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Abstract

The Ricardian model is a widely used approach based on cross-sectional regression analy-
sis to estimate climate change impacts on agricultural productivity. Up until now, research-
ers have focused on the impacts of gradual changes in temperature and precipitation, even
though climate change is known to encompass also changes in the severity and frequency
of extreme weather events. This research investigates the impact of heatwaves on European
agriculture, additional to the impact of average climate change. Using a dataset of more
than 60,000 European farms, the study examines whether adding a measure for heatwaves
to the Ricardian model influences its results. We find that heatwaves have a minor impact
on agricultural productivity and that this impact is moderated by average temperature. In
colder regions, farm productivity increases with the number of heatwave days. For warmer
regions, land values decrease with heatwave frequency. Despite the moderating effect, the
marginal effect of heatwave frequency, i.e. the percentage change in agricultural land val-
ues caused by one more heatwave day per year, is small in comparison to the effect of
average temperature increases. Non-marginal effects are found to be relevant, but only in
the case of increased heatwave frequency. According to our results, farms are not expected
to suffer more from extreme weather than from mean climate change, as was claimed by
several previous studies.

Keywords Ricardian analysis - Climate change - European agriculture - Heatwaves -
Extreme weather events

1 Introduction
Besides gradual shifts in land-surface temperatures and rainfall, climate change encom-

passes changes in the variability of climate and in the severity and frequency of extreme
weather events (FAO 2021; Bouwer 2019). An extreme weather or climate event is defined
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as the ‘occurrence of a value of a weather or climate variable above (or below) a threshold
value near the upper (or lower) ends of the range of observed values of the variable’ (IPCC
2012, p. 116). Examples of extreme weather events are warm and cold spells, wet spells,
droughts and hurricanes. In comparison to geological disasters (e.g., earthquakes) which
have remained relatively stable, the frequency and costs of climate-related extreme events
have increased considerably over the years (FAO 2021), although the increase in costs
can also be attributed to higher exposure of people and economic resources rather than to
climate change itself (Alimonti et al. 2022). The number of yearly climate and weather-
related disasters has quadrupled since the 1970s to approximately 150 events per year glob-
ally (FAO 2021), although also here this could partly be attributed to increased reporting
of weather extremes rather than to increased frequency of the events alone (Masoomi et al.
2018). Regardless, some researchers expect that these events will cause more damage to
agriculture than increasing mean temperatures in the future (Wreford & Adger 2010; East-
erling et al. 2007). While farmers anticipate certain degrees of weather variability, extreme
events exceed these normal expectations, posing significant challenges to their agricultural
output (FAO 2021). This suggests that studies investigating the impact of climate change
on agriculture should take these extreme events into account, instead of merely looking at
the effects of average temperature and precipitation changes.

One of the most widely used climate impact assessment methods in agriculture is the
Ricardian model. This approach is based on cross-sectional regression modelling to esti-
mate the impact of climate change on agricultural productivity indirectly, by measuring dif-
ferences in land values or farm net revenues (Mendelsohn et al. 1994). The method allows
for the estimation of the marginal effect of changes in climate and the prediction of non-
marginal changes in land values (or net revenues) for alternative future climate scenarios.
The main advantage of this method, as opposed to other climate change impact assessment
methods, such as crop simulation and panel weather models, is that it captures long-term
adaptation to climate change since it assumes that farmers self-adapt to new climatic con-
ditions (Massetti & Mendelsohn 2018; Mendelsohn et al. 1999). Various studies show that
not considering adaptation leads to an overestimation of negative climate change effects on
agriculture (Butler et al. 2018; Parent et al. 2018). The Ricardian approach has been used
to estimate the impact of climate change and to value the potential of long-term climate
adaptation in European agriculture (Van Passel et al. 2017; Vanschoenwinkel et al. 2016),
which is also the geographical scope of the present study. Studies adopting this approach
have used various variables for representing average climate such as seasonal tempera-
ture, degree days or temperature bins (Vaitkeviciute et al. 2019; Massetti & Mendelsohn
2017). Climate variability, which refers to deviations from long-term climate means, is
often neglected in climate impact assessments (Ramamasy 2007). This is likely because
the impact of climate variability on biological systems is more uncertain than the impact
of mean climate (Thornton et al. 2014). Also, average climatic trends are easier to predict
than day-to-day weather variability, which is required to estimate future impacts of extreme
weather events. Quantification of the economic impacts of extreme weather events on the
agricultural sector is currently lacking, especially in the Ricardian literature. Following this
reasoning, this study expands upon the Ricardian model by incorporating a measure for a
specific type of extreme weather event: heatwaves.

Simply stated, a heatwave is a period of days with temperatures higher than normal.
The threshold for defining heatwaves varies geographically since it is dependent on what
is ‘normal’, i.e. the average climate in a region. Therefore, the impact of heatwaves is also
location specific. For example, the major heatwave which struck Europe in 2003 caused
agricultural yield drops of up to 30% in large parts of Europe, whereas Northern European
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countries which have lower heatwave thresholds benefitted from these higher temperatures
(EEA 2004). Even though heatwaves are mostly associated with agricultural losses, this
example shows that also the contrary may be true in some areas.

Since the 1950s, the largest changes in climate extremes have occurred for daily temper-
ature measurements, including heatwaves (Alimonti et al. 2022). This trend is expected to
continue in the future. In its AR6, the IPCC states that ‘in Europe, there is very robust evi-
dence for a very likely increase in... the frequency of heatwaves’ (Seneviratne et al. 2021,
p. 1549) and that ‘the number of hot days and hot nights and the length, frequency, and/or
intensity of warm spells or heatwaves will increase over most land areas (virtually certain)’
(Seneviratne et al. 2021, p. 1518). This emphasises the need for incorporating heatwaves
in the Ricardian model, to estimate the long-term effect of these increases. However, the
studies on which ARG is based use current heatwave thresholds for their projections. Also,
Alimonti et al. (2022) state that increases in heatwave frequency ‘can easily be explained
by increasing global temperatures’. Considering a gradually warming climatic trend, the
probability of exceeding these thresholds indeed becomes higher in the future, regardless
of whether this temperature is considered extreme at that time. This might lead to an over-
estimation of projected heatwaves and consequently, an overestimation of future heatwave
impacts on agricultural productivity. Heatwave temperature thresholds should therefore be
adjusted to their contemporaneous climate to give a more realistic picture of future heat-
wave occurrence (Vogel et al. 2020). Additionally, moving heatwave thresholds is in line
with the assumption of adaptation. If farmers adapt to a changing climate, temperatures
have to exceed this new ‘normal’ to be considered extreme. This is a valid assumption
since studies have shown that damage from extreme weather events in the past has reduced
over time due to adaptation (Wreford & Adger 2010). These insights are of importance
to this study. The impact of extreme heat on agriculture has been researched previously
(Butler et al. 2018; Massetti et al. 2016; Annan & Schlenker 2015; Lobell et al. 2013), but
these studies use crop-specific and region-invariant thresholds and do not account for the
accumulation of heat over consecutive days. It is important to account for this accumula-
tion because it has been shown that the impact of an abnormally hot day is dependent on
the temperature in the preceding days (Miller et al. 2021).

In the following section, we elaborate on the Ricardian model, explain how an appropri-
ate heatwave variable is computed and how it fits into the Ricardian model. In Section 3,
we describe our data. Section 4 focuses on the results, covering regression outputs, mar-
ginal effects and estimations of future land value changes based on uniform global warm-
ing scenarios. After this section come multiple robustness checks to test for stability of
the results under different model specifications. We end the paper with some concluding
remarks.

2 Methodology
2.1 The Ricardian model

The Ricardian approach builds upon the assumption that agricultural land value V (or rent
value) is equal to the present value of all net revenues (NR) which can be gained from that
land in the future (Mendelsohn & Dinar 2003). If land is expected to generate high rev-
enues in the future, this is reflected in its value. The land value per hectare of farm i can
thus be presented as follows:
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where P; and P, are the market prices of outputs j and inputs k, respectively, Q,; is a vector
of produced outputs, X;, is a vector of purchased inputs (other than land), and Z; are exog-
enous variables beyond the farmer’s control. The Ricardian literature assumes that farmers
maximise the net revenues of their farm i by making optimal decisions for the quantities
produced Q;; and the inputs purchased X;,. Since farmers will make choices concerning
their inputs and outputs while taking market prices and external factors as given, land val-
ues become a function of exogenous factors only:

V =f(Z) =f(M,RC,FC,D) )

These exogenous factors comprise different categories of variables, of which the mete-
orological variables M (average climate variables temperature 7" and precipitation P, and a
variable for heatwaves) are the focus of this research. Additionally, there are control varia-
bles that can be split into region-specific RC (e.g., socioeconomic variables, market access,
welfare conditions and soil characteristics) and farm-specific control variables FC (e.g.,
owned land, rented land, subsidies). Farm-specific control variables are those variables for
which data is available at the farm level. Lastly, we included a country dummy variable (D)
to capture unobserved country-specific elements which are not represented by the control
variables (e.g., country-level support mechanisms, policies and crop insurances), including
market price differences between countries. The country dummy variable results in a dif-
ferent intercept for each country. Our sample includes all countries that were a member of
the EU in 2017, except Malta. This represents 27 countries in total.

The model estimated in this paper is a cross-sectional model that postulates that agri-
cultural land values and meteorological variables vary together. This implies that the land
value change caused by a change in climate can be approximated if all other variables are
kept constant. If the climate in location A becomes similar to that of location B, then the
farmers in location A will start behaving like the farmers in location B (Timmins 2006).
As we assumed that farmers make optimal choices, adaptation to climate is implicitly
accounted for in the Ricardian model. Making adaptation explicit requires the use of struc-
tural Ricardian models as has been done in several studies (Chatzopoulos & Lippert 2015;
Kurukulasuriya & Mendelsohn 2008; Seo & Mendelsohn 2008b), but is outside the scope
of this study.

2.2 Avariable for heatwaves

Broadly defined, a heatwave is ‘a sequence of days with abnormally hot temperatures’.
Warm spells are anomalously warm periods over the entire year, including the winter
period (Perkins et al. 2012). In this study, we considered only summer heatwaves, rather
than all warm spells. We expect extreme temperatures within the period from June until
August to have the largest impact on agricultural productivity, since extreme temperatures
in seasons other than summer are not considered extreme by annual standards. Also, winter
warm spells occur less frequently than summer heatwaves (Supplementary Information).
There is not one single unambiguous definition of heatwaves and many national and inter-
national institutions apply their own criteria for identifying heatwaves (Hooyberghs et al.
2019). All heatwave definitions are characterised by three elements: a minimum number of
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consecutive days, a temperature threshold, which can be either relative or absolute, and a
temperature variable on which to base the calculations. Possible temperature variables are
minimum nighttime temperature, maximum daytime temperature or a combination of both.

In this research, we used the definition of Perkins and Alexander (2013). This is one of
the most commonly used meteorological definitions (Breshears et al. 2021). The authors
define a heatwave as a period of three or more consecutive days with a daily maximum
temperature 7™ exceeding the 90™ percentile. They calculate the percentile threshold over
a 30-year reference period of daily maximum temperatures with a 15-day-centred window.
Using a percentile threshold, rather than an absolute threshold, is necessary to ensure that
an observed temperature is indeed considered ‘extreme’, i.e., located in the right tail of the
daily temperature distribution (Perkins-Kirkpatrick & Gibson 2017). The dependent vari-
able for the Ricardian regression, agricultural land value, comes from the European Farm
Accountancy Data Network (FADN) database of 2017. The reference period for the heat-
wave computation is set at the 30 years preceding this land value (1987-2016). We thus
constructed the temperature threshold for day d using the following dataset (Russo et al.
2014):

2016 d+7
— max
= U 3)
y=1987 i=d—7

In this formula, U denotes the union of sets and 7% is the maximum temperature on
day i in year y. The 90" percentile threshold for eachyday of the year is thus based on the
maximum temperatures of 450 days. The percentile calculation over the dataset D, is done
for every day d of the considered 3-month summer period. Figure A in the Supplementary
Information shows the heatwave temperature threshold for d equal to July 1*. This figure
shows that in Andalucia (Spain), for example, temperatures at the start of July must exceed
35 °C for three or more consecutive days for it to be considered a heatwave. In parts of
Scotland, on the other hand, the heatwave threshold lies below 20 °C. We presented the
results of a two-season model, including winter and summer climate and warm spell vari-
ables, in the Supplementary Information.

Following the work of Perkins and Alexander (2013), five indices exist for quantifying
the characteristics of heatwaves. Firstly, the heatwave number, i.e., the number of yearly
events. Secondly, the heatwave frequency, i.e., the total number of days contributing to
heatwaves in 1 year. Thirdly, the heatwave duration, i.e., the duration of the longest heat-
wave in one year. Fourthly, the heatwave amplitude, i.e., the temperature on the hottest day
of all heatwave days in 1 year. Lastly, the heatwave magnitude, i.e., the average temperature
across all heatwaves in 1 year. Out of these five indices, heatwave frequency is the most
suitable variable for inclusion in the Ricardian model. Indeed, both heatwave amplitude
and magnitude are highly correlated with the average (summer) temperature. Including
either of these metrics in the Ricardian equation would lead to issues with multicollin-
earity. Also, we consider heatwave frequency a more comprehensive variable than both
heatwave number, which contains no information on the nature of the events, and dura-
tion, which refers to a single event only. Consequently, we decided to include the vari-
able ‘heatwave frequency’ (HWF) in the model. We calculated this as the average number
of days per year contributing to heatwaves over the last 5 years of the reference period
(1987-2016). Figure 1a shows this average heatwave frequency over Europe. Italy, South-
East Spain and Eastern Europe appear to have the highest heatwave frequency. For other
regions, the average number of heatwave days per year is limited to five. In the summer of
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Fig. 1 a Average annual heatwave frequency over the years 2012-2016, b heatwave frequency in summer
2003.

2003 (Fig. 1b), a memorable year in terms of heatwaves, the heatwave frequency in Europe
reached over 40 days in some regions.

2.3 Heatwave frequency in the Ricardian model

The study uses the regression model presented in Eq. 4. The model integrates heatwave
frequency into the standard Ricardian model as follows:

3Pyt agP,’ | + B HWF, + f,HWF?

S,

4
IV, =g+ | X a, T, +a,T> +a
=1 ' €
+B5(T5; X HWF,) + y(T5; X HWF?) + psRC; + BFC; + Y. p.D,;+e¢;
ceEU-27

In this equation, 7 and P represent average temperature and precipitation, respectively.
We calculated the averages over 1987-2016, the same period as the reference period for
the heatwave threshold calculation. Laboratory experiments with crops have shown that the
climate response of crops is hill-shaped. Consequently, we introduced quadratic terms. The
impacts of these variables on land values significantly differ per season, so they are present
in the model at a seasonal level s, where seasons go from s = 1, winter (December to Feb-
ruary) to s = 4, autumn (September to November). Both the non-linearity and the seasonal
differences in climate response were confirmed by previous Ricardian studies using Euro-
pean data (Bozzola et al. 2018; Van Passel et al. 2017).

The 2003 heatwave demonstrated that temperature acts as a moderating variable when
estimating the impact of heatwaves on agriculture (EEA 2004). For this reason, we consid-
ered interaction effects in our estimations. Heatwave frequency HWF appears in the model
as both a main effect and an interaction with summer temperature 7;. With the former,
we assumed that heatwaves have an impact on agricultural productivity because they form
a disruption of regular farm conditions. With the latter, we assumed that the impact of
heatwaves is dependent on the average summer temperature. In both cases, a linear and
quadratic term is introduced because the impact of an extra heatwave day differs depending
on the average number of heatwave days the farm already experiences. We log-tranformed
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the dependent variable land value per hectare to account for non-normality as suggested by
Massetti and Mendelsohn (2011) and Schlenker et al. (2006).

The derivative of Eq. 4 with respect to any of the meteorological variables generates the
marginal effect of a unit increase in these variables. The marginal effect of temperature or
precipitation over the entire year is calculated as the sum of the seasonal marginal effects.
Due to the interaction terms, the impact of a unit increase in heatwave frequency does not
only depend on the current number of heatwave days but also on the current average sum-
mer temperature as can be derived from Eq. 5. As a result of the logarithmic transforma-
tion of the dependent variable, this marginal value is the percentage change in land value as
aresult of a unit increase in the heatwave frequency.

dnV) 1 av,
dHWF, ~ V; dHWF,

=B+ 28,HWF; + B3T3, + 2 - B, T5 ; HWF Q)

Besides the marginal effects, also non-marginal effects can be analysed using the
model’s results. We used the model to assess land values under alternative climates by
inserting new values for the meteorological variables and keeping all other variables con-
stant. Because these forecasts only consider the effect of the meteorological variables, the
Ricardian model is a partial equilibrium model. We applied the same approach when com-
paring model quality through out-of-sample forecasting. We estimated a model based on
a random subsample of observations (80%) and then used it to predict the land values for
the remaining part of the sample (20%). We then compared these to the actual land values
using the RMSE. The model with the lower RMSE—we tested the significance with a Wil-
coxon signed rank test—has a higher predictive power. This is also done by Massetti et al.
(2016). We treated marginal and non-marginal impacts, as well as out-of-sample forecasts,
in Section 4.

With this cross-sectional model, we did not estimate the drop (or increase) in land val-
ues following a single heatwave day. Rather, we compared regions with different average
heatwave frequencies to estimate the impact of a change in the number of heatwave days on
land values.

3 Variables and data

The study used data which was collected in 2017 and provided by the FADN, an organisa-
tion affiliated with the European Commission (European Commission, n.d.-b). The FADN
liaison agencies collect, annually, accountancy data from agricultural holdings across their
country. The full dataset comprises a sample of almost 84,000 farms. We removed all farms
with less than one hectare of owned land and those with outlier land values. Also, since
crops grown in greenhouses are less sensitive to climatic changes, we discarded all farms
within the category ‘specialist horticulture indoor’. This resulted in a dataset of 60,976
farms. Each farm in the sample represents a larger number of farms in the population, such
that conclusions drawn from the sample can be extended to the population by weighting.
From this dataset, we used land value per hectare as the dependent variable. Other vari-
ables in the dataset, such as the irrigation system used or the type of farming, allowed for
the analysis of subsamples. Section 4 uses these subsamples to test for model robustness.
For privacy reasons, the NUTS 3 region rather than the exact coordinates of each farm
holding is given in the dataset. To link explanatory variables coming from different data
sources to the individual farms, these data are aggregated to the same regional level.
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We computed all meteorological variables for the present climate based on data from
E-OBS (Cornes et al. 2018). This is a dataset of daily weather observations interpolated
from weather station values to grid cell values. It is an ensemble dataset, meaning that
many different dataset versions were developed, using different interpolation specifica-
tions, and aggregated to reduce uncertainty. The values we used for computing the vari-
ables are the ensemble medians. The dataset has a 0.25-degree resolution. For computing
the heatwave frequency variable, we used the maximum daily temperatures. We calculated
the climate variables based on the average daily temperatures and precipitations in the
30-year period from 1987 to 2016.

A known weakness of cross-sectional models is omitted variable bias. Omitted variables
are those variables which are correlated with both the dependent variable, land value and
the variables of interest, the meteorological variables. This causes a bias in the regression
coefficients of these variables (Mendelsohn & Massetti 2017). This issue does not hold
when all factors that are correlated with both land value and climate are accounted for.
However, this approach is not feasible in practice. To address the issue, some researchers
adopt a panel model using yearly weather variation as the independent variable of inter-
est and relying on fixed effects to absorb all confounding variation (Blanc & Schlenker
2017; Massetti & Mendelsohn 2011; Deschénes & Greenstone 2007). There is uncertainty
as to whether panel models are able to capture adaptation to long-run changes in mean
climate (Massetti & Mendelsohn 2018). In this study, to account for omitted variable bias,
numerous farm and region-specific independent variables affecting land values have been
included in the models. In fact, this is one of the Ricardian studies with the largest number
of control variables to reduce omitted variable bias. Oster (2019) has developed a frame-
work for quantifying how important the unobservables would need to be as opposed to the
observed control variables to make the variables of interest insignificant. We did this test as
a way of verifying whether there is bias occurring from omitted variables.

We included three variables from the FADN dataset as farm-specific independent vari-
ables: farm altitude, subsidies per hectare and the ratio of rented as opposed to owned land
area. The altitude of the farm is a categorical variable with the following altitude catego-
ries: <300 m, 300-600 m and > 600 m. We replaced missing values by the average ele-
vation of the region, derived from the World digital elevation model (ETOPOS5) (NOAA
1988). We expected elevation to influence land values both because the Common Agri-
cultural Policy (CAP) perceives high altitudes as a natural constraint for effective farming
(European Commission, n.d.-a), and because temperatures decline with increasing eleva-
tion. The study includes subsidies per hectare because they might encourage investments
in land improvement leading to higher land values. Other studies have raised concerns
about potential endogeneity resulting from the inclusion of subsidies as a control variable
because farmers might make choices to maximise the support they receive (Dall’erba &
Dominguez 2016; Massetti & Mendelsohn 2011). Although in 2017, only a minor part of
the CAP budget was coupled to farm yields, we need to be aware of potential endogeneity
when interpreting the model results. We assumed the fraction of rented land to be relevant
since farmers are less incentivised to invest in land improvement when they do not own the
land. Thus, we expected land values to be lower, the larger the fraction of rented land.

All additional variables included in the model are region-specific control variables. Soil
variables relate to the structure and composition of the topsoil. Several studies have shown
that the quantities of gravel, silt and clay influence land productivity. Also, neutral soil is
preferred over acidic and alkaline soil types (Van Passel et al. 2017; Vanschoenwinkel et al.
2016). Soil pH thus requires a quadratic term such that land values can be maximised at a
pH close to 7. The original data for these variables come from the Harmonized World Soil
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Database (Fischer et al. 2008). We used a re-gridded version from ORNL DAAC which
has a 0.05-degree resolution (Wieder et al. 2014). Water availability has been shown to be
a significant variable in Ricardian analyses (Mendelsohn & Dinar 2009, 2003). Therefore,
the model includes the variable ‘Baseline water stress’ from the World Resources Institute,
which measures the total annual water withdrawals as a fraction of the total annual avail-
able blue water (Gassert et al. 2014). The higher this fraction, the more competition exists
between water users. The socioeconomic variables population density, distance from the
region centroid to the nearest big city (with > 500,000 inhabitants) and distance to the near-
est port are all indicators for the accessibility of markets. Gross domestic product (GDP)
per capita controls for regional price levels. The data we used to compute these variables
came from various data sources, all listed in the Supplementary Information. We compiled
the dataset using the ‘raster’ and ‘rgdal’ packages from the R open statistical software
(Bivand et al. 2021; Hijmans 2021; R Core Team 2020). We also used R for all of the fol-
lowing analyses.

4 Results
4.1 Ricardian regression results

Because we assumed that temperature moderates the impact of heatwaves on agricultural
productivity, this relationship had to be present inside the model. We estimated two dif-
ferent models: one without interaction effects and one with interaction effects. The model
with interaction effects is the model presented in Eq. 4. The model without interaction
effects is analogous but excludes the two interaction terms. Consequently, this model is
nested into the model with interaction terms. Table 1 presents the regression results. The
standard errors are HC,, White standard errors robust to heteroscedasticity (White 1980).
Significance of the heatwave terms in the model with interaction effects suggests that the
assumptions made in Section 2.3 are correct. Heatwaves affect land values, because they
form a disruption of mean climatic conditions, under the moderating effect of tempera-
ture. A Wald test for comparing nested models confirms that the unrestricted model (model
2) outperforms the restricted model at a 1% significance level (F(2, 60,914)=125.52,
p<0.001). In other words, the model with the interaction effects explains the variance in
the dependent variable better than the model without the interaction effects. Also, the AIC
and BIC of the model with interaction effects are lower than the model without interaction
effects. This indicates that the former fits the data better than the latter, despite its higher
complexity (Burnham & Anderson 2004). Lastly, using out-of-sample forecasting the
median RMSE of model 2 (0.6962) is significantly lower than the median RMSE of model
1 (0.6984). Hence, model comparison suggests that the analysis should include the interac-
tion between temperature and heatwave frequency, despite the adjusted R-squareds of the
two models being very similar. In what follows, we used the unrestricted model. The reader
should be aware that, due to omitted variables, there is a bias in the model parameters.
Using the approach proposed by Oster (2019), we found that omitted variables can easily
cause the meteorological variables—including heatwave frequency—to become insignifi-
cant. This means that there is likely at least one confounder which biases the results.
Because the dependent variable is log-transformed, the beta coefficients of the linear
variables can be interpreted as the percentage change in the dependent variable caused
by a unit increase in these independent variables. For example, according to these
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o Model Niodel 2

interaction between summer Coef SE Coef SE

temperature and heatwave

frequency Winter temperature 0.157" 0016  0.131"  0.016
Winter temperature2 —0.009""  0.001 —0.013""  0.001
Spring temperature —0.197""  0.036 —-0211""  0.036
Spring temperature? 0.022""" 0.002  0.025""  0.002
Summer temperature  0.658™"" 0.053 0555  0.053
Summer temperature’  —0.020""  0.001  —-0.018""  0.001
Autumn temperature —0.329""  0.045 -0.262"" 0.044
Autumn temperature’>  0.007"" 0.002  0.006™  0.002
Winter precipitation —0.151""  0.012 -0.137""  0.012
Winter precipitation®>  0.005™" 0.001  0.005™  0.001
Spring precipitation —0.016™  0.024 —0.030""  0.024
Spring precipitation>  0.006™" 0.002  0.006™  0.002
Summer precipitation  0.004" 0.013 -0.016"" 0013
Summer precipitation’>  —0.001""  0.001  0.0003"  0.001
Autumn precipitation  0.102"" 0.014  0.110™  0.014
Autumn precipitation’>  —0.004™"  0.001  —0.004""  0.001

Heatwave frequency 0.019"™ 0.004  0.126™  0.024

EEEY ]

Heatwave frequency’ —0.001 0.000 0.002 0.001
Summer temp x HWF —0.005""  0.001
Summer temp x HWF? —0.0001""" " 0.000
GDP —0.001""  0.000 —0.0001"""  0.000
Distance to cities —0.001""  0.000 —0.001"" 0.000
Distance to ports —0.001™"  0.000 —0.001""  0.000
Population density 0.037"" 0.024  0.037™  0.024
Subsidies 0.003"" 0.000  0.003™  0.000
Fraction rented land 0.069™ 0011  0.001™  0.011
Clay in topsoil 0.002"" 0.001  0.003""  0.001
Gravel in topsoil 0.015™ 0.002  0.009""  0.002
Silt in topsoil 0.002"" 0.001  0.001" 0.001
pH H,0 —-0.041""  0.069 -0256""  0.070
pH H,0? 0.015™ 0.006  0.033""  0.006
Water stress 0.001"" 0.000  0.001™  0.000
Altitude 300-600 m —0.186™"  0.008 —0.192""  0.008
Altitude > 600 m —0.440™  0.015 —0.450"" 0015
Constant 3.938™ 0.405  5.047°" 0410
Country dummies Yes Yes

Observations 60,976 60,976

Adjusted R? 0.638 0.640

AIC 129,376.2 128,995.0

BIC 129,926.3 129,563.1

"p<0.1; “p<0.05; "p<0.01. The reported standard errors are White
standard errors corrected for heteroscedasticity.
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regression results, if the fraction of rented as opposed to owned land is increased by
1%, then the land values increase by 0.1%. This is not in accordance with our hypothesis
from Section 3. A possible explanation is that renting land is more flexible than owning
land. Farmers thus have the flexibility of selecting the plot of land which gives them
higher revenues. Also, in some countries, the majority of land is rented. In this case,
the fraction of rented land has little influence on land values. A last potential reason
could be that if farmers do not purchase land, they have more resources to spend on land
improvement. The beta coefficients of other control variables do confirm the findings of
previous Ricardian studies. The larger the distance from cities or ports, i.e., from mar-
kets, the lower the land values. The higher the level of elevation, the lower the land val-
ues. If competition for water is increased by 1%, meaning that more water is withdrawn
as a fraction of the supply, land values increase by 0.1%. In contrast to previous studies,
the parameters for GDP and subsidies are not significantly different from zero. To check
for endogeneity, we compared the results with and without the subsidies variable and
found that they do not alter. This implies that subsidies are not a source of endogeneity
bias in our model.

The interpretation of the coefficients for climate and heatwave variables is less evident.
Figure 2a shows the correlation between log farmland values and heatwave frequency for
the entire range of current heatwave frequencies [0, 23]. None of the other regressors is
considered in this plot, so it should be interpreted with caution. Because of the interaction
effect, the curve differs for different levels of summer temperature. The 10" and 90" per-
centile summer temperatures are shown, representing respectively low and high tempera-
tures. Also, the weighted mean summer temperature is shown, of which the weight is the
amount of land each farm represents in the sample. For high temperatures—average sum-
mer temperature around 23 °C (P90)—the relationship between heatwaves and land values
is negative. Land values reach a maximum at 4 heatwave days and, from then onwards, the
curve declines and every extra heatwave day reduces land values and thus farm productiv-
ity. At the weighted mean, land values increase almost linearly with every heatwave day
(Fig. 2a), at a rate of about 2.6% (Fig. 2b). For regions with summer temperatures around
16 °C (P10), the curve is steeper, with marginal increases of about 4.7% (Fig. 2b). On
both figures, the 95% confidence intervals are shown. From Fig. 1a, we see that the major-
ity of European farmland experiences on average maximum 5 heatwave days. This means
that most farms are situated to the left of this point in Figs. 2a and 2b, i.e., farms located
in warmer regions experience little impact from higher heatwave occurrence and those in
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0 == = 0 =) 15 20
S 00 S 2%
02 0 5 10 15. 0
-4%
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———Low summer temperature (P10) Mean summer temperature ——High summer temperature (P90)

Fig.2 a Response of farmland values to heatwave days for three different levels of summer temperature, b
marginal effect of heatwave frequency in percentage of land values.
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colder regions experience gains. One possible explanation could be that extreme tempera-
tures in colder regions are not extreme by European standards. These farmers still have
room to adapt using measures previously used by farmers located in warmer regions. This
confirms the assumption of the Ricardian model that farmers in a changing climate behave
like farmers who have already experienced this climate.

The boxplots in the Supplementary Information compare the average marginal effect
of heatwave frequency with the marginal effects of seasonal and annual temperatures. The
impact of one more heatwave day on land values is 2.9%. This is relatively small in com-
parison to the effect of a 1 °C increase in the summer temperature which leads to an aver-
age decrease in land values of 13.2%. Despite this large detrimental impact, the overall
marginal effect of temperature is positive (13.5%) for the current climate. Looking at the
marginal effects only, we cannot confirm that heatwaves have a higher impact on agricul-
ture than increased temperature. Due to correlation, these marginal effects may not be inter-
preted entirely separate from each other. In general, a temperature increase in one season is
related to temperature increases in other seasons. And because of the interaction between
heatwaves and summer temperatures, one cannot view these effects separately from each
other either. This correlation between variables does not pose a problem when all variables
are considered simultaneously, for example when estimating non-marginal impacts.

4.2 Non-marginal impacts

The regression results can be used to estimate welfare impacts caused by future
changes in climate. We used uniform warming scenarios rather than the results of cli-
mate projections models. For predicting future heatwave frequencies, we would have
required accurate temperature projections at a daily level. Although daily projections
are available, they are very uncertain. We therefore relied on uniform warming scenar-
ios as previously used by, among others, Mendelsohn et al. (1994) and Massetti et al.
(2016). Uniform warming encompasses an analogous temperature increase for every
region in every country and for every season. Figure3 maps the percentage change in
land values caused by increases in temperature and heatwave occurrence by NUTS3
region. We let annual temperatures increase with 1.8 °C and 3.7 °C, which are the
mean [PCC (2013) forecasts for the period 2081-2100 in comparison to the period
1986-2005 of the RCP 4.5 and the RCP 8.5 climate projection scenarios, respectively.
Actual temperature increases by the end of the century are expected to fall within
this range. This is not necessarily a realistic picture of how climate will evolve but
an advantage of these uniform scenarios is that we can attribute the differences in cli-
mate impacts to regional differences in climate sensitivity alone (Massetti & Mendel-
sohn 2011). For heatwave frequency, we proposed three scenarios: a stable heatwave
frequency and an increase with 5 days and 10 days, respectively (once and twice the
standard deviation of the current HWF distribution).

We see that the majority of Europe experiences welfare growth as a result of both
temperature and heatwave increases. This is depicted by the green areas on the maps
in Fig. 3. A large part of Southern Europe is negatively impacted by both temperature
and heatwave increases. For the most extreme scenario—a 3.7 °C increase and 10 more
heatwave days—land value changes go from — 74 to + 139% over the entire EU sample.
For the least extreme scenario, changes range from —25 to+25%. A scenario where
heatwave frequency does not change and temperature increases uniformly by 3.7 °C
leads to land value changes within the range of — 44 to+60%. Other Ricardian studies
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Fig.3 Percentage change in land values for six different climate scenarios, from left to right: current
heatwave frequency, 5 more heatwave days and 10 more heatwave days. First row: current temperature
increased by 1.8 °C. Second row: current temperature increased by 3.7 °C

using FADN data, which neglect heatwaves, predict much larger losses in Southern
Europe. For example, Vanschoenwinkel et al. (2016) and Van Passel et al. (2017) pro-
ject land value losses of at least 80% in South-west Spain and Portugal under scenarios
with temperature increases from 3.1 up to 4.4 °C. A potential reason for this is that
these studies use climate projection models rather than uniform warming scenarios.
These climate models predict higher levels of warming in the south as well as precipi-
tation decreases, a variable which we kept unaltered in this study.

Despite the striking non-marginal impacts, there is doubt on whether heatwaves will
occur more or become more severe in the future. Researchers who claim that heat-
waves will significantly increase by the end of the century, such as Fischer and Schir
(2010) who forecast up to 20-fold increases in certain places, base their calculations
on constant heatwave thresholds. The probability of exceeding a temperature threshold
that was set in the past becomes higher with increasing mean temperatures. These stud-
ies assumed that what is perceived as extreme weather today, will continue to do so in
the future. However, this goes against the assumption that humans adapt themselves to
the climate in which they reside. Several studies that use fully moving thresholds—a
more realistic assumption—predict no change in heatwave characteristics (Vogel et al.
2020). These studies depart from the assumption that the probability density func-
tion of daily maximum temperatures is shifted with the mean temperature change, and
that the variability of daily temperatures (i.e., the shape of the distribution) remains
unchanged (Simolo et al. 2010). Following this reasoning, the most likely scenarios
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are those depicted in the left column of Fig. 3. However, this does not mean that the
impact of heatwaves will not change in the future. As can be seen from the response
curves in Fig. 2, increased temperatures can cause the heatwave impacts to change,
regardless of whether the number of heatwave days per year changes, as a result of the
interaction with summer temperature.

5 Robustness tests

We have made several assumptions throughout this study, concerning model specifica-
tions, variable selection and sample delimitation. In what follows, we tested whether farm
response to heatwaves is sensitive to some of these assumptions. Figure 2a from the previ-
ous section is reproduced for each of the model specifications and compared to the original
plot. The plots are presented in Table C1 in the Supplementary Information.

5.1 Alternative meteorological variables

In their analysis of past heatwaves in Italy, Fontana et al. (2015) use ‘heatwave
intensity’ for quantifying heatwaves. The authors calculate the metric as follows:
2 max(Ty,. ; — Tpog,» 0) where T, ; is the maximum temperature on heatwave day i and
Tpy; is the temperature threshold for the same day. This variable gives an indication of the
number of heatwave days as well as their magnitudes. It is therefore a more comprehensive
variable than the heatwave frequency variable we used in this paper. However, interpreting
the marginal effect of a unit increase in heatwave intensity is less intuitive. In the figure, we
let the heatwave intensity on the X-axis range from O to 72 which is the current range of
heatwave intensities. Replicating the analysis with heatwave intensity yielded very similar
results to the ones presented in Section 4.

Some Ricardian studies use total degree days and precipitation over the growing sea-
son rather than seasonal temperatures and precipitation (Vaitkeviciute et al. 2019; Massetti
et al. 2016). The degree days variable is obtained by taking the sum of all daily tempera-
tures exceeding 8 °C over the growing season (April to September). Schlenker et al. (2006)
set 32 °C as the upper threshold for degree days, whereas Massetti et al. (2016) found that
this upper threshold did not influence the results. Therefore, we used uncapped degree
days over the growing season and include the interaction between this variable and heat-
wave frequency. Increasing the average temperature by 1 °C is equivalent to an increase of
183°days over the growing season (i.e. 1 °C for all 183 days of the growing season). From
the plot in the Supplementary Information, we found that replacing the seasonal variables
by growing season variables does not drastically change our results, i.e. low and medium-
temperature farms respond positively to heatwaves, high-temperature farms negatively. The
shapes of the curves alter slightly, from concave to convex.

5.2 Alternative regression techniques

Instead of applying ordinary least squares (OLS) to a semilogarithmic regression equa-
tion, some researchers use different statistical approaches. For example, Vanschoenwinkel
et al. (2016) applied a linear-mixed effects model with the fixed effects equivalent to the
estimates of an OLS model and random country effects for the intercept. This replaces the
country dummy variables used previously. The results of this model appear similar to the
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ones presented in Section 4.2. Our results are thus robust to changing from an OLS model
to an LME model. In line with Vanschoenwinkel et al. (2016), this justifies the use of the
more simple and intuitive OLS model for the body of this paper.

Neither the main specification nor the robustness check above deal with spatial cor-
relation in the residuals, potentially biasing the significance levels of the results. Sev-
eral Ricardian studies have corrected their models’ standard errors for spatial correlation
using the method proposed by Conley (1999) (Bozzola et al. 2018; Massetti & Men-
delsohn 2011). Since we did not have exact farm locations, calculating Conley standard
errors based on a spatial weights matrix would not have been appropriate. Rather, we com-
puted cluster-robust standard errors where the clusters are defined as the NUTS 3 regions
in which farms are located. We found that none of the four heatwave terms is significant
with these standard errors while some of the temperature variables do remain significant.
Although this means that the results from Section 4 are not valid when taking into account
spatial correlation, it does confirm that heatwaves have a negligible impact on land values
in comparison to average temperature.

5.3 Alternative datasets

Because FADN data for Western Europe is supposedly more reliable than Eastern Euro-
pean data, some studies limit their sample to exclusively Western European countries (Van
Passel et al. 2017), while some even omit Scandinavia due to data problems (Massetti et al.
2018; Moore & Lobell 2014). If we reduce the scope to 12 Western European countries
(the 15 original countries in the EU, minus Finland, Sweden and Denmark), the response
curves change: the effect of heatwaves in low-temperature regions is more positive and in
high-temperature regions more negative. This is not unreasonable since Eastern Europe,
a region with high heatwave frequencies (see Fig. 1), and Scandinavia, a region that ben-
efits from both temperature and heatwave increases (Fig. 3) are excluded from the dataset.
Looking at the maps (Supplementary Information), the predicted impacts in the South are
even more negative than when predicted by the original model. A comparison between
Northern and Southern Europe or Western and Eastern Europe could provide additional
interesting insights, but this is beyond the scope of this study.

Other possible sample limitations are the distinction between irrigated and rainfed farms
and the distinction between crop and livestock farms (Van Passel et al. 2017; Seo et al.
2009; Seo & Mendelsohn 2008a). Land values of rainfed farms appear to be less sensitive
to heatwave frequency increases than land values of irrigated farms. This is in contradic-
tion with previous studies, which found the opposite effect and attributed this to the climate
insensitivity of irrigated farms (Van Passel et al. 2017; Mendelsohn & Dinar 2003). In this
case, a possible explanation for the lower sensitivity of rainfed farms to heatwaves is that
these farms cultivate more heat-resistant crops. By not using irrigation, rainfed farms are
more vulnerable to weather uncertainties than irrigated farms. They might therefore have a
higher incentive to use heat-tolerant crops than farms that have access to irrigation. Look-
ing at the comparison between livestock and crop farms, we saw that for livestock farms
there is little distinction between the responses of farms located in high and low-tempera-
ture regions. The lack of significance in the interaction between temperature and heatwaves
is perhaps because specialised European livestock farms are generally located in cooler and
wetter regions (Van Passel et al. 2017). The results from the crops model are very similar
to those from the main model in this paper.
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6 Conclusion

With this study, we expanded upon the current Ricardian literature by including the con-
cept of extreme weather. A heatwave metric is incorporated into the Ricardian model such
that the model covers extreme weather in addition to average climate. Under the assump-
tions made and bearing in mind the study’s limitations, several cautious conclusions can be
drawn. Based on the results presented in Section 4, we would conclude that heatwaves have
a minor impact on agricultural productivity and that this impact is moderated by the aver-
age (summer) temperature in a region. In regions with lower temperatures, farm productiv-
ity increases with the number of heatwave days. In regions with mean temperature farm
productivity also increases, but less steeply. For regions with high temperatures, the rela-
tionship is negative. However, when taking into account spatial correlation in the residu-
als—which we have done as a robustness check—the heatwave impacts disappear whereas
several of the temperature variables remain significant. Consequently, this research can-
not confirm that the agricultural sector will suffer more from extreme weather events than
from gradual temperature increases as is generally assumed. This is both because of this
insignificance and because there is little evidence that, under moving thresholds, there will
be more heatwaves in the future. Also, as shown by the Oster (2019) test, the conclusions
related to heatwave impacts are not robust against omitted variable bias. There is likely at
least one unobserved confounder which biases these results. Since this also holds for the
temperature and precipitation variables, this is likely an issue for most Ricardian studies
and not just this one. It would be interesting to apply the Oster (2019) test to previously
published Ricardian papers to check whether this is indeed the case.

The study’s limitations inhibit us from deriving general policy recommendations at the
EU level. Further research is needed to confirm whether policy support is indeed more pro-
ductively spent on helping farmers adapt to average temperature increases rather than on
helping protect farmers against heatwave damage, which the results of this study suggest.
Future research could also help overcome some of the limits of this paper. The conclu-
sions presented here are the result of a cross-sectional analysis. This means that they are
drawn based on a comparison of farms experiencing different average heatwave frequen-
cies. A panel model would enable estimation of the immediate effect on net revenues after
a year with many or severe heatwaves. Net revenue is likely to respond more strongly to
heatwaves than land values. As mentioned above, a weakness of the Ricardian model is its
inability to capture unobserved heterogeneity between farms, even when many control var-
iables are accounted for. In panel models, these omitted variables are captured by the fixed
effects. There are however also drawbacks to panel models, such as to what degree adapta-
tion can be accounted for. Also, representative climate projection data would be needed to
better assess the impact of future climate on land values. The uniform warming scenarios
used for this paper are not representative of actual warming. Not every region will experi-
ence the same levels of warming. The alternative is to make predictions based on climate
models, but in order for these models to be used for the analysis of extreme weather, they
require a higher degree of certainty and unbiasedness.

Although this study has not come to any profound conclusions, the study is valuable
from a methodological point of view. Over 50 Ricardian studies have been published with-
out ever considering extreme weather events based on location and time-specific thresh-
olds. We highlighted why incorporating extreme weather could be of importance and pro-
posed a method for doing so. Also, more than previous Ricardian studies, this study has
acknowledged and addressed the weaknesses of the Ricardian approach.

@ Springer



Climatic Change (2022) 174:16 Page 17 0f 20 16

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10584-022-03438-4.

Funding This work was supported by the University of Antwerp’s University Research Fund in the form of
a doctoral project (ID 42475).

Acknowledgements The authors would like to express their gratitute to the European Commission’s DG
Agriculture and Rural Development for access to the Farm Accountancy Data Network (FADN).

Declarations

Competing interests The authors declare no competing interests.

References

Alimonti G, Mariani L, Prodi F, & Ricci R A (2022) A critical assessment of extreme events trends in times
of global warming. Eur Phys J Plus, 137(1). https://doi.org/10.1140/epjp/s13360-021-02243-9

Annan F, Schlenker W (2015) Federal crop insurance and the disincentive to adapt to extreme heat. Am
Econ Rev 105(5):262-266. https://doi.org/10.1257/aer.p20151031

Areas facing natural or specific constraints explained. Retrieved from https://ec.europa.eu/info/food-farmi
ng-fisheries/key-policies/common-agricultural-policy/income-support/additional-optional-schemes/
anc_en

Bivand R, Keitt T, & Rowlingson B (2021) rgdal: Bindings for the 'Geospatial’ Data Abstraction Library.
Retrieved from https://CRAN.R-project.org/package=rgdal

Blanc E, Schlenker W (2017) The use of panel models in assessments of climate impacts on agriculture.
Rev Environ Econ Pol 11(2):258-279. https://doi.org/10.1093/reep/rex016

Bouwer LM (2019) Observed and projected impacts from extreme weather events: implications for loss and
damage. In: Mechler R, Bouwer LM, Schinko T, Surminski S, Linnerooth-Bayer J (eds) Loss and dam-
age from climate change. Springer International Publishing, Cham, pp 63-82

Bozzola M, Massetti E, Mendelsohn R, Capitanio F (2018) A Ricardian analysis of the impact of climate
change on Italian agriculture. Eur Rev Agric Econ 45(1):57-79. https://doi.org/10.1093/erae/jbx023

Breshears DD, Fontaine JB, Ruthrof KX, Field J P, Feng X, Burger JR, . . . Hardy G E. S. J. (2021) Under-
appreciated plant vulnerabilities to heat waves. New Phytologist 231(1) 32-39. https://doi.org/10.1111/
nph.17348

Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection.
Soc Methods Res 33(2):261-304. https://doi.org/10.1177/0049124104268644

Butler EE, Mueller ND, Huybers P (2018) Peculiarly pleasant weather for US maize. Proc Natl Acad Sci
115(47):11935-11940. https://doi.org/10.1073/pnas. 1808035115

Chatzopoulos T, Lippert C (2015) Adaptation and climate change impacts: a structural Ricardian analysis of
farm types in Germany. J Agric Econ 66(2):537-554. https://doi.org/10.1111/1477-9552.12098

Conley TG (1999) GMM estimation with cross sectional dependence. J Econ 92(1):1-45. https://doi.org/10.
1016/S0304-4076(98)00084-0

Cornes RC, van der Schrier G, van den Besselaar EJM, Jones PD (2018) An ensemble version of the E-OBS
temperature and precipitation data sets. J] Geophys Res: Atmos 123(17):9391-94009. https://doi.org/10.
1029/2017jd028200

Dall’erba S, Dominguez F (2016) The impact of climate change on agriculture in the Southwestern United
States: the Ricardian approach revisited. Spat Econ Anal 11(1):46—66. https://doi.org/10.1080/17421
772.2015.1076574

Deschénes O, Greenstone M (2007) The economic impacts of climate change: evidence from agricultural
output and random fluctuations in weather. Ame Econ Rev 97(1):354-385. https://doi.org/10.1257/aer.
97.1.354

Easterling, W. E., Aggarwal, P. K., Batima, P., Brander, K., Lin, E., Howden, S., . . . Tubiello, F. (2007).
Food, fibre and forest products. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden,
& C. E. Hanson (Eds.), Climate change 2007: impacts, adaptation and vulnerability. contribution of
Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
(pp- 273-313). Cambridge, UK: Cambridge University Press.

@ Springer


https://doi.org/10.1007/s10584-022-03438-4
https://doi.org/10.1007/s10584-022-03438-4
https://doi.org/10.1140/epjp/s13360-021-02243-9
https://doi.org/10.1257/aer.p20151031
https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/income-support/additional-optional-schemes/anc_en
https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/income-support/additional-optional-schemes/anc_en
https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/income-support/additional-optional-schemes/anc_en
https://CRAN.R-project.org/package=rgdal
https://doi.org/10.1093/reep/rex016
https://doi.org/10.1093/erae/jbx023
https://doi.org/10.1111/nph.17348
https://doi.org/10.1111/nph.17348
https://doi.org/10.1177/0049124104268644
https://doi.org/10.1073/pnas.1808035115
https://doi.org/10.1111/1477-9552.12098
https://doi.org/10.1016/S0304-4076(98)00084-0
https://doi.org/10.1016/S0304-4076(98)00084-0
https://doi.org/10.1029/2017jd028200
https://doi.org/10.1029/2017jd028200
https://doi.org/10.1080/17421772.2015.1076574
https://doi.org/10.1080/17421772.2015.1076574
https://doi.org/10.1257/aer.97.1.354
https://doi.org/10.1257/aer.97.1.354

16 Page 18 of 20 Climatic Change (2022) 174:16

EEA (2004) Impacts of Europe’s changing climate: an indicator-based assessment. Retrieved from Luxem-
bourg: https://www.eea.europa.eu/publications/climate_report_2_2004

European Commission. (n.d.-a). Areas facing natural or specific constraints explained. Retrieved from
https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/income-
support/additional-optionalschemes/anc_en

European Commission. (n.d.-b). Farm accountancy data network. Retrieved from https://ec.europa.eu/
info/food-farming-fisheries/farming/facts-and-figures/farms-farming-and-innovation/structures-
and-economics/economics/fadn_en

FAO (2021). The impact of disasters and crises on agriculture and food security: 2021. Retrieved from
Rome:

Fischer G, Nachtergaele F, Prieler S, van Velthuizen H T, Verelst L, & Wiberg D (2008) Global agro-
ecological zones assessment for agriculture (GAEZ 2008).

Fischer E, Schir C (2010) Consistent geographical patterns of changes in high-impact European heat-
waves. Nat Geosci 3(6):398-403. https://doi.org/10.1038/ngeo866

Fontana G, Toreti A, Ceglar A, De Sanctis G (2015) Early heat waves over Italy and their impacts
on durum wheat yields. Nat Hazards Earth Syst Sci 15(7):1631-1637. https://doi.org/10.5194/
nhess-15-1631-2015

Gassert F, Landis M, Luck M, Reig P, & Shiao T (2014) Aqueduct global maps 2.1. Retrieved from:
http://www.wri.org/publication/aqueduct-metadata-global

Hijmans R J (2021) raster: Geographic Data Analysis and Modeling. Retrieved from https://CRAN.R-
project.org/package=raster

Hooyberghs H, Berckmans J, Lefebre F, & De Ridder K (2019) C3S_422_Lot2 SIS European health:
spells extra documentation. Retrieved from http://urban-climate.copernicus-climate.eu/documents/
Spells_extra_documentation.pdf

IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation.
A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change.
Cambridge, UK and New York, USA.

IPCC (2013) Summary for policymakers. Retrieved from Cambridge, UK and New York, NY, USA,:

Kurukulasuriya P, Mendelsohn R (2008) Crop switching as a strategy for adapting to climate change.
AfrJ Agric Res Econ 02(1):56970

Lobell DB, Hammer GL, McLean G, Messina C, Roberts MJ, Schlenker W (2013) The critical role of
extreme heat for maize production in the United States. Nat Clim Chang 3(5):497-501. https://doi.
org/10.1038/nclimate 1832

Masoomi H, de van Lindt JW (2018) Fatality and injury prediction model for tornadoes. Nat Hazard Rev
19(3):04018009. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000295

Massetti E, Mendelsohn R (2011) Estimating Ricardian models with panel data. Clim Change Econ
2(4):301-319. https://doi.org/10.1142/S2010007811000322

Massetti E, Mendelsohn R (2018) Measuring climate adaptation: methods and evidence. Rev Environ
Econ Pol 12(2):324-341. https://doi.org/10.1093/reep/rey007

Massetti E, Mendelsohn R, Chonabayashi S (2016) How well do degree days over the growing season
capture the effect of climate on farmland values? Energy Economics 60:144—150. https://doi.org/
10.1016/j.eneco0.2016.09.004

Massetti E, & Mendelsohn R (2017) Do temperature thresholds threaten American farmland? Fondazi-
one Eni Enrico Mattei. https://doi.org/10.22004/ag.econ.263482

Massetti, E., Van Passel, S., & Apablaza, C. (2018). Is Western European agriculture resilient to high
temperatures? CESifo Working Papers. Working Paper. Munich Society for the Promotion of Eco-
nomic Research. Munich, Germany.

Mendelsohn R, Dinar A (2003) Climate, water, and agriculture. Land Econ 79(3):328-341. https://doi.
org/10.2307/3147020

Mendelsohn R, Dinar A (2009) Climate change and agriculture: an economic analysis of global impacts,
adaptation and distributional effects, vol 37. Edward Elgar, Cheltenham, UK

Mendelsohn R, Massetti E (2017) The use of cross-sectional analysis to measure climate impacts on
agriculture: theory and evidence. Review of Environmental Economics and Policy 11(2):280-298.
https://doi.org/10.1093/reep/rex017

Mendelsohn R, Nordhaus WD, Shaw D (1994) The impact of global warming on agriculture: a Ricard-
ian analysis. Am Econ Rev 84(4):753-771

Mendelsohn R, Nordhaus W, Shaw D (1999) The impact of climate variation on US agriculture. In:
Neumann JE, Mendelsohn R (eds) The impact of climate change on the United States Economy.
Cambridge University Press, Cambridge, pp 55-74

@ Springer


https://www.eea.europa.eu/publications/climate_report_2_2004
https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/income-support/additional-optionalschemes/anc_en
https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/income-support/additional-optionalschemes/anc_en
https://ec.europa.eu/info/food-farming-fisheries/farming/facts-and-figures/farms-farming-and-innovation/structures-and-economics/economics/fadn_en
https://ec.europa.eu/info/food-farming-fisheries/farming/facts-and-figures/farms-farming-and-innovation/structures-and-economics/economics/fadn_en
https://ec.europa.eu/info/food-farming-fisheries/farming/facts-and-figures/farms-farming-and-innovation/structures-and-economics/economics/fadn_en
https://doi.org/10.1038/ngeo866
https://doi.org/10.5194/nhess-15-1631-2015
https://doi.org/10.5194/nhess-15-1631-2015
http://www.wri.org/publication/aqueduct-metadata-global
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=raster
http://urban-climate.copernicus-climate.eu/documents/Spells_extra_documentation.pdf
http://urban-climate.copernicus-climate.eu/documents/Spells_extra_documentation.pdf
https://doi.org/10.1038/nclimate1832
https://doi.org/10.1038/nclimate1832
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000295
https://doi.org/10.1142/S2010007811000322
https://doi.org/10.1093/reep/rey007
https://doi.org/10.1016/j.eneco.2016.09.004
https://doi.org/10.1016/j.eneco.2016.09.004
https://doi.org/10.22004/ag.econ.263482
https://doi.org/10.2307/3147020
https://doi.org/10.2307/3147020
https://doi.org/10.1093/reep/rex017

Climatic Change (2022) 174:16 Page 190f20 16

Miller S, Chua K, Coggins J, Mohtadi H (2021) Heat waves, climate change, and economic output. J Eur
Econ Assoc 19(5):2658-2694. https://doi.org/10.1093/jeea/jvab009

Moore FC, Lobell DB (2014) Adaptation potential of European agriculture in response to climate
change. Nat Clim Chang 4(7):610-614. https://doi.org/10.1038/nclimate2228

NOAA. (1988). Data announcement 88-MGG-02, digital relief of the surface of the Earth. Retrieved
from: www.eea.europa.eu/data-and-maps/data/world-digital-elevation-model-etopo5

Oster E (2019) Unobservable selection and coefficient stability: theory and evidence. J Bus Econ Stat
37(2):187-204. https://doi.org/10.1080/07350015.2016.1227711

Parent B, Leclere M, Lacube S, Semenov MA, Welcker C, Martre P, Tardieu F (2018) Maize yields over
Europe may increase in spite of climate change, with an appropriate use of the genetic variability
of flowering time. Proc Natl Acad Sci 115(42):10642-10647. https://doi.org/10.1073/pnas.17207
16115

Perkins SE, Alexander LV (2013) On the measurement of heat waves. J Clim 26(13):4500-4517. https://
doi.org/10.1175/jcli-d-12-00383.1

Perkins SE, Alexander LV, & Nairn JR (2012) Increasing frequency, intensity and duration of observed
global heatwaves and warm spells. Geophys Res Let 39. https://doi.org/10.1029/2012g1053361

Perkins-Kirkpatrick SE, Gibson PB (2017) Changes in regional heatwave characteristics as a function of
increasing global temperature. Scientific Reports (nature Publisher Group) 7:1-12. https://doi.org/
10.1038/s41598-017-12520-2

R Core Team. (2020). R: a language and environment for statistical computing. Vienna, Austria: R
Foundation for Statistical Computing. Retrieved from https://www.R-project.org/

Ramamasy S (2007) Climate variability and change: adaptation to drought in Bangladesh. FAO, Rome

Russo, S., Dosio, A., Graversen, R. G., Sillmann, J., Carrao, H., Dunbar, M. B, . . . Vogt, J. V. (2014).
Magnitude of extreme heat waves in present climate and their projection in a warming world. Jour-
nal of Geophysical Research: Atmospheres 119(22) 12,500-512,512. https://doi.org/10.1002/2014]
D022098

Schlenker W, Hanemann WM, Fisher AC (2006) The impact of global warming on US agriculture: an
econometric analysis of optimal growing conditions. Rev Econ Stat 88(1):113-12

Seneviratne SI, Zhang X, Adnan M, Badi W, Dereczynski C, Di Luca A, . . . Zhou B (2021) Weather
and climate extreme events in a changing climate. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L.
Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell,
E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelek¢i, R. Yu, & B. Zhou (Eds.),
Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1513-1766). Cam-
bridge, United Kingdom and New York, NY, USA: Cambridge University Press.

Seo S, Mendelsohn R (2008) A Ricardian analysis of the impact of climate change on South American
farms. Chilean J Agric Res 68(1):69-79

Seo SN, Mendelsohn R (2008) Measuring impacts and adaptations to climate change: a structural
Ricardian model of African livestock management. Agric Econ 38(2):151-165. https://doi.org/10.
1111/j.1574-0862.2008.00289.x

Seo SN, Mendelsohn R, Dinar A, Hassan R, Kurukulasuriya P (2009) A Ricardian analysis of the dis-
tribution of climate change impacts on agriculture across agro-ecological zones in Africa. Environ
Resource Econ 43(3):313-332. https://doi.org/10.1007/s10640-009-9270-z

Simolo C, Brunetti M, Maugeri M, Nanni T, & Speranza A (2010) Understanding climate change—
induced variations in daily temperature distributions over Italy. Journal of Geophysical Research:
Atmospheres, 115(D22110). https://doi.org/10.1029/2010JD014088

Thornton PK, Ericksen PJ, Herrero M, Challinor AJ (2014) Climate variability and vulnerability to cli-
mate change: a review. Glob Change Biol 20(11):3313-3328. https://doi.org/10.1111/gcb.12581

Timmins C (2006) Endogenous land use and the Ricardian valuation of climate change. Environ
Resource Econ 33(1):119-142. https://doi.org/10.1007/s10640-005-2646-9

Vaitkeviciute J, Chakir R, Van Passel S (2019) Climate variable choice in Ricardian studies of European
agriculture. [Climate variable choice in Ricardian studies of European agriculture]. Revue économ-
ique 70(3):375-401. https://doi.org/10.3917/reco.703.0375

Van Passel S, Massetti E, Mendelsohn R (2017) A Ricardian analysis of the impact of climate change
on European agriculture. Environ Resource Econ 67(4):725-760. https://doi.org/10.1007/
$10640-016-0001-y

Vanschoenwinkel J, Mendelsohn R, Van Passel S (2016) Do Western and Eastern Europe have the same
agricultural climate response? Taking adaptive capacity into account. Glob Environ Chang 41:74—
87. https://doi.org/10.1016/j.gloenvcha.2016.09.003

@ Springer


https://doi.org/10.1093/jeea/jvab009
https://doi.org/10.1038/nclimate2228
http://www.eea.europa.eu/data-and-maps/data/world-digital-elevation-model-etopo5
https://doi.org/10.1080/07350015.2016.1227711
https://doi.org/10.1073/pnas.1720716115
https://doi.org/10.1073/pnas.1720716115
https://doi.org/10.1175/jcli-d-12-00383.1
https://doi.org/10.1175/jcli-d-12-00383.1
https://doi.org/10.1029/2012gl053361
https://doi.org/10.1038/s41598-017-12520-2
https://doi.org/10.1038/s41598-017-12520-2
https://www.R-project.org/
https://doi.org/10.1002/2014JD022098
https://doi.org/10.1002/2014JD022098
https://doi.org/10.1111/j.1574-0862.2008.00289.x
https://doi.org/10.1111/j.1574-0862.2008.00289.x
https://doi.org/10.1007/s10640-009-9270-z
https://doi.org/10.1029/2010JD014088
https://doi.org/10.1111/gcb.12581
https://doi.org/10.1007/s10640-005-2646-9
https://doi.org/10.3917/reco.703.0375
https://doi.org/10.1007/s10640-016-0001-y
https://doi.org/10.1007/s10640-016-0001-y
https://doi.org/10.1016/j.gloenvcha.2016.09.003

16 Page 20 of 20 Climatic Change (2022) 174:16

Vogel MM, Zscheischler J, Fischer EM, Seneviratne SI (2020) Development of future heatwaves for
different hazard thresholds. J Geophy Res: Atmos 125(9):¢2019JD032070. https://doi.org/10.1029/
2019jd032070

White H (1980) A heteroskedasticity-consistent covariance matrix estimator and a direct test for heter-
oskedasticity. Econometrica 48(4):817-838. https://doi.org/10.2307/1912934

Wieder WR, Boehnert J, Bonan GB, & Langseth M (2014). Regridded harmonized world soil database
v1.2. data set. Retrieved from: http://daac.ornl.gov

Wreford A, Adger WN (2010) Adaptation in agriculture: historic effects of heat waves and droughts on UK
agriculture. Int J Agric Sustain 8(4):278-289

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

@ Springer


https://doi.org/10.1029/2019jd032070
https://doi.org/10.1029/2019jd032070
https://doi.org/10.2307/1912934
http://daac.ornl.gov

	On the (ir)relevance of heatwaves in climate change impacts on European agriculture
	Abstract  
	1 Introduction 
	2 Methodology
	2.1 The Ricardian model
	2.2 A variable for heatwaves
	2.3 Heatwave frequency in the Ricardian model

	3 Variables and data
	4 Results
	4.1 Ricardian regression results
	4.2 Non-marginal impacts

	5 Robustness tests
	5.1 Alternative meteorological variables
	5.2 Alternative regression techniques
	5.3 Alternative datasets

	6 Conclusion
	References


