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Abstract

Current impacts and escalating risks of climate change require strong and decisive action
to reduce greenhouse gas (GHG) emissions. They also highlight the urgency of research to
enhance safety for human and natural systems, especially for those most vulnerable. This
is reflected in two recent US National Academies of Science, Engineering, and Medicine
studies that recommended a national focus on advancing our understanding of how to man-
age urgent current and future climate risks, and the study of approaches for increasing the
reflection of sunlight from the atmosphere to reduce global warming, a process referred
to as sunlight reflection modification (SRM). Here, we build on these recommendations
by proposing a roadmap approach for the planning, coordination, and delivery of research
to support a robust scientific assessment of SRM to reduce near-term climate risks in a
defined timeframe. This approach is designed to support the evaluation of SRM as a pos-
sible rapid, temporary, additive measure to reduce catastrophic impacts from anthropo-
genic climate change, not as a substitute for aggressive GHG mitigation. Assessing SRM
is proposed to be undertaken in the context of climate hazard risks through 2050, weigh-
ing the impacts associated with likely climate change trajectories against scenarios of pos-
sible SRM implementations. Provided that research is undertaken openly and that scien-
tific resources are made widely available, the transparency of the process and the evidence
generated would contribute to the democratization of information, participation by diverse
stakeholders, more informed decision-making, and better opportunities for all people to
weigh SRM options against climate change risks.
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1 Introduction

Current impacts and escalating risks of climate change require strong and decisive action
to reduce global emissions of greenhouse gases (GHGs) (Intergovernmental Panel on Cli-
mate Change (IPCC 2022a; IPCC 2021a; IPCC 2021b; Blunden and Boyer 2020). They
also highlight an urgent need for research to enhance the safety of human and natural sys-
tems, especially for those most vulnerable (IPCC 2022b; National Academies of Sciences,
Engineering, and Medicine (NASEM) 202 1c; Environmental Protection Agency 2021).

In particular, better information on climate risks is needed because the Earth’s climate
will warm substantially by 2050 under all emission scenarios considered by IPCC (IPCC
2021b; Mauritsen and Pincus 2017; Samset et al. 2020; Lenton et al. 2019). Such warm-
ing increases the near-term (i.e., 10—40 year) risk of climate impacts (Arnell et al. 2019)
and enhances risk of major changes in natural systems that substantially increase warming
(i-e., feedbacks) and/or impacts (i.e., “tipping events”). Recent observations of temperature
extremes in polar regions and instabilities in permafrost, ice sheets, terrestrial forests, and
circulation systems indicate these risks may be significant (Petit et al 2021, Fewster et al.
2022, Boulton et al. 2022, Boers 2021).

In this context, in March 2021 the US National Academies of Science, Engineering, and
Medicine (NASEM) published a pair of studies making recommendations for the direction
of US climate research. One urged the USA to focus on providing insights that help pre-
pare for and avoid the worst potential consequences of climate change (NASEM 2021b).
Another recommended the USA evaluate approaches for increasing the reflection of sun-
light from particles and clouds in the atmosphere to rapidly reduce global warming, other-
wise known as sunlight reflection modification (SRMI) (NASEM 2021c¢).

SRM is a class of proposed approaches identified by the scientific community as the
most promising active intervention for rapidly reducing global warming (Shepherd et al.
2009; NASEM 2015; NASEM 2021c). SRM can be accomplished either by increasing
the amount of sunlight reflected by atmospheric aerosols and clouds or by increasing the
amount of outgoing long-wave radiation from Earth by changing cloud properties. The
NASEM reports expansively covered the arguments for and against SRM research, which
remains controversial among some scientists and stakeholders. Nonetheless, SRM might
be considered as part of the portfolio of societal responses to the present and growing risks
of climate change. As such, robust information is needed on the efficacy and risks of SRM
approaches and on how they would alter climate impacts in different regions under vari-
ous scenarios (Jabbour and Flachsland 2017; NASEM 2021c¢) and projections for warming
against projected near-term climate impacts and tipping event risks.

While assessing available science is critical to equip policymakers and the public with
information to inform decision-making (Watson 2012; Biniaz and Bodansky 2020), it is
only possible if there is a robust body of science. This poses challenges for emerging areas
of research, such as SRM, where scientific evidence is scant. The central scientific problem
of SRM is also central to climate research: understanding the influence of aerosols and
clouds, and their interactions, on the atmosphere and climate (IPCC 2021a). Generating
sufficient new knowledge and advancing required existing research areas and capabilities,
particularly within a defined timeframe, requires a “roadmap” approach that integrates and
coordinates diverse research activities toward achieving a shared set of objectives.

! While SRM is sometimes referred to as “geoengineering,” the term may contribute to misunderstanding
the purpose and nature of SRM approaches and research. Hence, consistent with NASEM (2015), SRM is
used herein.
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The following sections describe a method for building a roadmap and iterating it to
assess near-term climate risks and SRM.

2 Research scope

Research required to assess the physical aspects of near-term climate risks and SRM
approaches include modeling, analytics, and observation of relevant natural systems to
compare the likely effects of interventions versus projected warming as well as the identi-
fication of thresholds that might be relevant points of intervention for safety (Finkel 2011;
Fast Track Action Committee on Earth System Predictability Research and Development
2020). Generating this information requires focused research as well as substantial invest-
ments in scientific capabilities for climate observation and prediction.

This required body of research is highly interdisciplinary (Portner et al. 2021) and cen-
tered in atmosphere and Earth system sciences. It also requires research in related natural
sciences and human systems sciences for studying impacts and other aspects of safety and
sustainability (NASEM 2021c). Recent studies in Earth system and atmospheric sciences
have demonstrated the benefits of leveraging analytical tools from other disciplines, includ-
ing applied mathematics and statistics (Smid and Costa 2018; Majumdar et al. 2021), com-
plex systems, and uncertainty research. Engineering research is critical for understanding
materials, platforms, and implementation regimes for SRM approaches.

2.1 Anthropogenic analogs

The mechanisms by which SRM could be used to cool climate have been observed through
the effects of both natural and anthropogenic emissions. Particles (namely, aerosols) from
anthropogenic sources, such as factories and power plants, increase the reflection of sunlight
from the atmosphere both directly (i.e., sunlight scattering off of particles) and indirectly
(i.e., where they enhance the reflectivity of clouds). The collective effect of aerosol pollution
was recently assessed as virtually certain to be negative (a cooling effect), exerting a climate
forcing of — 1.1 Wm? (= 1.7 to—0.4 Wm?), counteracting about one-third of the forcing by
GHGs. Notably, this is the most uncertain of the anthropogenic climate forcing influences
(IPCC 2021a).

Because SRM research centers on understanding influences on atmospheric processes
that drive climate and analyzing climate impacts and uncertainties, much of the needed
research is dual purpose, with the potential to both accelerate a broad-based understanding
of climate while also improving the management of climate risks (NASEM 2015; Wood
et al. 2017; Kremser et al. 2016; Portier 2010).

2.2 SRM approaches

The most promising SRM approaches identified by NASEM (2021a) and others for rap-
idly reducing warming involve dispersing aerosols in the stratosphere via stratospheric
aerosol injection (SAI), in the lower tropospheric marine boundary layer via marine cloud
brightening (MCB), or into cirrus clouds in the upper troposphere via cirrus cloud thin-
ning (CCT). The intent of these approaches is to increase the reflection of sunlight from
the atmosphere (SAI and MCB) or increase Earth’s outgoing longwave radiation (CCT)
through direct scattering (SAI) or by changing cloud properties (MCB and CCT). The
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direct and indirect effects of these approaches are determined by key atmospheric and
physical processes and feedbacks, including cloud—aerosol interactions, radiative transfer,
heterogeneous chemistry, and atmospheric transport. As such, the lines of research, activi-
ties, and goals are similar across SRM approaches.

3 Roadmap development

Roadmaps are common elements of an integrated, interdisciplinary research approach
designed to support the coordinated delivery of outputs in a defined timeframe. While they
are less commonly used in climate research, where much of the work is conceptualized,
resourced, and undertaken as basic science, they are often used for major climate model
development or observing programs (U.S. Department of Energy 2022; Universities Space
Research Association n.d.; Aschwanden et al. 2021). There is growing recognition that
such a coordinated and mission-driven research approach would be beneficial to improve
Earth system science and predictions in general (NASEM 2020; Waliser 2020) as well
as to evaluate SRM in particular (Long 2017; Wanser 2017). The following subsections
describe the major characteristics of a proposed roadmap approach to define and coordi-
nate SRM-related research.

3.1 Roadmap timeframe

Assessing near-term climate risks and possible interventions requires reconciling the fea-
sibility of generating and analyzing information with the urgency of policy responses.
With respect to designating a timeframe for assessment of SRM, we reference escalating
climate-linked extremes (AghaKouchak et al. 2020, Fischer et al. 2021, Seneviratne et al.
2012) alongside the estimated time for reaching a global temperature increase of 1.5 °C,
which is a critical threshold for natural system hazards (i.e., within 10-15 years) (IPCC
2021b). Given this, we propose a roadmap designed to significantly reduce key uncertain-
ties in SRM approaches in a 5-year timeframe.

3.2 Goal definition against the roadmap timeframe

One of the most important steps in planning research designed to support a scientific
assessment in a specific timeframe is to define specific goals, as these determine the
required deliverables and/or states of progress to be reached during a fixed timeframe.

Assessing the feasibility of SRM approaches and their potential role in reducing near-
term climate risks requires research that falls within two high-level objectives:

e Objective 1: Characterize the key processes through which SRM approaches operate
and determine how to accurately represent these processes in models used to project
global climate impacts.

e Objective 2: Evaluate the projected near-term impacts and risks of a range of climate
change scenarios without and with different SRM scenarios and strategies.

From these objectives, key questions for research can be defined, lines of research can

be identified, and goals can be established. These questions and goals should be developed
in the context of scientific and technical importance and feasibility prior to considering
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funding constraints. We will start by looking at approaches to working toward these two
objectives in more detail.

3.3 Building a roadmap to meet objectives
3.3.1 Objective 1: Characterize key processes of SRM approaches

Research for Objective 1 requires addressing the following set of questions that are applica-
ble to all three of the leading SRM approaches (SAI, MCB, and CCT):

e Question (Q)1: Can aerosols of the needed size and concentration be generated and
delivered into the atmosphere with the required volume and spatial distribution?

® (Q2: How do aerosols evolve, disperse, and influence the local atmosphere under differ-
ent conditions?

e (Q3: How can the influences of SRM aerosols versus background aerosols be distin-
guished under different conditions?

e (Q4: How much global cooling can be achieved through different implementations of
SRM and in different future climate scenarios?

e (Q5: What is required to incorporate SRM processes into global and regional projec-
tions of climate, under different scenarios for future climate and ranges of natural and
anthropogenic emissions?

In many cases, answers to these questions are interdependent. To address these ques-
tions and define research requirements, Table 1 provides a proposed initial roadmap that
delineates goals in relevant areas of research. It is organized conceptually from the lowest-
level processes through scaled analysis, to provide the information needed to accurately
model global effects and impacts.

Within each line of research, a research plan can be developed based on the following:

Which activities are considered “critical path?”

What areas of work could be accelerated?

Which key questions and uncertainties can be addressed through modeling and passive
observational studies (e.g., of proxies) and which require small-scale controlled release
experiments?

Importantly, within specific research lines and activities, research approaches can be
defined to identify thresholds in key processes or first-order effects that may rule out SRM
approaches, creating early off-ramps (Diamond et al. 2021) or inflection points for changes
in research focus consistent with the recommendations of NASEM (2021c). As with any
research area, specific goals and associated research activities would need to be revisited
with new learning, thus requiring revisions to the roadmap accordingly.

3.3.2 Objective 2: Evaluate near-term impacts and risks with and without SRM

While Objective 1 is intended to characterize key processes associated with different SRM
approaches and represent SRM accurately in models and other analysis tools, a robust
assessment of future climate impacts and risks, both with and without SRM, requires pro-
jecting, predicting, and analyzing future trajectories under different scenarios (NASEM
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2016; Weatherhead et al. 2018). Thus, the focus of Objective 2 is to address the following
research questions:

e (Q6: How are regional and global climate impacts altered through different SRM imple-
mentation scenarios and strategies under different future climate scenarios?

This, in turn, requires addressing critical gaps in existing capabilities to understand the
current state of the atmosphere and climate.

In the context of near-term climate risks and SRM, priorities within these broad areas
of research can be focused by identifying where rapid and high-value progress could be
achieved in the following:

Reducing uncertainty in aerosol influences on atmosphere and climate.
Improving projections of near-term climate impacts and risk analyses with and without
SRM.

e Identifying where climate-related risks and impacts are most likely to be influenced by
SRM.

We have proposed a high-level framework with examples to support dialogue and fur-
ther define a roadmap for modeling and analyses (Table 2) and observations (Table 3) to
meet Objective 2. It includes the identification of minimum essential advances or targets
for accelerating progress in Earth system models and analytics, atmosphere and climate
observations, and climate research (e.g., cloud—aerosol effects, tipping events) to support
requisite research activities in the defined 5-year timeframe.

3.4 Time dependencies and critical-path activities

One of the most important aspects of a coordinated research effort is to deliver against the
defined time horizon. A critical part of this process is identifying major time dependen-
cies—milestones in research or capabilities development that must be reached to deliver
information or capabilities required for other required research or development activities.
This allows for prioritization of activities against the established timeline. We suggest sev-
eral key time dependencies (Fig. 1) to deliver a 5-year assessment for near-term climate
risks and SRM approaches; these are preliminary, illustrating important influences on the
ability to deliver information against an explicit timeframe.

Dependencies lie in areas of activity required to produce information and/or capabilities
to inform scientific assessment directly and/or as prerequisites to other required research,
placing them on the “critical path” in planning. Key examples of these critical-path
dependencies include, but may not be limited to, the following:

e Controlled release experiments: Controlled release experiments are logistically com-
plex and more resource intensive than other research activities. For example, they
require technology and take time and resources to plan, develop, and analyze. Such
studies therefore present a particular challenge when trying to deliver new learning in
a specified timeframe. A decision must be made early in the roadmap timeline whether
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SRM 5-YEAR RESEARCH ROADMAP: CRITICAL PATH ACTIVITIES
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Fig. 1 Examples of critical-path activities of an SRM 5-year roadmap by research objective

an adequate assessment can be made within the period without controlled release
experiments and whether required activities can commence when needed within the
assessment timeline. For SRM, proposed restrictions on experiments that risk delay
in their execution (ScoPEx 2021; Pidgeon et al. 2013; Gannon and Hulme 2018)
should be considered in the context of the high cost of delay to timely assessment,
particularly where similar studies are already undertaken for environmental protec-
tion (Voigt et al. 2021; Schumann et al. 2002; Anderson et al. 2011; Petzold et al.
2008). [see Box]

e Earth system prediction model advancements: Today, global Earth system pre-
diction models do not support comprehensive representation of the atmospheric
processes associated with SRM (Kravitz et al. 2020), and those treatments are
rarely used for realistic simulations of the fully interactive Earth system. Until
recently, except in one early instance for SAI (Tilmes et al. 2018), climate models
have not included the ability to simulate controlled dispersion of aerosols as pro-
posed for SRM. Model development and enhancement take time and are often built
on advancements in modeling at higher resolutions or over smaller domains. As
such, improvements in modeling capabilities need to be made in advance of when
projections are needed.

e Atmospheric baselines and monitoring capabilities: There are substantial gaps in the
characterization of the present-day composition of the atmosphere, which is needed to
produce baseline simulations, improve models for research and assessment, and monitor
significant changes in atmospheric composition from natural or anthropogenic sources
(Cavallaro et al. 2018). Given that there is also natural variability to baseline properties,
these measurements need to be conducted over multiple seasons and years for repre-
sentative sampling.

@ Springer



Climatic Change (2022) 174:23 Page 130f20 23

A Note on Release Experiments and Proposals for Delay

Research to assess SRM approaches requires an integrated comparison of high-resolution models and
observations across a range of scales. NASEM (2021c) and others (Wood and Ackerman 2013; Dykema
et al. 2014) have suggested that small-scale controlled release experiments may be important to provide
critical information on processes important to SRM that are not available by other means and to test key
physical processes in higher-resolution simulations, such as at the plume and (for MCB and CCT) cloud
scale. They have also suggested that it is feasible to obtain this information with experiments that have
negligible effects on the environment and Earth system

As proposed by SRM researchers and discussed by NASEM (2021c), small-scale experiments can be used
to understand critical SRM processes that are far removed technologically or environmentally from SRM
implementation and that have negligible environmental impact. These small-scale experiments would be
similar in nature to release experiments that are currently undertaken for environmental research (Bulzan
et al. 2010; Stokstad 2008; Pretzsch et al. 2019; Flossman et al. 2019; Tessendorf et al. 2019). In the
United States and many other countries, such experiments are subject to existing regulations on physical
and environmental safety. A component of any SRM research roadmap should include identifying where
key uncertainties cannot be resolved through modeling and passive observations but could be addressed
through small-scale release experiments. The type, mass, and scale (temporal, spatial) over which mate-
rial would need to be released should be determined based on the physical science requirements of the
experiment. As in other current research areas (e.g., weather modification, fuel emissions studies) the
proposed release should then be assessed to assure it would have negligible impacts on climate and the
environment and reviewed for compliance with existing regulations

SRM experiments at any scale have been characterized as posing non-physical (or “societal”) risks, such
as a disincentive for reducing GHG emissions (sometimes referred to as a “moral hazard”). Evidence
to date, however, does not support SRM research reducing incentives for GHG mitigation (Fairbrother
2016; Merk et al. 2018; Raimi et al. 2019), and, in some cases, the possibility of SRM as a component
of society’s response to climate change increased support for mitigation (Merk et al. 2016; Cherry et al.
2021). Empirical research is needed to explore moral hazard and other societal dynamics associated with
near-term climate risk and various responses. Similarly, evidence is needed to support assertions that
delays in research associated with preferential status for inaction due to caution (sometimes referred to as
“the precautionary principle”) or other non-hazard drivers of governance lead to better public welfare and
environmental outcomes than the availability of more information through research

Notably, delivering against goals requires prioritizing outcomes and evaluating research
plans and activities against their influence on timelines. This may require tradeoffs against
consensus practices, and it may prove beneficial for smaller, more focused communities of
research to move in concert in some areas.

3.5 Development of future detailed roadmaps

From a high-level, interdisciplinary roadmap (such as that proposed here), more specific road-
maps can be developed for individual disciplines and major areas of research. These roadmaps
can, in turn, support reasonably accurate cost estimates for each line of activity and inform
estimates of resources required to deliver against the 5-year roadmap. They can also sup-
port the identification and creation of ongoing collaborations to deliver against each line or
research, including (when warranted) multiple parallel efforts to reduce technical and execu-
tion risks and better address the magnitude of complexity (Bonvillian et al. 2019).
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4 Applications

Roadmaps for near-term climate and SRM research enable a variety of activities in a con-
structive forward path for research, cooperation, and decision-making.

4.1 International cooperation

As climate impacts escalate, the likelihood increases that some countries or actors may
attempt climate interventions, including SRM, in response to environmental and/or human-
itarian threats or crises. International cooperation on research is essential to expanding and
diversifying the research ecosystem, promoting equitable access to information, develop-
ing local expertise for consultation with communities, and supporting cooperative, science-
based decision-making on courses of action (Biniaz and Bodansky 2020; NASEM 2021c).
It is particularly critical that Global South communities are included for both adequate sci-
entific coverage of these regions and for informed and equitable decision-making.

Multiple international assessment and scientific research coordination bodies are well-
positioned to play a role in informing and/or assessing near-term climate risks and SRM. A
robust but relatively narrow form of this is already underway within the Montreal Protocol,
with the potential effects of SAI on the stratosphere being included in the 2022 Scientific
Assessment of Ozone (The World Meteorological Organization 2022 Scientific Assess-
ment of Ozone). A goal-oriented research roadmap would facilitate expanded participation
and coordination of international and intergovernmental efforts.

4.2 USresearch

The proposed approach herein was developed in the US context, where resources and
technology are relatively abundant, related research is being undertaken, and a national
research program in SRM has been formally recommended by a congressionally chartered
scientific academy (NASEM 2021c; National Academy of Sciences n.d.; Blair 2016). A
well-designed US research and assessment effort, emphasizing open science and tech-
nology access, could promote international cooperation and more effective and peaceful
decision-making (Bodansky and Wanser 2021). The USA has also developed plans and/
or capabilities for disaster risk management against global catastrophic threats of lower
likelihood than global catastrophic climate changes (FEMA and NASA 2015, NSTC 2018,
Wilcox et al. 2016).

US climate research efforts across multiple government agencies are coordinated
through the U.S. Global Change Research Program (USGCRP), which has successfully
delivered rigorous assessments of climate change and projected impacts on US communi-
ties and industries (Wuebbles et al. 2017; Reidmiller et al. 2018). A well-designed scien-
tific research and assessment process managed in a similarly coordinated way might sup-
port a broad multi-agency effort executing in a focused way to deliver robust information
for decision-making (NAESM 2021c). If structured around a 5-year roadmap, such as the
prototype proposed here, this program could produce an effective assessment in the time-
sensitive context of escalating climate threats.
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5 Conclusion

The latest IPCC climate assessment (IPCC 2021a) makes it clear that while GHG emission
reductions are essential to avoid large amounts of future climate warming, under all sce-
narios considered, the Earth will still experience significant warming for at least the next
few decades. This presents a high risk of escalating climate extremes and a very real risk of
exceeding thresholds for environmental and societal tipping events (Drijfhout et al. 2015,
Lade et al. 2020, Ritchie et al. 2021) that accelerate warming and impacts beyond humans’
capacity to mitigate them. This circumstance compels the need to simultaneously work to
reduce emissions while assessing options for mitigating near-term climate risk, including
SRM. Importantly, the information and capabilities available today are inadequate for these
purposes (Bodansky and Biniaz 2020).

A US national research effort, such as that recommended by NAESM (2021c), could
establish a model for effective governance while supporting the generation of information
and development of national and international policies and monitoring capabilities for any
use of SRM (Bodansky and Wanser 2021). Such a research program, built around a pro-
posed roadmap with goals set against a defined timeframe, is essential for addressing key
questions about the potential benefits and risks of SRM against the impacts of projected
warming to inform decisions about climate safety. Provided that research is undertaken
openly, that scientific resources are made widely available, and that scientific collabora-
tion with experts in less developed countries is well supported, the transparency of the
process and the evidence generated by research would contribute to the democratization of
information, more informed and effective decision-making, and better opportunities for all
people to weigh courses of action against the dire risks posed by climate change (Blichar-
ska et al. 2017).
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