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Abstract
Sea turtles have temperature-dependent sex determination. Because females are produced 
at high temperatures, increasing global temperature may lead to population feminization. 
Primary sex ratios (PSR) of sea turtle hatchlings are naturally female-biased, but this trans-
lates into a more balanced operational sex ratio because male turtles reproduce more often 
than females. As a consequence, a balanced PSR and the temperature that produces it (piv-
otal temperature) are of limited use to guide climate mitigation management because an 
equal PSR may be demographically suboptimal. Here, I define population-advantageous 
primary sex ratios (PA-PSR) as the PSR that will tend to be in equilibrium in a population 
and that will result in balanced operational sex ratios; I then estimate PA-PSR for different 
reproductive frequencies (years elapsed between reproductive seasons) of adult female and 
male turtles. I also define population equilibrium temperature (PET) as the temperature 
that would result in the equilibrium PSR of hatchlings (i.e., PA-PSR). These concepts may 
help assess the influence of rising temperatures on populations, as they can better indi-
cate if PSRs depart from those at equilibrium. I compared PA-PSR and beach PSR for two 
populations of sea turtles for which male and female remigration intervals were known 
and found that a mild or no feminization over the PA-PSR may be occurring. Because PSR 
varies inter-annually, and hatchlings coming from beaches of different thermal conditions 
could recruit to the same population, it is critical to estimate beach PSR at the right tempo-
ral and spatial scales. Climate mitigation strategies based on these concepts could provide 
better management guidance for conservation practitioners. Similar approaches could be 
considered for other female-biased species with temperature-dependent sex determination.
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1  Introduction

Natural populations tend to have balanced sex ratios (Fisher 1930). This seemingly uni-
versal principle has resulted in a whole body of literature discussing its meaning, likely 
advantages and exceptions (Hamilton 1967; Bull and Charnov 1988; Clutton-Brock 
2017). Although balanced sex ratios are generally the rule, these may vary between 
life stages (Trivers and Willard 1973). The probability of reproduction seems to be 
the selective pressure for producing one sex over the other (Fisher 1930). Thus, bal-
anced sex ratios are more likely to be found in adult reproductive individuals and may or 
may not be found in new-born ones (Trivers and Willard 1973; Jennions and Fromhage 
2017).

In sea turtles, the primary sex ratio (PSR) of hatchlings is typically female-biased 
(Godfrey et al. 1996, 1999; Sieg et al. 2011) or highly female-biased (> 90% female, 
Broderick et  al. 2000) (see Table  1 for a list of the acronyms used throughout the 
text). However, unbalanced PSR translates into a more balanced operational sex ratio 
that is normally close to the 1:1 Fisherian ratio (Hays et al. 2010; Wright et al. 2012; 
Stewart and Dutton 2014; Gaos et al. 2018). Because there is differential reproductive 
frequency by sex (i.e., males reproduce more often than females), an adult population 
that is female-biased can have equal numbers of reproductive individuals of each sex 
in a given year (Hays et al. 2010, 2014; Stewart and Dutton 2014).

Sea turtles have temperature-dependent sex determination (TSD) with the percent-
age of female hatchlings increasing along with incubation temperatures (Yntema and 
Mrosovsky 1980; Standora and Spotila 1985). The temperature that results in 50/50 
PSR is known as the pivotal temperature (PT), and the range of temperatures over 
which both sexes are produced is the transitional range of temperatures (TRT) (Pieau 
and Mrosovsky 1991). Both PT and TRT are frequently used and have been helpful 
to compare TSD curves (i.e., population-specific curve that describes the relationship 
between mean temperature and sex ratio) of different populations of sea turtles (Cheva-
lier et al. 1999; Wibbels et al. 2003; Bentley et al. 2020).

Because the percentage of female hatchlings in sea turtles increases at high tem-
peratures and global air temperatures are rising, there is some concern about the poten-
tial over-feminization of populations (Jensen et  al. 2018; Tanner et  al. 2019). Highly 
skewed sex ratios from climate warming could reduce genetic diversity, the effective 
population size and increase the potential for inbreeding (Heppell et al. 2022; Maurer 
et al. 2021; Lockley and Eizaguirre 2021). On the other hand, high temperatures also 
increase egg failure and hatchling mortality, which are therefore threatened by climate 
change (Santidrián Tomillo et al. 2009; Valverde et al. 2010).

Management strategies, such as nest shading and irrigation, have been proposed to 
mitigate the impact of high temperatures on eggs and hatchlings and PSRs (Hill et al. 
2015; Jourdan and Fuentes 2015). However, the need to artificially control PSRs is 
questionable unless the sex ratio of hatchlings reaches extremely female-biased levels 
(Patrício et al. 2021; Santidrián Tomillo et al. 2021). Although very useful concept, the 
pivotal temperature has sometimes been used to assess the occurrence of feminization 
(DeGregorio and Williard 2011; Tanabe et al. 2020). This could be problematic because 
PSRs in sea turtles are not normally balanced and female-biased sex ratios are most 
commonly found. At the same time, there is a knowledge gap because there have been 
no attempts to determine what PSR (i.e., female percentage) could be advantageous at 
the population level, around which a sex ratio equilibrium could be expected.
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Sea turtles are migratory and exhibit high seasonal fecundity (Wallace et al. 2007). Dur-
ing the nesting season, and depending on the species, female turtles may nest ~ 2 to 7 times 
every 9 to 20 days and lay ~ 50 to 130 eggs in each clutch (Miller 1997). Female turtles are 
believed to fast during the nesting period at least at some nesting sites (Hays et al. 2002), 
making the energetic cost of reproduction even more demanding. This large reproductive 
output makes female turtles unable to reproduce every year typically skipping 1 to several 
years before returning to a beach to nest (Miller 1997). Male turtles also migrate from their 
foraging grounds to the areas around the nesting beaches, where they encounter females to 
mate. Males normally leave the nesting area earlier than the females (Schofield et al. 2017), 
probably lowering their energy expenditure in comparison with females. As the cost of 
reproduction may be disproportionally larger in females, male turtles could reproduce more 
often (Limpus 1993; Miller 1997; Hays et al. 2010).

Operational sex ratios may play a central role in life history evolution, because competi-
tion for mates tends to balance sex ratio biases (Jennions and Fromhage 2017). As men-
tioned above, female-biased PSR are the norm in sea turtles and operational sex ratios tend 
to be more balanced. Consequently, the temperature that provides 1:1 hatchling sex ratios 
is of limited use to assess population over-feminization. I propose that identifying the PSR 
that results in a balanced operational sex ratio, as well as the temperature that produces that 
PSR, would be beneficial for the management of threatened sea turtle populations. Here, 
I define and estimate population-advantageous PSR (PA-PSR) in sea turtles, based on the 
reproductive frequency of adult individuals. As an example, I calculated the PA-PSR for 
two populations of sea turtles for which, both male and female reproductive frequencies 
were known. Then, I compared the estimated PA-PSR to their beach PSR, which had been 
previously reported for these populations, to assess the occurrence of population feminiza-
tion. I considered feminization as any departure from the PA-PSR toward more females. I 
also define the temperature during incubation that result in the PA-PSR (population equi-
librium temperature, PET) at the nest level to provide a more practical concept for sea tur-
tle management than the pivotal temperature. Finally, I compared PET to the pivotal tem-
peratures of different populations of sea turtles around the world for which a TSD-curve 
had been described. Moving beyond the seminal concept of the pivotal temperature and 
embracing the PA-PSR could help to better assess the impact of climate change on sea tur-
tle populations in the long run.

2 � Methods

2.1 � Definitions and considerations

Operational sex ratios are the sex ratios of sexually active females and males at a given 
time (Emlen and Oring 1977). In sea turtles, operational sex ratio has been considered as 
the ratio of adult turtles that are ready to mate in a season (Maurer et al. 2021). Based on 
the estimations of operational sex ratios obtained at different nesting beaches around the 
world, these tend to be relatively balanced in sea turtle populations (reviewed in Santidrián 
Tomillo and Spotila 2020). Because female and male turtles have different reproductive 
frequencies, balanced operational sex ratios indicate that the adult sex ratio (ASR) in the 
population is unbalanced. Knowing the operational sex ratio (in this case, 50% female: 50% 
male) and the reproductive frequencies of each sex, the ASR can be calculated.
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Sex-specific immature survival rates are largely unresolved (Chalopka and Limpus 
2005). Because I was unaware of any differences between sexes, I assumed equal survival 
probabilities for male and female turtles in the water. Under natural conditions, equal sur-
vival probabilities by sex would mean that the ASR mirrored the PSR of hatchlings coming 
from the beach. As mentioned before, the PA-PSR is the sex ratio of hatchlings that will 
result in a balanced operational sex ratio. Thus, if beach PSRs departed from the PA-PSR 
toward more females or males, it could indicate the occurrence of population feminization 
or masculinization respectively.

In order to assess population feminization by comparing the PA-PSR to the beach 
PSR, it is necessary to obtain a good approximation to the beach PSR. Because sea tur-
tles have temperature-dependent sex determination, PSRs are affected by the prevail-
ing climatic conditions (Godfrey et  al. 1996). To be representative at the population 
level, the estimation of beach PSR must capture climate-driven intra- and inter-annual 
variabilities in sex ratio (Godfrey et al. 1996; Laloë et al. 2016). Thus, sampling dura-
tion and sample size are key considerations to estimate beach PSRs accurately. For 
instance, estimations over approximately one decade have been used to average PSRs 
at some sites (Godfrey et al. 1996; Sieg 2010; Fuller et al. 2013) and one male-biased 
year was estimated to occur at that frequency in some areas (Sieg 2010; Heredero-
Saura et al. 2022).

The effect of temperature on hatching and emergence successes should also be taken 
into account when estimating beach PSRs. As mentioned above, high temperatures reduce 
hatching and emergence successes (Santidrián Tomillo et al. 2009; Valverde et al. 2010), 
while increasing the percentage of female hatchlings (Standora and Spotila 1985). Averag-
ing the PSR estimated for a number of nests (i.e., averaging percentages) could infer incor-
rect results because some nests have more viable hatchlings than others. Thus, weighting 
PSR by hatching/emergence success would provide a more accurate estimation (see Santid-
rián Tomillo et al. 2014).

2.2 � Remigration intervals and calculation of population‑advantageous PSR

I estimated the PSR that would be advantageous at the population level (PA-PSR), based 
on different combinations of female and male remigration intervals (RIs). For female 
turtles, I considered mean RIs between 1 and 6 years to account for variability among 
populations. There is extensive literature on the RIs of female sea turtles based on cap-
ture-mark-recapture data obtained on the nesting beaches (Limpus et  al. 1984; Troëng 
and Chaloupka 2007; Hatase and Tsukamoto 2008). Remigration intervals vary inter-
annually and among populations because they are affected by ocean primary and second-
ary productivities and by the species-specific trophic status (Broderick et al. 2003; Saba 
et al. 2007). Mean RIs between 2 and 3 years are the most common intervals (Limpus 
et  al. 1984; Miller 1997; Troëng and Chaloupka 2007). However, although mean RIs 
over 4  years are infrequent in sea turtle populations, RIs are highly variable and have 
been estimated to be as long as 5–7 years in green turtles (Chelonia mydas) in Australia 
(Limpus et al. 1994, reviewed in Troëng and Chaloupka 2007). Exploring these higher 
RIs would also allow us to account for the extremes that could occur under climate 
change or due to changes in resource availability (Stubbs et al. 2020). I also considered 
RIs as short as 1 year, because such a short frequency has been recorded for some indi-
viduals (Miller 1997). Moreover, since RIs depend on ocean productivity and conditions 
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could change through time (Hays 2000; Saba et  al. 2007), it was important to include 
both short and long RIs in the analysis.

Less information is available on male RI due to the difficulty of capturing and/or 
recapturing male turtles at sea. The few studies that have attempted to estimate male 
RIs, either by satellite telemetry or by in-water capture, indicated that male loggerhead 
and green turtles had higher reproductive frequencies than females with RIs being nor-
mally as short as 1 year (or slightly longer than that) (Hays et al. 2010; Limpus 1993; 
Casale et  al. 2012). Based on this information, I considered that male RIs could be 
between 1 and 3 years. For each combination of male and female RIs, I estimated the 
population-advantageous primary sex ratio (PA-PSR).

The average number of reproductive female and male turtles per season could be cal-
culated as: Rf = Nf∕RIf  and Rm = Nm∕RIm , where Rf and Rm correspond to the mean 
number of reproducing female and male turtles respectively in a season, Nf and Nm are 
the numbers of adult females and males in the population (reproductive and non-repro-
ductive) and RIf and RIm correspond to the mean remigration intervals for each sex in 
the population. Since we assume that operational sex ratios are balanced (Rf = Rm), we 
can substitute the terms of the previous equation:

therefore, the total number of females would be as follows:

Since the adult sex ratio (ASR) is calculated as female percentage, this is as follows:

, which translates into the following:

and can be summarized as follows:

Because we assumed an equal survival probability for all age classes from hatchlings 
to breeding adults for both sexes, the adult sex ratio (ASR) was set to equal the PSR of 
hatchlings coming from the beach. Thus, the equation we used to estimate PA-PSR was 
as follows:

Finally, I estimated PA-PSRs and compared it to beach PSRs for two example 
sea turtle populations for which male and female RIs have been previously reported: 

Nf∕RIf = Nm∕RIm

Nf =
RIf

RIm
∗ Nm

ASR =
Nf

Nf + Nm

ASR =

RIf

RIm
∗ Nm

RIf

RIm
∗ Nm + Nm

ASR = (
RIf

RIm
)∕(

(

RIf

RI

)

+ 1)

PA_PSR = (
RIf

RIm
)∕(

(

RIf

RIm

)

+ 1)
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loggerhead turtles (Caretta caretta) that nest in Greece (Hays et  al. 2010, 2014) and 
green turtles that nest in Heron Island, Australia (Limpus 1993). In the case of the log-
gerhead turtles from Greece, Hays et al. (2014) estimated that the probability of male 
loggerhead turtles returning to reproduce to Zakynthos National Park after 1 year was 
76.4%. If we assumed that the remaining 23.6% of turtles that did not return in year 
one, did so in year two, the male remigration interval would be 1.24 years. If instead, 
those turtles came back in year three, the RI would be 1.47 years. Hays et  al. (2010) 
estimated that the mean female remigration interval for loggerhead turtles nesting in 
the nearby island of Cephalonia was 2.3 years. In the case of green turtles from Heron 
Island, Limpus et  al. (1993) estimated that male and female reproductive frequencies 
were 1–2  years and 4.7  years respectively, based on capture-mark-recapture of turtles 
at foraging grounds. Estimations of beach PSR were previously reported as 68–81% for 
loggerhead turtles nesting in Greece (Zbinden et  al. 2007; Katselidis et  al. 2012) and 
73–87% for green turtles nesting in Heron Island (Booth and Freeman 2006).

2.3 � Population equilibrium temperature

I define population equilibrium temperature (PET) as the temperature that results in the 
PSR that is advantageous at the population level (PA-PSR). For example, if PA-PSR is 
70% female, the PET would be the temperature along the TSD curve of the population of 
study that will result in a sex ratio that is 70% female. To compare PET to PT for different 
populations of sea turtles, I selected all populations I could find from published records 
for which a TSD curve had been depicted. I found 12 populations of sea turtles, including 
three populations of green turtles (one population from Suriname, Godfrey and Mrosovsky 
2006 and two populations from Australia, Bentley et al. 2020), three populations of log-
gerhead turtles (one population from Greece, Rees and Margaritoulis 2004, one popula-
tion from USA, LeBlanc et  al. 2012a and one population from Australia, Woolgar et  al. 
2013), three populations of flatback turtles (Natator depressus) from Australia (Bentley 
et al. 2020), one population of leatherback turtles (Dermochelys coriacea) from Costa Rica 
(Binckley et al. 1998), one population of olive ridley turtles (Lepidochelys olivacea) from 
Brazil (Castheloge et al. 2018), and one population of Kemp’s Ridley turtles (Lepidochelys 
kempii) from the USA (LeBlanc et al. 2012b). I used the TSD-curve of each population to 
estimate PET. Then, I compared PETs and PTs for a range of PA-PSRs.

3 � Results

3.1 � Population‑advantageous PSR

Population-advantageous PSR (PA-PSR) increased along with the female remigration 
interval (RI) for any given male RI (Fig.  1). The longer female turtles take to return to 
the beach to nest, the greater the female bias in PA-PSR. On the contrary, the longer male 
turtles take to migrate to reproduce again, the lower the proportion of females required to 
produce a PA-PSR for a given female RI (Fig. 1, Table 2).

Based on the previously described RIs of female and male turtles, I estimated that the 
PA-PSRs of green turtles from Heron Island were between 70 and 82% female and PA-
PSR of loggerheads from Greece were 61–65% female. Beach PSRs for Heron Island were 
reported as 73% and 87% female in 2002 and 2003 respectively (Booth and Freeman, 
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2006), which is only slightly above the estimated PA-PSR. Beach PSRs for Zakynthos were 
reported by Zbinden et al. (2007) as 68% and 75% female in 2002 and 2003 respectively, 
and by Katselidis et al. (2012) as 77%, 80.6%, and 73.2% in 2007, 2008, and 2009 respec-
tively. Average beach PSRs for all those years would be 74.7% female, which is 9.7–13.7% 
above the PA-PSR estimated. Thus, if beach PSRs were accurately estimated, the percent-
age of female hatchlings coming from the beaches would be slightly above the levels that 
are advantageous for the populations suggesting that a mild feminization may be occurring, 
especially in Greece.

3.2 � Population equilibrium temperature

As the PA-PSR increased in female percentage, the difference between PET and PT 
became larger (Fig. 3), but the rate of change varied among populations due to the var-
iability in the shape of TSD curves (Figs. 2 and 3). In particular, the largest differences 
between PET and PT were found in the green turtle nesting population of Suriname, 
followed by one green turtle population nesting in Australia and by one of the flatback 
populations (Figs. 2 and 3). On the contrary, the smallest differences between PET and 
PT were found in the population of loggerhead turtles that nest in Australia, followed 
by one of the flatback populations and by the loggerhead turtles that nest in Greece 
(Figs. 2 and 3). Generally, the populations with the smallest differences between PET 

Fig. 1   Population-advantageous 
primary sex ratio (PA-PSR) of 
hatchling sea turtles to reach bal-
anced operational sex ratios (1:1) 
depending on (a) the remigration 
intervals (RI) of female and male 
turtles and (b) the ratio between 
female and male remigration 
intervals. Red-dashed lines 
indicate the PA-PSRs cor-
responding to a female RI of 
3 years and male RIs of 1 and 
2 years. The longer that female 
turtles take to return to nest, the 
greater the proportion of females 
needed to produce a population-
advantageous sex ratio. However, 
as males take longer to return to 
nest, the opposite effect occurs, 
so that less females are required 
to produce a population-advanta-
geous sex ratio
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and PT also had the narrowest ranges of temperatures over which both sexes are pro-
duced (i.e., TRTs, see for example Fig. 2e), with some exceptions. For example, one of 
the flatback populations had a very small difference between PET and PT, despite hav-
ing a relatively wide TRT (Fig. 2h). For all populations, the difference between PET 
and PT was also proportionally larger at higher PA-PSRs than at lower ones (Fig. 3). 
At the PA-PSR of 75% female, PET ranged between 29.1 and 31.1 °C and PT between 
29.0 and 31.0 °C (Fig. 2). However, there was considerable intra-specific variability in 
TSD curves, and therefore in the PTs and PETs, in those species for which there was 
more than one population (Figs. 2 and 3). For example, at a 75% female PA-PSR, PET 
ranged between 29.6 and 30.5 °C in green turtles, 29.1 and 29.9 °C in loggerhead tur-
tles and 29.9 and 31.1 °C in flatback turtles.

As mentioned above, the estimated PA-PSR of loggerhead turtles nesting in Greece 
was 61–65% female. Using the TSD-curve for this population, the corresponding PET 

Table 2   Mean remigration 
intervals (RI) (number of 
years elapsed between nesting 
seasons), the corresponding 
adult sex ratio (ASR), and the 
population-advantageous primary 
sex ratios (PA-PSR) (% female) 
that would result in a balanced 
operational sex ratio (OSR) in 
the population. Notice that the 
PA-PSR equals the ASR

Mean RI (years) ASR 
(female:male)

OSR 
(female:male)

PA-PSR 
(female 
%)

Female Male

2.0 1.0 2:1 1:1 67%
2.5 1.0 2.5:1 1:1 71%
3.0 1.0 3:1 1:1 75%
3.5 1.0 3.5:1 1:1 78%
4.0 1.0 4:1 1:1 80%
4.5 1.0 4.5:1 1:1 82%
5.0 1.0 5:1 1:1 83%
5.5 1.0 5.5:1 1:1 85%
6.0 1.0 6:1 1:1 86%
2.0 1.5 1.3:1 1:1 57%
2.5 1.5 1.7:1 1:1 63%
3.0 1.5 2:1 1:1 67%
3.5 1.5 2.3:1 1:1 70%
4.0 1.5 2.7:1 1:1 73%
4.5 1.5 3.0:1 1:1 75%
5.0 1.5 3.3:1 1:1 77%
5.5 1.5 3.7:1 1:1 79%
6.0 1.5 4:1 1:1 80%
2.0 2.0 1:1 1:1 50%
2.5 2.0 1.3:1 1:1 56%
3.0 2.0 1.5:1 1:1 60%
3.5 2.0 1.8:1 1:1 64%
4.0 2.0 2:1 1:1 67%
4.5 2.0 2.3:1 1:1 69%
5.0 2.0 2.5:1 1:1 71%
5.5 2.0 2.8:1 1:1 73%
6.0 2.0 3:1 1:1 75%
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for a 65% female would be 29.8 °C. Because this population has a narrow TSD-curve 

Fig. 2   Temperature-dependent sex determination (TSD) curves for several populations of sea turtles show-
ing the pivotal temperature (PT) (solid lines), population equilibrium temperature (PET75) (dashed lines), 
and transitional range of temperatures (TRT) (gray area) (see definitions in Table 1). In this example, PET75 
corresponded to a 75% female PA-PSR. The TSD-curves belong to green turtles (Chelonia mydas, CM in 
figure) that nest in (a) Suriname and (b, c) Australia; loggerhead turtles (Caretta caretta, CC) that nest 
in (d) Greece, (e) Australia, and (f) Georgia, USA; (g, h, i) flatback turtles (Natator depressus, ND) that 
nest in Australia; (j) olive ridley turtles (Lepidochelys olivacea, LO) that nest in Brazil, (k) Kemp’s ridleys 
(Lepidochelys kempii, LK) that nest in Texas, USA, and (l) leatherback turtles (Dermochelys coriacea, DC) 
that nest in Costa Rica. References are cited in methods section

Fig. 3   Difference between the population equilibrium temperature (PET) and the pivotal temperature (PT) 
for 12 populations of sea turtles for which TSD curves had been previously described. PET was estimated 
for different population-advantageous primary sex ratios (PA-PSR). Populations included green turtles (CM 
in figure) that nest in Suriname and Australia (2 populations); loggerhead turtles (CC) that nest in Greece, 
Georgia, USA (and Australia; flatback turtles (ND) that nest in Australia (3 populations); olive ridley turtles 
(LO) that nest in Brazil; Kemp’s ridley turtles (LK) that nest in Texas, USA and leatherback turtles (DC) 
that nest in Costa Rica. References are cited in methods section
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(Fig. 2d), PET would only be 0.1 °C above the PT (29.7 °C, Rees and Margaritoulis 
2004) at 65% female PA-PSR.

4 � Discussion

Warming temperatures threaten to cause unsustainable levels of feminization in sea turtle 
populations (Patrício et al. 2021). Extremely biased sex ratios (> 90% female) are not com-
mon but have already been detected on some nesting beaches (Broderick et al. 2000) and 
foraging grounds (Jensen et al. 2018). This suggests that some populations may already be 
feminizing over their equilibrium levels and interventions could be recommended if males 
became a limiting factor. However, to properly assess the occurrence and extent of femi-
nization, it would be useful to have an idea of the PSR that would be at equilibrium in the 
population (PA-PSR). Because the temperature that results in 50/50 sex ratio makes a poor 
indicator of feminization, any approximations to the actual PA-PSR, as proposed in this 
study, would help assess a more accurate level of population feminization. Using the PA-
PSR concept could also move us closer toward understanding true climate vulnerability of 
nesting populations, while management of sea turtle nests would be more demographically 
appropriate.

In addition, it is important to obtain a good approximation to the mean beach primary 
sex ratio of a population. I found that PA-PSR could be ~ 3 to 5% and 10–14% lower than 
the beach PSR in green and loggerhead turtles that nest in Heron Island and Greece respec-
tively. This suggests that a mild feminization could be undergoing, particularly in Greece. 
However, this result must be taken with caution, as beach PSR was estimated by averag-
ing the percentage of sex ratios reported for different years, which could be problematic 
because it may not account for differences in hatching success under various thermal con-
ditions. For example, the estimation of PSR in leatherback hatchlings decreased from 85% 
female to 79% female when it was estimated based on the total number of hatchlings of 
each sex that emerged over multiple years (Santidrián Tomillo et al. 2014). A similar dif-
ference between methodologies in the studied populations would indicate that population 
feminization was milder than estimated or that it was not occurring.

The estimation of PA-PSR also presents some practical problems because the repro-
ductive frequency of adult individuals may be difficult to obtain and/or it may change 
over time. A good approximation to the RI of female turtles can be obtained from mark-
recapture data. Although this is much easier to be inferred than in the case of male turtles, 
there may still be some inaccuracies. For example, a high level of nest-site fidelity is com-
mon in most sea turtle populations, but some individuals may place their nests over long 
distances, causing some turtles to go undetected during some nesting events (Miller et al. 
2003; Bowen and Karl 2007). In addition, if the level of nest-site fidelity is low in a popu-
lation, or beach coverage is poor, the RI of female turtles would be overestimated (Casale 
and Ceriani 2020; Pfaller et al. 2022). Because some beaches are difficult to be accessed or 
covered due to their extension, the probability of encountering a turtle could be low, ulti-
mately affecting the estimation of RIs. Satellite telemetry for instance, has indicated that 
turtles can often go undetected, affecting the estimation of population parameters (Tucker 
2010; Santos et al. 2021).

While the estimation of female RIs may have some inaccuracies, the estimation of RI 
of males is comparatively at its infancy. Since male turtles do not emerge to the nesting 
beaches, remigration intervals can only be obtained from capture-mark-recapture of turtles 
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at sea (Limpus 1993), or from tracking male turtles in their movements from and to the 
nesting beaches (Hays et al. 2010, 2014). The latter may be more reliable as turtles can be 
followed for the entire period between nesting seasons (Hays et al. 2014). Limpus (1993) 
estimated a RI of 1–2 years for male turtles based on recaptures of green turtles around 
courtship areas, but intervals were shorter (~ 1  year) in other populations when inferred 
from satellite tracking (Van Dam et al. 2008; Hays et al. 2010, 2014). However, estimations 
could also be explained by differences among species and rookeries. Because of the dif-
ficulties and low reliability associated with capturing turtles at sea, and the high expenses 
associated with satellite telemetry, male RIs are unknown for most populations. Conse-
quently, the application of the PA-PSR concept will be more valuable in the future, as pop-
ulation-specific male remigration intervals are refined.

I assumed equal survival for both sexes from the time hatchlings enter the water until 
turtles reach sexual maturity. However, some studies have found smaller sizes and poorer 
locomotor performance in hatchlings emerging from warmer nests that were potentially 
female hatchlings (Booth 2017; Staines et al. 2019). We cannot be certain that survival in 
the ocean does not differ between sexes. However, if this was the case, these estimations 
would need to be recalculated. Considering the most common male (1.0–1.5  years) and 
female (2–3 years) RIs for sea turtle populations in natural conditions, the PA-PSR would 
be ~ 70 to 75% female. This approximately coincides with the estimated PSR for sea turtle 
populations around the world (reviewed in Hays et  al. 2017), suggesting that the beach 
sex ratios for many populations may be close to optimal for sustaining relatively balanced 
OSRs.

The duration of the RI is environmentally driven, with the intervals of female tur-
tles being longer when sea surface temperatures are warmer (Solow et  al.  2002; Saba 
et  al.  2007). It has been suggested that ocean sea surface warming from climate change 
could increase the RI of female turtles due to a decrease in food supply from a reduc-
tion of marine net primary productivity (Saba et al. 2007; Chaloupka et al. 2008). Changes 
in oceanographic conditions toward warming conditions, could also affect male turtles 
because males and females display similar migration patterns and forage in similar areas 
(Godley et al. 2008; Schofield et al. 2010).

The PA-PSR of sea turtles is likely complex and affected by other factors than RIs. For 
instance, good or bad years in fecundity or survival that coincide with male- or female-
producing years could also eventually affect the adult sex ratio. Some areas that are highly 
influenced by El Niño Southern Oscillation, for example, are characterized by large inter-
annual variability in hatchling production and sex ratios (Santidrián Tomillo et al. 2012; 
Sieg 2010). Likewise, trade-offs between RIs and other life history traits such as fecun-
dity or survival could also ultimately influence population sex ratio. At the same time, 
RIs could also change in response to other pressures to increase chances of finding mating 
partners or caused by better foraging conditions that would allow them to reproduce more 
often. Consequently, RIs could be more dynamic than what has been presented here, likely 
affecting the PA-PSR.

On the other hand, populations could possibly have different PA-PSRs under various 
thermal conditions. The advantage of producing males or females in the offspring could 
change along with the thermal conditions, making PA-PSRs more dynamic. Temperature-
dependent sex determination provides some resilience to rising air temperatures because 
more females are produced at the high temperatures that increase embryo and hatchling 
mortalities (Santidrián Tomillo et al. 2015). By increasing the percentage of female hatch-
lings, the future number of nesting turtles increases as well, which can offset the detrimen-
tal effect of high temperatures at the population level (Santidrián Tomillo et al. 2015; Hays 
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et al. 2017). Thus, the PA-PSR could change under different thermal conditions because 
the chances of future reproduction for each sex could vary. Thus, interventions based on 
punctual estimations of PSR to artificially target them may not be a good practice as these 
may change.

For management, however, and considering that temperatures can relatively quickly reach 
critically high levels (Fuentes et al. 2009), it is useful to have an approximation to the PSR 
that would be advantageous with the information that we have today. Although in most places 
interventions are not needed, in areas where most egg clutches are already incubated in hatch-
eries due to a number of threats (e.g., high risk of egg poaching or tidal inundation; Chacón-
Chaverri and Eckert 2007; Mutalib and Fadzly 2015), PA-PSR and PET could guide man-
agement actions. For example, nest shading and irrigation have been proposed to lower nest 
temperatures and increase hatching success (Hill et al. 2015; Jourdan and Fuentes 2015; Lola-
var and Wyneken 2021; Smith et al. 2021), but this could also reduce the number of female 
hatchlings and cause population declines in the long term (Santidrián Tomillo et al. 2021). 
Thus, using PET to reach current PA-PSRs would be a better strategy than using the PT to 
reach equal sex ratios in hatchlings, where the environmental conditions of nests are already 
being controlled.

At this time, it does not seem reasonable to intervene with nests that can successfully 
incubate on the beach, as the impact of mitigation actions is not yet fully understood 
(Patrício et al. 2021). But we have to be ready in the event of feminization levels becom-
ing detrimental for sustained population growth. So how can we know when the time to 
act has come? Some sea turtle populations may be highly female-biased, but as long as 
there are males in the population and eggs are fertilized, intervention may not be needed. 
A drop in the fertility rate of eggs over time, however, could be a red flag (Phillot and 
Godfrey 2020). Additionally, sea turtles are known to have multiple paternity, as a con-
sequence of several males mating with a single female (Lee et al. 2018). A decrease in 
the level of multiple paternity, if accompanied by a decrease in fitness, could also indi-
cate that the population is becoming feminized over equilibrium levels.

On the other hand, some beaches produce extremely female-biased sex ratios, but there 
may be male-producing beaches nearby, and hatchlings from both sites could recruit to the 
same nesting population, lowering the overall female percentage of hatchlings (Baptistotte 
et  al. 1999; Zbinden et  al. 2007; Marcovaldi et  al. 2016). Thus, estimations of PSR would 
be better if done at the population (regional) level and not at the beach (local) level, which 
is sometimes complex, as different research groups may work on different nesting beaches. 
Ideally, current conservation efforts should focus on better understanding the fluctuations of 
the sex ratios of hatchlings and adult sea turtles at a regional level so that sea turtles can be 
adequately protected at the right spatial scale when necessary.
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