding 2 billion USD (Omondi and Lin. 2023; Haile 
et al. 2020; Funk et al. 2023). Moreover, projections show that the region will experience 
an increase in temperature, higher variability in rainfall, and shorter seasons (late onset and 
early withdrawal of rains) due to stronger Pacific Ocean Sea surface temperature (SST) and 
steeper Indian Ocean SST gradients (Funk et al. 2023). These factors collectively contrib-
ute to altering the region’s weather and climate, underscoring the urgent need to quantify 
the anticipated climate change impact on the population and implement appropriate adap-
tation measures in response to observed and projected extreme events.

Consequently, to delineate the net effect and evolution of compound extremes over EA, 
which is the second most populous sub-region of the continent (~ 400 million persons) 
(Niang et al. 2014) and most vulnerable due to the dependency on rainfed agriculture for 
food security (Niang et  al. 2014; Onyutha 2019), there is a need to quantify the recent 
observed and future changes in CHDE events. Existing studies have faced shortcomings, 
including using coarser resolution GCMs, uncertainty in model projections, and the lack 
of quantification of population exposure. While more recent studies have demonstrated the 
improved performance of the Coupled Model Intercomparison Project Phase Six (CMIP6) 
compared to its predecessors (Ayugi et al. 2021a, b; Zhu et al. 2021), it still contains per-
sistent biases and challenges to accurately simulate extreme events (Akinsanola et  al. 
2021; Onyutha 2020), as well as uncertainties climate projections (Brunner et al. 2019). In 
response, scientists have made concerted efforts to minimize model spread to reduce over-
all uncertainty, employing methods such as bias correction or dynamical downscaling tech-
niques (Brunner et al. 2019). Consequently, numerous recent studies have adopted various 
approaches that involve weighting models and selecting those with higher weights to better 
represent real uncertainty (e.g., Li et al. 2016; Sanderson et al. 2017; Zhu et al. 2023).

This study adopted a probabilistic approach to investigate the changes in CHDE over 
EA (Fig.  S1), which has recently been experiencing recurrent extreme climate events 
(Ayugi et  al. 2021a, b, 2023; Omondi and Lin. 2023). The study focused on the follow-
ing gaps: (1) How has CHDE evolved over the EA in the recent past? (2) How will CHDE 
events change in the mid-future (2041 – 2060) and far-future (2081 – 2100) under varying 
climate scenarios? (3) How will CHDE events affect the population, and which region will 
most likely be affected? (4) What is the main driver of CHDE events over EA?
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2  Study domain, climate variables and methodology

2.1  Study domain

The study focuses on the EA region, which is delineated by the geographical coordinates 
ranging from latitude 12°S and 5°N and longitude 28°E and 42°E (Fig. S1). The region is 
further sub-divided into two climatic zones following recommendations from the IPCC 
Working Group 2 (Irtubide et al. 2020). However, this study explores the changes in CHDEs 
across the entire region, considering changes in temperature and precipitation. For instance, 
the relationship between temperature and precipitation shows a negative correlation of up to 
-0.8 in western and southern areas, while the northeastern and coastal belt regions show a 
correlation coefficient above 0.4 (Fig. S2). Monthly shifts in geographical areas character-
ized by strong correlation between precipitation and temperature follows an analogy of the 
latitudinal migration of the Inter-Tropical Convergence Zone (ITCZ) (Onyutha 2021). Fur-
thermore, the linear slope indicates a decrease in maximum temperature (-0.002 °C/decade), 
while precipitation shows an increasing trend of 0.731 mm/decade (Fig. S3). This suggests 
that warm (cold) temperatures coincide with fewer (heavy) precipitation events, resulting in 
warm/dry and cold/wet events as demonstrated in a previous study (Nicholson 2017) con-
ducted considering EA during 1995–2014. Temporal increase in temperature was shown to 
coincide with the decrease in precipitation total across Africa where the study area is located 
considering 1901–2015 (Onyutha 2021).

2.2  Datasets

The study utilizes observed monthly global precipitation (pr) and maximum temperature 
 (Tmax) datasets obtained from the Climatic Research Unit gridded Timeseries version five 
(CRU TS4.05; Harris et al. 2020). The datasets are employed to analyze CHDE over the 
EA region during the recent 20 years. The CRU datasets have a temporal monthly resolu-
tion spanning over 120 years and a 50 km by 50 km grid horizontal resolution over all land 
domains except Antarctica. These datasets are developed using an interpolation algorithm 
that utilizes angular-distance weighting for monthly climate anomalies sourced from vast 
networks of weather stations distributed globally (Harris et al. 2020). The quality of the 
gridded products is ensured through nearest-neighbor checks and a long-term historical 
record check to maintain consistency and reliability. Previous studies conducted over EA 
have confirmed the robust performance of CRU products (e.g., Ayugi et al. 2016; Ongoma 
and Chen. 2017).

Next, the study employs global climate models (GCMs) sourced from CMIP6 (Eyring 
et al. 2016) for daily pr and  Tmax to estimate future changes in CHDE events. These data-
sets span from 1850 – 2100 with varying grid horizontal resolution. For consistency, the 
study selects twenty-one models (Table S1) that have the two scenarios representing the 
moderate and worst-case and the first variant (r1i1p1f1). The ensemble used represents the 
same initial and physical conditions, and as well as forcing. The historical period consid-
ered in the present study is 1995 – 2014, which follows the period used by the recent IPCC 
report working group 1 (IPPC et  al.  2021). For future projections, the study uses mod-
els under the Shared Socioeconomic Pathways (SSP) scenarios, illustrating a sustainable 
approach to cap temperature rise to 2.5 °C (SSP2-4.5) or, in the worst-case scenario (SSP5-
8.5), no policy implementation leading to a temperature rise exceeding 5 °C (O’Neill et al. 
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2017). The study explores future changes in CHDE under two future periods: mid-future 
(MF, 2041 – 2060) and far-future (FF, 2081 – 2100). Several studies conducted across the 
globe (Almazroui et al. 2020a, b; Deegala et al. 2023; Lu et al. 2022) and sub-regions of 
Africa (Nooni et al. 2023a) have utilized CMIP6 models, demonstrating the models’ skill 
in representing the historical climate of the continent. Recent studies over EA have also 
shown the robust performance of the CMIP6 models compared to their predecessors (Song 
et al. 2021; Dioha et al. 2024; Ayugi et al. 2021a, b).

Lastly, the study uses population datasets from the Gridded Population of the World 
(GPWv3) datasets to examine the population exposure to CHDE over EA. Similar to the 
climate models, we obtain the projection datasets for grids based on SSP2 (sustainability 
pathways) and SSP5 (Anthropocene pathways) for 2010 – 2100. The population data for 
2010 is used to represent the historical period, while projection datasets span from 2011 to 
2100 under varying SSPs. More details regarding the products can be obtained from Jones 
and O’Neill (2016). Previous studies have employed demographic products to assess the 
risk of global climate change following single-hazard or compound extremes to popula-
tions (Ayugi et al. 2022; Tabari and Willems 2023).

For uniformity purposes, all the datasets used in this study are re-gridded to a common 
horizontal grid resolution of 1°× 1° using a bilinear interpolation approach for observed 
and climate models.

2.3  Methods

2.3.1  Computation of CHDE events

To further explore spatial changes in CHDE events in EA, this study analyzes the spa-
tial variance of bivariate event frequency that is likely to happen in future periods. The 
study uses monthly-accumulated pr and monthly-averaged  Tmax to derive the moderate 
and severe CHDE on an annual scale, considering total occurrences for each month. Here, 
various quantiles are used following the benchmark procedure previously employed by the 
IPCC (Seneviratne et  al. 2012). CHDE occurrence is defined as when  Tmax exceeds the 
75th/90th percentile and pr is ≤ the 25th/10th percentile during the study duration. Mod-
erate CHDE is identified when  Tmax (pr) is greater (less) than the 75th (25th) percentile, 
while severe CHDE occurs when  Tmax (pr) is greater (less) than the 90th (10th) percentile.

Grid cells are labeled with “1” to indicate the occurrence of CHDE at that grid cell 
for the historical (1995 – 2014) and two future periods (MF: 2041 – 2060 and FF: 2081 
– 2100) under the two SSPs. If a month’s pr  (Tmax) is less (greater) than the 25th (75th) 
percentile, then a label of 1 is given. The frequency of moderate CHDE for a year is com-
puted by totaling the binary variables during the 12 months of that year. The same opera-
tion is performed for severe CHDE but by considering the 10th and 90th percentile for pr 
and  Tmax, respectively.

The relative % change (RC) in the occurrence of CHDE events during the different peri-
ods is computed using Eq. (1)

where CF1 denotes compound events frequency in the historical period, while CF2 rep-
resents CHDE events for both MF and FF periods. Previous studies have used similar 

(1)RC =
CF2 − CF1

CF1

X100%



 Climatic Change         (2024) 177:146   146  Page 6 of 23

approaches (Beniston 2009; Hao et  al. 2018; Zhao et  al. 2023). Furthermore, trends in 
observed and future CHDEs are assessed based on the modified Mann–Kendall test (Eqn. 
S1- S4; Hamed and Rao 1998).

2.3.2  Ensemble calculation based on rank‑based weighting approach

To calculate the model weights and ranking criteria, two statistical metrics, the Kling-
Gupta Efficiency (KGE; Gupta et  al. 2009) and the interannual variability score (IVS; 
Glecker et al. 2008), are used. KGE combines correlation, bias, and variability, while IVS 
estimates the model variability from their interannual standard deviation. Bias is computed 
as the ratio of modeled ( �cmip6 ) and observed ( �cru ) mean values. Variability is given as 
the ratio of the standard deviation (STD) of the model ( STDcmip6 ) to that of observations 
( STDcru).

The formula for computing KGE is defined in Eq. 2.

where C represents the Pearson correlation coefficient. KGE values close to 1 represent 
better model performance.

IVS is defined in Eq. 3.

IVS is computed using pixel-wise annual data averaged over the region. Smaller IVS 
values denote better model performance. Fig. S4 and Table S2 show the performance met-
rics of each model.

Consequently, the weights for individual GCMs are derived following their rankings 
from Eqs. 2 and 3. The weight of each model is derived as a function of its ranking position 
as defined by Eqs. 4 and 5, respectively. The equations are as follows:

and

where Ri is the combined performance indicator for the individual model i (higher scores 
indicates better model performance), Si is the rank of each model, and N denotes the num-
ber of models. The model weight, Wi (Eq. 5) is the normalized value of Ri.

To quantify the robustness of the model multi-model ensemble (MME) computed from 
the rank-based weighting methods, the study employs the signal-to-noise ratio (SNR; Li 
et  al. 2016). This approach objectively evaluates the models by considering the model 
spread as noise and the MME value as the signal. The change is considered robust if 

(2)KGE = 1 −

√

(C − 1)2 + (
STDcmip6

STDcru

− 1)2 + (
�cmip6

�cru

− 1)2

(3)IVS(cmip6, cru) = (
STDcmip6

STDcru

−
STDcru

STDcmip6

)2,

(4)Ri =

∑N

i=1
Si

Si

(5)Wi =
Ri

∑N

i=1
Ri
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models (noise) show a statistically significant change, at the same time, agree on its MME 
(sign). Standard deviation is used as a function to measure the model spread (Eq. 6).

Here, Δpi signifies the ith performance of each GCM, and wi represents the weight. SNR > 1 
indicates a robust projected change of the MME. Existing related studies across the globe have 
also applied the same technique (e.g., Chen et al. 2011; Li et al. 2016; Zhu et al. 2022). After 
the models are weighted and CHDE computed, the MME is calculated following the Eq. 7.

where CHDE(i) is the value of the ith model and W(i) means the weight of the ith model.

2.3.3  Population exposure to CHDE events

Population exposure (PE) is defined as the product of the number of people exposed to 
CHDEs per grid from the frequency of occurrences (Jones et  al. 2015; Zhang et  al. 2022; 
Zhao et al. 2023). In order to minimize the inter-annual variation, we adopt a 20-year average 
of CHDEs and population for the historical and two future periods under SSP2-4.5 and SSP5-
8.5 (Liu et al. 2017; Zhang et al. 2022; Zhao et al. 2023). PE is computed using Eq. (8).

where PE denotes the 20-year mean PE, while i signifies the i th year of the historical 
period. CHDEsi is the value of CHDE (months) and P represents the population in units of 
person per day (person-day).

Furthermore, this study examines attribution factors affecting PE as proposed by Jones 
et  al. (2015) and employed in numerous studies globally (e.g., Iyakaremye et  al. 2021; 
Ayugi et al. 2022; Ullah et al. 2022a, b, c). The changes in exposure (ΔE) due to either 
human population or climatic effects or their non-linear interactions are estimated as 
expressed in Eq. (9).

 where CX denotes the CHDEs, ΔP and Ph shows the incidences of CHDEs and popula-
tion during the historical period, respectively, and ΔCX shows the variations during the 
projected periods. ( CXh × ΔP) is an indicator of the human population effect, ( Ph × ΔCX) 
estimates the climate contribution, and ( ΔP × ΔCX) refers to the non-linear interaction 
between population variation and CHDE. Ultimately, the study computes comparative con-
tributions of each term based on Eqs. 10–12 as follows.

(6)SNRweighted =

∑

i wiΔpi
√
∑

i wi(Δpi −
∑

i wiΔpi)
2
for1 ≤ i ≤ 21

(7)MME = W(mme) =
∑

(W (i) × CHDE(i))for1 ≤ i ≤ 21

(8)PE =
∑20

i=1
CHDEs

i
XP∕20

(9)ΔE = (CXh × ΔP) + (Ph × ΔCX) + (ΔP × ΔCX)

(10)CCpop =
CxXΔP

ΔE
X100%

(11)CCclim =
PhXΔCx

ΔE
X100%
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 where CCpop , CCclim, and CClin denote the comparative contribution of change in popula-
tion, climate change, and interaction factors on exposure. Recent studies applied this tech-
nique across different regions (e.g., Zhang et al. 2022; Ullah et al. 2023).

3  Results and discussions

3.1  Historical changes

Figure  1 presents the interannual variability in CHDE during the past 20  years (1995 
– 2014) over EA based on CRU observations. The results show noticeable differences in 
moderate and severe CHDE events, with higher values in moderate CHDE. The medium 
value for CHDE event frequency is 1 month/year for moderate events and about 0.2 month/
year for severe ones. The years 1998, 2001, 2005, and 2009 record the highest values for 
observed moderate CHDE events over the region, while the region experienced severe 
events during 2009 and 2011. Remarkably, 1995 recorded the least severe CHDE event 
while recording a high frequency for moderate events. A striking observation is recorded in 
2005 for moderate and severe CHDE events where large variability is depicted.

These correspond to the years when the region experienced the co-occurrence of La-
Nina and the negative Indian Ocean Dipole that caused suppressed precipitation and 
increasing temperature changes (Kebacho 2022). Conversely, 2006 recorded the lowest 
occurrence for both moderate and severe CHDE over the study domain. A previous study 
by Parhi et al. (2016) attributed the variability in weather and climate extremes to an inten-
sification of unstable atmosphere and pronounced moisture over the region due to high SST 
anomalies. Moreover, the jet stream and low-level winds regulating moisture levels across 
EA are responsible for the positive phase of IOD regulation linked to the Indian Ocean 
SST anomaly (Kebacho 2022). Consequently, the changes in CHDE events could be attrib-
uted to large-scale teleconnection factors regulating climate over EA. Overall, the region 

(11)CClin =
∇PX∇Cx

ΔE
X100%

Fig. 1  Box plots of annual number of (a) moderate and (b) severe CHDE events over East Africa from 
observations during 1995 – 2014
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witnessed CHDE events, which aligns with other regions that experienced the temporal 
compounding of bivariate events.

For spatial changes during 1995 – 2014, it can be noted that areas around northern 
Uganda and northeastern Kenya are mainly affected by moderate CHDE (Fig. 2). These 
regions are associated with arid and semi-arid climates, which are characterized by strong 
winds, high temperatures, enhanced evapotranspiration rate, and low vegetation cover. In 
contract, regions around Lake Victoria and parts of Tanzania record the fewest moderate 
and severe extreme events. For severe CHDE events, the region has experienced a homog-
enous occurrence of CHDE events except for a few patches in central and coastal Kenya, 
where a higher frequency is noted (Fig. 2b). The historical changes show that a large sec-
tion of Tanzania experienced less severe CHDE during the study period.

The current study agrees with other recent studies that have demonstrated an increase 
in CHDE events, which corresponds to the manifestation of heatwaves and droughts across 
many regions of the world (Zscheischler and Seneviratne 2017; Meng et  al. 2022; Wu 
et al. 2021). In fact, a robust increase in these compound events has been reported to be 
more prominent in Africa, China and Australia (Wu et al. 2021). Compared to the 1950s, 
when unequivocal global warming was first reported in the fifth IPCC assessment report, 
the number of hot-dry and hot-wet events has intensified tenfold over many regions of the 
world during the last 20 years (IPCC et al. 2021). Quantifying the observed changes over 
EA, which remains susceptible to climate change, contributes to hazard risk management 
and helps accurately estimate projected changes.

3.2  Model evaluation and weighting

Before employing GCMs to estimate the future changes in CHDEs over the EA region, all 
models are evaluated to identify the best-performing ones. This study uses KGE and inter-
annual variability score (IVS) to examine how observed  Tmax and precipitation skillfully 
replicate the observed climatology. Fig.  S4 and Table  S2 summarize the model perfor-
mance over the study region. Overall, most CMIP6 models show good skills in simulating 

Fig. 2  Spatial distribution of (a) moderate and (b) severe CHDE events over East Africa from observations 
during 1995 – 2014
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Table 1  Weights and ranks of 
the 21 GCMs based on their 
performance in East Africa. 
Bolded values indicate models 
with a weight > 0.048 (0.048 is 
the value of equally weighted 
models). Models are ranked 
according to the statistical 
metrics as presented in Eqs. 2, 3, 
4, and 6

C: correlation coefficient; β: Bias

Models C β IVS KGE Sum of 
the ranks

Weights

UKESM1-0-LL 5 2 5 1 13 0.134
FGOALS-g3 12 1 6 2 21 0.083
MPI-ESM1-2-HR 13 4 1 4 22 0.079
ACCESS-CM2 15 3 2 6 26 0.067
MPI-ESM1-2-LR 10 11 3 5 29 0.060
INM-CM5-0 2 17 7 8 34 0.051
NESM3 3 13 13 7 36 0.049
GFDL-CM4 4 14 16 3 37 0.047
CanESM5 1 10 21 10 42 0.042
BCC-CSM2-MR 11 8 9 18 46 0.038
MRI-ESM2-0 9 5 19 13 46 0.038
MIROC-ES2L 6 18 14 9 47 0.037
IPSL-CM6A-LR 7 20 11 11 49 0.036
ACCESS-ESM1-5 18 7 12 14 51 0.034
INM-CM4-8 8 21 10 12 51 0.034
EC-Earth3 19 6 15 15 55 0.032
CNRM-ESM2 20 12 4 20 56 0.031
EC-Earth3-Veg 17 9 17 17 60 0.029
CNRM-CM6 21 16 8 21 66 0.026
GFDL-ESM4 16 15 18 19 68 0.026
MIROC6 14 19 20 16 69 0.025

Fig. 3  (a) Taylor Diagram and (b) Taylor Skill Score (TSS) for weighted and unweighted multi-model 
ensembles for moderate and severe CHDE events during 1995 – 2014
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monthly precipitation and  Tmax with a KGE > 0.6 and a small IVS, especially for  Tmax. The 
results of these metrics (KGE and IVS) are subsequently used to derive the weights for 
the GCMs. The weights for the models used are shown in Table 1, following the approach 
described in Section 2.3.2.

The resulting MMEs computed using the weighted technique (Chen et al. 2011) and 
normal arithmetic computation (unweighted) are shown in Fig. 3 and Table 1. Compar-
ing the two MMEs based on the Taylor diagram and Taylor Skill Score (TSS; Taylor 
2001) shows that the weighted MME performs better than the unweighted MME. The 
unweighted (weighted) MME shows a spatial correlation coefficient of 0.6 (0.8 and 0.9 
for moderate and severe CHDE events, respectively). The clear evidence of improved 
performance is noted in TSS, where the unweighted MME shows TSS values of 0.58 
and 0.6 for moderate and severe CHDE, whereas the weighted MME depicts TSS values 
of 0.82 and 0.76, respectively. The results demonstrate the need to employ a weighting 
approach to optimize MME performance.

The capability of weighted MME is further evaluated in terms of its ability to capture 
spatial changes. Figure 4 shows the spatial variance of weighted and unweighted MME 
in simulating moderate and severe CHDEs during 1995–2014 over EA. Unweighted 
(weighted) MME minus OBS shows a bias of 0.40 (0.24) and 0.12 (0.07) for moder-
ate and severe CHDEs, respectively (Fig. 4). Overall, the results demonstrate that model 
weighting can help to minimize the total uncertainty of climate model projection (Brun-
ner et al. 2019). Numerous approaches have been employed in the past with the premise 
that a model’s capability to accurately reproduce historical climate can be used to predict 

Fig. 4  Spatial plot of bias for weighted and unweighted multi-model ensembles. (a, b, c) moderate and (d, 
e, f) severe CHDE events
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a model’s future dependability. The models that perform better are given more weights 
when computing the MME. Thus, the current study calculates MME based on the 
weighted approach for the projection of CHDEs during MF and FF. A similar approach 
has been employed over different regions to attain reliable estimates of future climate 
(Knutti et al. 2017; Li et al. 2021; Zhu et al. 2023).

3.3  Projected changes

Figure 5 presents the results for projected changes in the mean annual frequency of CHDE 
events over EA under SSP2-4.5 and SSP5-8.5 relative to baseline period of 1995—2014. 
Moderate CHDEs will occur twice more frequently, while the frequency of severe CHDE 
will be 1.6 times that of baseline (i.e., an increase of 60%) under the SSP5-8.5 scenario. 
Strong evidence of an upward trajectory is noted after 2080 for both moderate and severe 
CHDE. Under SSP2-4.5, moderate and severe CHDEs are estimated to decrease after 2090 
as global greenhouse gas emissions are anticipated to reach zero levels under manageable 
practices. However, a sustained increase in CHDE is projected under SSP5-8.5, which rep-
resents the Anthropocene pathways characterized by strong radiative forcing (O’Neill et al. 
2017). Overall, these expected changes in CHDE events are likely to be more pronounced 
in the future, calling for relevant policy designs that would lessen the effects of associated 
disaster risks.

Figure 6 shows the spatial changes in CHDE events under the SSP2-4.5 and SSP5-8.5 
scenarios during the MF and FF relative to the historical period. The dots represent regions 
where SNR is greater than 1. This implies robust future projection due to the clear signal 
compared to noise (Hawkins and Sutton 2011; Dosio et al. 2019; IPCC et al. 2021). It is 
apparent that greatest impact of CHDE of upto about 140% increase will be experienced 
during FF period in all the two scenarios as compared to MF. Strong evidence of moder-
ate CHDE events is projected to occur under SSP2-4.5 during MF as compared to high 
emission scenario during similar time period (Fig. 6 a, e). On the other hand, no remark-
able increase in projected to occur for severe CHDE events under SSP5 -8.5, with the 
region depicting homogenous spatial variance of the event (Fig. 6f). Interestingly, south-
ern parts of Tanzania will experience an exacerbated increment of moderate and severe 
CHDE events of upto 140% during FF period (Fig. 6d, h). The robustness of the change 

Fig. 5  Projected interannual variability of (a) moderate and (b) severe CHDE events under SSP2-4.5 
(green) and SSP5-8.5 (orange) relative to baseline period of 1995 – 2014 (blue). The shading denotes the 
uncertainty range (± 1 standard deviation of the model annual average). The insets indicate the multi-year 
average frequency for the mid-future (2041–2060) and far-future (2081–2100) periods
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is demonstrated with model agreement depicting SNR > 1 for both scenarios during FF 
period. Comparing the two results of different scenario, the projected change under SSP5-
8.5 during the MF shows lower occurrences of moderate and severe CHDE, especially over 
Kenya, Uganda, Burundi, and Rwanda (Fig. 6e, f). In contrast, largest increase in CHDE 
for moderate and severe events is noted in SSP2-4.5 as compared to SSP5-8.5 scenario 
(Fig. 6a, b). Interestingly, there is no significant difference in severe CHDE events during 
FF for both scenarios. The reduced impact of CHDE events under SSP5-8.5 scenario dur-
ing MF period compared to SSP2-4.5 could be attributed to the pronounced wetting during 
the same period as projected in recent existing studies (Tierney et al. 2015; Ongoma et al. 
2018; Scoccimarro and Gualdi 2020; Ayugi et al. 2021b, 2023). These studies reported a 
‘recovery pattern’ of rainfall event over the region since 1999 when an abrupt decline in 
long rains was reported, thus plunging the region to recurrent drought events (Lyon and 
DeWitt 2012). However, recent study by Palmer et  al. (2023) noted that climate models 
project that the region will experience more rainfall during 2030 – 2040, with implication 
of sustaining agricultural yields and thus offsetting high air temperature (i.e., hot extremes) 
and low atmospheric humidity (i.e., dry extremes). Thus, low values of CHDE occur dur-
ing MF under high emission scenario relative to the baseline period. These results pro-
vide an important insight into CHDE events that could lead to more heatwave and drought 
events, especially during the FF periods under different scenarios. Tanzania and northeast 
Kenya are likely to be most affected, with all models agreeing (SNR > 1) on a likely higher 
magnitude of change during both MF and FF periods.

Meanwhile, the results of the current study agree with previous studies that have also 
noted a higher magnitude of change in CHDE events across different regions (Weber et al. 
2020; Ullah et al. 2022a, b; Meng et al. 2022; Dosio et al. 2023). For illustration, the previ-
ous study that analyzed compound climate extremes over Africa and employed regional 

Fig. 6  Spatial variation in the change in frequency (units: %) of CHDE events under (a-d) SSP2-4.5 and (e–
h) SSP5-8.5 relative to the historical period (1995 – 2014). (a, e) moderate CHDE during MF (2041–2060), 
(b, f) severe CHDE during MF (c, g) moderate CHDE during FF (2081–2100), and (d, h) severe CHDE 
during FF. The dots represent grids where SNR > 1
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climate models sourced from CODEX-CORE revealed an increase in the frequency of 
events, with pronounced changes larger in the business-as-usual scenario as compared to 
that of the moderate scenario (Weber et  al. 2020). The study further reported that West 
Africa, Central Africa, Mediterranean, and Eastern Southern Africa would be predomi-
nantly affected. Over EA, Muheki et al. (2024) highlighted that compound events such as 
wildfires and heatwaves will rise by the largest magnitude (+ 940%) by 2100, followed by 
river floods and wildfires (+ 250%) under RCP6.0 scenarios. This study also pointed out 
that concurrent CHDE events will be the norm rather than an exception in the study region, 
even under “very stringent” pathways, which is also reflected in the current study. Over 
Europe, Dosio et al. (2023) observed that even under SSP1-2.6 pathways, climate models 
predict an intensification of CHDE events across large areas (> 60%) of Europe. Mean-
while, Zhang et al. (2021) noted that compound extremes are mainly influenced by semi-
permanent circulations, strong high-pressure systems, and Rossby wave patterns, mainly 
modulated by atmosphere-land feedback. Overall, regions such as EA, which have weak 
governance systems, are likely to be most affected compared to nations with strong institu-
tional systems (Tabari and Willems 2023). Thus, these results underscore the need to quan-
tify PE and the main attributing factors that drive the projected changes in CHDE events 
over the study domain.

3.4  Population exposure changes and attribution factors

With clear evidence that CHDE events are projected to intensify in the EA region, it is 
necessary to estimate the affected population in order to design mitigation strategies to 
curb the effects of climate change. Figure 7 shows the relative change in exposure across 

Fig. 7  Relative changes (unit: %) in the multi-year average population exposure under (a-d) SSP2-
4.5|SSP2, and (e–h) SSP5-8.5|SSP5 compared to the historical period (1995 – 2014). (a, e) moderate 
CHDE during MF (2041–2060), (b, f) severe CHDE during MF (2081–2100), (c, g) moderate CHDE dur-
ing FF (2081–2100), and (d, h) severe CHDE during FF. Hatched areas indicate regions that are significant 
at a 95% significant level
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the EA region during future timescales, considering the two emission scenarios. The sig-
nificant exposure is more prominent in regions of Mbeya and Iringa in southern Tanzania 
and Marsabit, Isiolo, and Samburu counties in Kenya for moderate and severe extremes. 
For instance, under the SSP2-4.5 scenario, average PE in the MF and FF shows that mod-
erate CHDE events will be most prominent in southern parts of Tanzania while severe 
CHDE events will affect northeastern parts of Kenya (Fig.  7a and b). Further analysis 
shows that the relative change in PE to moderate and severe CHDE will be less under the 
SSP5-8.5 scenario during MF, especially in regions along Rwanda, Burundi, and parts of 
Mount Elgon between Kenya and Uganda border (Fig. 7e and f). However, PE is projected 
to increase by 20% during the FF period for most regions, except for southern Tanzania, 
which will experience up to 40–60% change (Figs. 7g and 7h). No significant change in PE 
is projected to occur in regions of Kenya, Uganda, Burundi, and Rwanda for severe CHDE 
events during FF under SSP5-8.5 (Fig. 7g and h). However, PE is projected to increase sig-
nificantly along parts of southern Tanzania by up to 60% for moderate and severe CHDEs. 
Interestingly, only southern Tanzania is projected to experience significant PE change for 
moderate CHDE under SSP2-4.5 during the FF period (Fig. 7c). These results suggest that 
regions that will be mainly affected in compound extremes should consider implement-
ing appropriate adaptation strategies to cope with the impending exposure to moderate and 
severe CHDEs.

It is interesting to note that a previous study that estimated future changes in PE to 
extremely wet days (R95p) showed that Uganda, Burundi, and Rwanda will experience the 
most prominent and net intense effects (Ayugi et al. 2022). In contrast, the study revealed 
that minimal change is projected to occur in Kenya and Tanzania. This shows a dipole sce-
nario in regions affected by two different extreme climate events, R95p and CHDE. Simi-
larly, a study that explored the projected change in maximum daily maximum tempera-
ture (TXx) and the associated population revealed that some regions in EA cities would 
be affected by up to about 12 million people exposed (Iyakaremye et al. 2021). The study 
reported that PE will increase by 25%–45% from the base period under varying scenar-
ios. In agreement with a similar study conducted over the African continent (Weber et al. 
2020), the study reported that coincident heatwaves will mostly affect West and Central 
equatorial Africa, Southeast Africa and East Madagascar. Meanwhile, in China, Zhao et al. 
(2023) noted that PE to moderate and severe CHDE events will increase from 0 to 10% and 
30 to 50%, respectively. The study further noted that CHDE events in northeast China and 
some parts of Suchuan city would decline, while western and southern China would expe-
rience a significant increase in CHDE PE. At the global level, Liu et al. (2017) reported 
that exposure will be the highest in Nigeria, Central America and Indonesia. The study 
concluded that Africa will experience the largest effect, nearly 120 times its current value. 
Such changes call for urgent adaptation and mitigation actions to cushion the population 
from the effects of climate change.

To further quantify the number of persons exposed to CHDE events during the MF and 
FF periods, this study quantifies the number of populations exposed to CHDE severity. Fig-
ure 8 shows the regional aggregate annual exposure for historical periods, MF and FF, to 
moderate and severe CHDE events. During the historical period, the exposure is 15 billion 
person-day on average for moderate CHDE exposure and 14 billion person-day for severe 
CHDE (Figs. 8a and b). In contrast, during the MF period, the estimated exposure is pro-
jected to increase to 65 billion person-day for the moderate extreme under SSP2–4.5|SSP2 
scenario and 43 billion person-day under SSP5-8.5|SSP5. Remarkably, the largest change 
is noted during the FF period, where exposure to moderate extremes will persist to increase 
to ~ 120 (100) billion person-day under SSP2-4.5|SSP2 (SSP5-8.5|SSP5) (Fig. 8a). Notably, 
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the PE to severe CHDE events is projected to be less as compared to moderate events dur-
ing MF period. Specifically, the area cumulative annual exposure for SSP2–4.5|SSP2 sce-
nario is about 8 billion person-day while at 11 billion person-day for SSP5-8.5|SSP5 sce-
nario. However, the largest exposure is projected to occur in severe CHDEs compared to 
moderate events under the SSP5-8.5|SSP5 scenario. For instance, the PE to severe CHDE 
will outweigh the moderate events by about a 12 billion person-day difference. This calls 
for exploring attribution factors responsible for the increase in exposure to severe CHDE 
during the FF period under the high-emission scenario.

Consequently, the study explores the relative contribution of different influences such 
as population, climate change, and non-linear effects of population and climate as defined 
in Eq. (9). This concurs with other existing studies across different locales (Liu et al. 2017; 
Ayugi et al. 2021a; Zhao et al. 2023; Sun et al. 2023; Zhang et al. 2022). Figure 9 shows 
the PE to CHDE attribution drivers for SSP2-4.5|SSP2 and SSP5-8.5|SSP5 scenarios. 
The findings demonstrate that the climate effect is the main driving factor for exposure to 
CHDE under the two emission pathways. In fact, the findings show a pronounced contribu-
tion of climate factor under SSP5-8.5|SSP5 with PE totaling 25 ×  105 billion person-day. 
Under the two pathways considered, climate factors and population effects demonstrate 
a greater contribution to PE-CHDE events. However, comparing the climate effect under 
SSP2-4.5|SSP2 and SSP5-8.5|SSP5, the results show a lower contribution of climate effect 
under the moderate pathway scenario. The human-induced climate change not only has 
an impact on CHDE but also significantly contributes to the rapid intensification of other 
extreme events, such as flash droughts (Christian et al. 2021; Wang et al. 2021; Ullah et al. 
2024) and heatwaves (Ma et al. 2023). Interestingly, the contribution of population growth 
to an increase in exposure depicts a much lower contribution to CHDE exposure, unlike 
the previous study that reported the contribution of population effect to net exposure to 
very wet extreme events (Ayugi et al. 2022). This shows that CHDE is mainly driven by 

Fig. 8  Multi-year average population exposure (units: billion persons-day) to (a) moderate and (b) severe 
CHDE events for the historical (blue bars) and projection periods (mid-future: 2041–2060 and far-future: 
2081–2100)
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an increase in temperature, which is projected to continue increasing under all scenarios 
(IPPC 2021). In fact, it is reported that over Africa, TXx is likely to exceed 1.82 °C and 
3 °C under SSP2-4.5 and SSP5-8.5, respectively (Iyakaremye et al. 2021). Almazroui et al. 
(2021) further noted that hot temperature extremes will experience an increase in intensity 
and frequency over specific hotspot regions. Overall, the current study calls for the need 
to reduce  CO2 emission, which remains the main driving force behind the increase in tem-
perature, thereby enhancing the climate effect as the main attributing factor to the effect of 
CHDE events over EA and other regions, as reported in the existing studies.

Fig. 9  Relative contribution analysis of influencing factors under SSP2-4.5|SSP2 and SSP5-8.5|SSP5. Blue, 
orange, brown and green bars represent climate effects, interaction effects, population effects and total 
change effects on projected changes in exposure to CHDE events, respectively. The error bars show the 
standard deviation in total projected change across the models for East Africa
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4  Conclusion

This study’s findings indicate that the East African region experienced numerous moderate 
and severe CHDE events during the past twenty years. Based on a weighted MME, projec-
tions show that the frequency of moderate CHDEs will double, while severe CHDE will 
increase by 60% relative to the historical period under the SSP5-8.5 scenario. Southern 
parts of Tanzania and northeastern Kenya are likely to be most affected, with all mod-
els agreeing (SNR > 1) on a likely higher magnitude of change during both the MF and 
FF periods. The resultant impact on the population is significant, with exposure projected 
to increase significantly along parts of southern Tanzania by up to 60% for moderate and 
severe CHDE. Attribution factors highlight that climate change is the main driving factor 
behind increased exposure to CHDEs under the two emission pathways.

The present study underscores the need to reduce  CO2 emissions, which remain the 
main driver of the increase in temperature and, consequently, the increased occurrence 
of CHDE events over EA and other regions, as reported in the existing studies. The find-
ings highlight the need to further explore multi-variate analyses by examining more than 
two extreme events occurring simultaneously in the same locality. A recent study (Muheki 
et al. 2024) over EA reported an increase in co-occurring extremes such as; (i) river floods 
and wildfire, (ii) river floods and heatwaves and (iii) heatwaves and wildfires, thus, there 
is a need for multi-variate analysis of such extreme events. Moreover, additional research 
is recommended to investigate underlying mechanisms and their influence on compound 
events across the region. Despite the robust findings, some unavoidable uncertainties in 
the projection of CHDE events should be noted. These uncertainties can arise from climate 
models or climate scenarios (Brunner et  al. 2019). Therefore, it is suggested that more 
models and emission scenarios from the CMIP6 family be included in future studies to 
enhance the accuracy of climate projections of compound extremes.
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