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Abstract
National greenhouse gas inventories (NGHGIs) will play an increasingly important role in 
tracking country progress against United Nations (UN) Paris Agreement commitments. Yet 
uncertainty in land use, land use change, and forestry (LULUCF) NGHGHI estimates may 
undermine international confidence in emission reduction claims, particularly for countries 
that expect forests and agriculture to contribute large near-term GHG reductions. In this 
paper, we propose an analytical framework for implementing the uncertainty provisions 
of the UN Paris Agreement Enhanced Transparency Framework, with a view to identi-
fying the largest sources of LULUCF NGHGI uncertainty and prioritizing methodologi-
cal improvements. Using the USA as a case study, we identify and attribute uncertainty 
across all US NGHGI LULUCF “uncertainty elements” (inputs, parameters, models, and 
instances of plot-based sampling) and provide GHG flux estimates for omitted inventory 
categories. The largest sources of uncertainty are distributed across LULUCF inventory 
categories, underlining the importance of sector-wide analysis: forestry (tree biomass sam-
pling error; tree volume and specific gravity allometric parameters; soil carbon model), 
cropland and grassland (DayCent model structure and inputs), and settlement (urban tree 
gross to net carbon sequestration ratio) elements contribute over 90% of uncertainty. Net 
emissions of 123 MMT CO2e could be omitted from the US NGHGI, including Alaskan 
grassland and wetland soil carbon stock change (90.4 MMT CO2), urban mineral soil car-
bon stock change (34.7 MMT CO2), and federal cropland and grassland N2O (21.8 MMT 
CO2e). We explain how these findings and other ongoing research can support improved 
LULUCF monitoring and transparency.
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1  Introduction

National greenhouse gas (GHG) inventories (NGHGIs) are the primary tool for tracking 
anthropogenic (human-induced) GHG emissions at the country, sector, and source category 
level. Over the coming decade and beyond, NGHGIs will support setting and measuring pro-
gress against each country’s “nationally determined contributions” (NDCs) for reducing GHG 
emissions under the United Nations (UN) Paris Agreement while also supporting domestic 
climate policy development and evaluation (UN Framework Convention on Climate Change 
(UNFCCC) 2019a; UNFCCC 2019b; Andersson et al. 2008). In particular, NGHGI account-
ing for land use, land use change, and forestry (LULUCF) is a priority for many countries: the 
first round of NDCs indicates that LULUCF will provide 25% of planned GHG reductions 
leading to 2030 (Grassi et al. 2017). Global integrated assessment models project that enhanc-
ing natural land-based sinks, avoided deforestation, and bioenergy could provide 30% of GHG 
abatement required to keep temperature increase below 1.5 C by 2050 (Roe et al. 2019).

Yet LULUCF is a large source of uncertainty in estimating anthropogenic GHG emis-
sions (Friedlingstein et al. 2020; Pulles 2017; Jonas et al. 2014; National Research Council 
2011). To ensure international confidence in national GHG reporting, significant improve-
ments in LULUCF NGHGI estimation methods and transparency will be required. In this 
paper, we demonstrate an analytical framework for identifying, quantifying, and reporting 
on sources of LULUCF uncertainty and bias in NGHGI inventories at the level of individ-
ual datasets, models, submodels, and other inputs (“uncertainty elements”). Using the USA 
as a case study, we suggest countries can use this analytical framework to comply with UN 
Paris Agreement guidelines in two ways:

(1)	 Transparently reporting on LULUCF NGHGI uncertainty estimation methods, includ-
ing clarifying which uncertainty elements are accounted for and how LULUCF uncer-
tainty is calculated

(2)	 Identifying the largest uncertainty elements as a first step in prioritizing inventory 
improvements

In our framework, we identify and attribute uncertainty across all US LULUCF GHG 
source and sink (collectively, flux) estimates and provide initial GHG flux estimates for 
omitted inventory categories.1 We make three contributions: (1) we propose and demon-
strate an analytical framework that countries can use to fulfill UN Paris Agreement trans-
parency provisions, (2) we advance the large literature concerning NGHGI uncertainty by 
focusing on so-called individual “uncertainty elements,” which allows for better targeting 
data and research needs, and (3) we demonstrate a set of uncertainty attribution methods 
that can be applied across inventory categories with varying methodological complexity, 
including the most sophisticated (Tier 3) methods.2

1  In this paper, “flux” or “flux estimate” refers to a GHG source or sink calculation, over any geography, 
sector, subsector, or gas; “inventory category” refers to the most disaggregated level of flux estimates 
reported in an NGHGI.
2  Tiers 1, 2, and 3 refer to Intergovernmental Panel on Climate Change (IPCC) methodologies for estimat-
ing national GHG fluxes by source and sink categories (2006, 2019). Tiers 1 and 2 multiply activity data by 
an emission factor. Tier 2 applies country-specific emission factors, while Tier 1 uses IPCC-recommended 
defaults. LULUCF Tier 3 methods include using country-specific models, repeated field sampling and/or 
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1.1 � Evidence of global and national LULUCF uncertainty

LULUCF estimation uncertainty results from a combination of structural and con-
ceptual challenges, including (1) large heterogeneity in fluxes across time and space, 
driven by complex biological, geochemical, and physical processes combined with 
variable anthropogenic and natural disturbances; (2) the inability to continuously 
observe fluxes over time and over large areas; and (3) differences in definitions and 
accounting methods across countries and studies (Rypdal and Winiwarter 2001; 
Grassi et  al. 2018). These dynamics drive higher proportional and absolute uncer-
tainty when compared to GHG sources for which census data is available, underlying 
processes are better understood, and available GHG accounting guidance is more pre-
scriptive (Pulles 2017).

NGHGIs play a useful role in tracking anthropogenic LULUCF GHG emissions. 
Alternative methods (global land use change bookkeeping models and dynamic 
global vegetation models (DGVMs)) exhibit large multi-model uncertainty for total 
atmosphere-to-land CO2 fluxes, with a standard deviation equal to 10% of annual 
global anthropogenic GHG emissions (4.0 gigatonnes (Gt) CO2 year−1 on aver-
age, 2010–2019) (Friedlingstein et  al. 2020). The disagreement is driven in part 
by conflicting definitions of anthropogenic LULUCF fluxes. Combining global 
bookkeeping models and DGVMs to align with the definition used by NGHGIs 
(all LULUCF fluxes on managed land) achieves results consistent with aggregate 
NGHGI estimates (within 0.8 Gt CO2 year−1) (Grassi et al. 2018).3 As such, NGH-
GIs appear to be able to collectively validate the LULUCF estimates of global 
models and vice versa.

However, individual NGHGIs vary widely in quality and precision, which creates 
challenges in tracking country-level emission trends and therefore NDC progress. The 
NGHGIs of major emitting countries reviewed in Table 1 cover 50% of global LULUCF 
fluxes (in absolute value, see Supplementary Material (SM) Sect. 1). Reviewed coun-
tries report proportional LULUCF uncertainty ranging from 12% (Colombia) to 102% 
(Cambodia). Of the 5 major emitting countries with the largest LULUCF fluxes, we 
find that four (China, USA, Russia, India) exhibit sufficiently large uncertainty that the 
LULUCF emission reductions proposed in their first NDCs are at risk of failing sta-
tistical significance at the 95% confidence level (Jonas et al. 2010, see SM Sect. 1 for 
further discussion).

Furthermore, there is significant heterogeneity in uncertainty estimation methods, mak-
ing it difficult to compare precision across NGHGIs and to know how well uncertainty 
values reflect true variance of the flux point estimate. Challenges include not reporting 
LULUCF uncertainty at all (India, South Korea), not reporting uncertainty for inventory 
categories (China, Brazil), and, most commonly, providing insufficient information on how 

3  IPCC (2006, 2019) NGHGI guidelines recommend that anthropogenic LULUCF GHG fluxes be defined 
as all GHG fluxes occurring on managed lands, the so-called managed land proxy. Given the objective of 
NGHGIs to quantify all anthropogenic GHG fluxes, the managed land proxy has recognized flaws, includ-
ing the presence of naturally occurring GHG fluxes on managed lands (e.g., wildfires) and indirect human-
induced fluxes on unmanaged lands (e.g., methane emissions due to permafrost thaw). However, several 
rounds of IPCC review have found the managed land proxy to be the most pragmatic approach to delineat-
ing anthropogenic emissions in the LULUCF sector. For a useful review of the managed land proxy, see 
Grassi et al. (2018).

remote monitoring, and methods that account for climatic dependency. IPCC guidance posits that Tier 3 
methods are likely to provide higher accuracy than lower tiers (2006, 2019).

Footnote 2 (continued)
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uncertainties were calculated (no reporting on uncertainty measures for emission factors or 
activity data; no information on how uncertainty measures were estimated).

The large majority of LULUCF fluxes reported in NGHGIs are calculated using lower 
order (Tiers 1 and 2) methods, which likely limit accuracy (Ogle et al. 2003; Ogle et al. 
2006). As countries look to improve LULUCF monitoring methods, uncertainty estimation 
will become more complex. Indeed, uncertainty estimates may increase to more closely 
approximate true variability, particularly as more sources of uncertainty are accounted 
for. Therefore, it will be important for countries to simultaneously improve NGHGI meth-
ods, transparently report uncertainty, and identify opportunities for increasing precision to 
ensure NDC emission reduction claims are well-supported.

Table 1   LULUCF NGHGI uncertainty for 20 major emitting countries

(1) (2) (3) (4) (5) Uncertainty reported? (6) (7) (8)

Country
LULUCF, 
MMT CO2e

Economy-wide
emissions, incl. 
LULUCF, MMT 
CO2e

% Tier 3, 
LULUCF Sector Gas

Inventory
Category

LULUCF 
uncertainty 

(%)

Half 
CI, 
MMT 
CO2e

NDC 
LULUCF, 
MMT 
CO2e

China -1,103 11,484 4 X 21 232 160

United States -789 5,798 97 X X 27§ 213 20

Indonesia† 639 1,513 0 X 34 217 450

Russia -533 1,614 1 X X 32 171 80

India -307 2,647 0 NR 50

Nigeria 307 648 0 X 22 68

Brazil 403 1,577 0 X 67 270 300

Malaysia -241 81 0 X X 17 41

Mexico -148 551 0 X X 19 28 60

Cambodia 131 166 0 X X 102 134 0

Thailand†† -91 270 0 56 51

Peru† 76 174 0 X 80 61

Turkey -84 425 0 X X 51 43 0

Chile -64 51 0 X X 65 42 50

Colombia† 64 226 0 X 12 8 20

Japan -50 1,161 94 X X 14 7 30

South Korea -44 656 0 NR

Italy† -42 438 82 X 28 12

Spain -38 280 0 X X 48 18

Vietnam† -39 317 74 X 72 28

Column (4) is calculated by taking the absolute value of fluxes for all LULUCF inventory categories and 
finding the proportion of flux absolute values labeled Tier 3. Column (6) reflects one direction of the 95% 
confidence interval (CI) as percentage of central value (column (2)). NR not reported. Column (7) shows 
half of the 95% CI range, derived from columns (2) and (6). Column (8) shows LULUCF GHG reduc-
tions between 2010 and 2030, consistent with countries’ first NDCs (Grassi et al. 2017). Not all countries 
quantify LULUCF actions in the first NDC. Gray rows indicate countries with estimation error (column 
(7)) larger than NDC LULUCF reductions (column (8)). For additional detail on sources and derivations, 
see Supplementary Material Sect. 1, Table 1-1. †LULUCF sector uncertainty is not reported, so column (6) 
is calculated using error propagation and inventory category uncertainty. ††Uncertainty is calculated using 
error propagation and total inventory uncertainty with and without LULUCF. §USA reports non-symmetric 
95% CI, 27% reflects average of 35% lower bound and 19% upper bound; however column (7) reflects the 
non-symmetric CI
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To date, non-Annex I (developing) countries have lacked mandates and resources to 
report NGHGIs in a format comparable to Annex I countries, which has driven large het-
erogeneity in non-Annex I NGHGIs.4 Going forward, however, Parties to the UN Paris 
Agreement have agreed to implement an Enhanced Transparency Framework, under which 
both Annex I and non-Annex I countries will regularly submit NGHGIs using 2006 Inter-
governmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas 
Inventories and the 2019 Refinement (IPCC 2006, IPCC 2019; UNFCCC 2015, 2019a, 
2019b). All Parties are required to estimate uncertainty for all inventory categories and 
inventory totals and to report on uncertainty estimation methods and underlying assump-
tions (UNFCCC 2019a, Decision 18/CMA.1). Developing countries are given some flex-
ibility to qualitatively discuss uncertainty for key inventory categories, where data are 
unavailable.

To support the Enhanced Transparency Framework, countries can use the methods 
demonstrated in this paper to both transparently report on NGHGI uncertainty methods 
and to identify the largest sources of LULUCF uncertainty as a way to prioritize inventory 
improvements. We use the USA as a case study due to the scale of US LULUCF fluxes (the 
largest of all Annex I countries, Muyskens et al. (2021), CAIT (2021), the proportion of 
LULUCF fluxes calculated using Tier 3 methods (97%, Table 1), and the degree of trans-
parency in the US NGHGI. The methods and data underlying the US LULUCF inventory 
are based on over 130 peer-reviewed articles and government reports and improvements 
made over 25 NGHGI reports since 1996 (US NGHGI 2021). The USA encompasses a 
large variety of land uses and climatic regions, making it a useful basis for studying GHG 
estimation methods across LULUCF inventory categories. The USA is also active in 
LULUCF carbon credit markets, generating over 25% of LULUCF credits issued globally 
under existing voluntary and compliance carbon crediting mechanisms (see SM Sect.  1, 
Table 1-3).

1.2 � Defining and quantifying NGHGI uncertainty

We are interested in a quantitative measure of the potential difference between an NGHGI 
flux estimate and the true value of the flux being estimated, referred to as model outcome 
uncertainty or prediction error (Walker et  al. 2003; Harmon  et al. 2015). Our analysis 
focuses on two ways model outcome uncertainty can manifest: (1) random error around the 
true flux and (2) bias or systematic error between the estimate and the true flux.

As recommended by IPCC (2006, 2019) guidelines, NGHGI uncertainty assessments 
often assume flux estimates are unbiased, that is, the true GHG flux can be recovered in 
expectation (Magnussen et al. 2014). Using this assumption and standard statistical infer-
ence methods, one can calculate a 95% confidence interval (CI) for each estimate, a meas-
ure of random error which indicates the bounds within with the true flux will be located 
95% of the time, assuming data could be randomly sampled many times over relevant 
populations.

Previous work has relaxed the unbiasedness assumption by comparing independ-
ent calculations for the same inventory category (Petrescu et al. 2020; Erb et al. 2013; 
Shvidenko et  al. 2010; Smith et  al. 2008). Even if unbiasedness holds for individual 

4  Annex I is defined under the UNFCCC as countries that were members of the Organisation for Economic 
Cooperation and Development (OECD) in 1992.

Page 5 of 25    5Climatic Change (2022) 170: 5



1 3

flux estimates, NGHGIs as a whole can be biased by omitting inventory categories 
due to lack of knowledge, data, or technical capacity. Inventory-wide bias has been 
estimated by comparing aggregate NGHGI flux estimates across historical inventory 
recalculations (Hamal 2010), a method which captures bias from changes in inventory 
methods and inventory category omissions, but this approach will not be useful for 
identifying potential inventory improvements.

Many studies have assessed uncertainty across entire NGHGIs (e.g., Bun et  al. 2010; 
Winiwarter and Muik 2010; Lieberman et al. 2007) and with a focus on agricultural and for-
estry inventory sectors (e.g., Petrescu et al. 2020; Shvidenko et al. 2010; Leip 2010; Nilsson 
et al. 2007; Monni et al. 2007a; Monni et al. 2007b), yet uncertainty estimates are limited to 
the level of sector, gas (CO2, CH4, N2O), or flux. Few studies have performed more detailed 
uncertainty attribution for agriculture and forestry sectors, and where this analysis occurs, it is 
limited to Tier 2 inventory methods (Monni et al. 2007a; Winiwarter and Rypdal 2001; Wini-
warter and Muik 2010). Studies that assess uncertainty for individual inventory categories pro-
vide useful context and inputs for our analysis (Peltoniemi et al. 2006; Ogle et al. 2010).

We look to build on these literature strands in two ways: (1) identifying individual 
sources of uncertainty which we term “uncertainty elements,” for each NGHGI flux esti-
mate, with a goal of resolving uncertainty attribution at a level that is meaningful for set-
ting programmatic, research, and budgetary priorities, and (2) attributing uncertainty 
across all elements as consistently as possible for the entire LULUCF sector. While for 
most fluxes we are unable to account for bias, we suggest a measure of NGHGI bias by 
providing initial estimates of omitted GHG fluxes.

2 � Methods

Our analytical scope aligns with the IPCC (2006, 2019) definition of LULUCF fluxes, 
encompassing all GHG sources and sinks from US managed lands. We also broaden 
LULUCF to include N2O and CH4 emissions from agricultural soil management and rice 
methane for two reasons: (1) the USA uses a single model, DayCent, to jointly calculate 
carbon stock change and non-CO2 fluxes on agricultural soils, and (2) previous studies 
identified agricultural soil N2O emissions as the largest source of economy-wide NGHGI 
uncertainty (Ramírez et  al. 2008; Winiwarter and Muik 2010; Petrescu et  al. 2020), so 
including these inventory categories would likely impact our analysis.

We describe here the two components of our analysis:

•	 Uncertainty attribution: We quantify the contribution of each uncertainty element to 
the 95% CIs of all relevant LULUCF inventory categories.

•	 Omitted flux estimation: We provide initial estimates of known omitted fluxes, using 
literature review, expert input, and Tier 1 and 2 methods.

2.1 � Uncertainty attribution

To identify sources of NGHGI uncertainty, we must first justify an uncertainty taxonomy 
tailored to the LULUCF NGHGI context. Based on the literature review described in SM 
Sect. 2, chapter 1.2, we define an uncertainty element as an individual input, parameter, 
model or submodel, and any instance of design-based sampling error. We refer to input, 
parameter, and model structure uncertainty collectively as model uncertainty, as distinct 
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from sampling error. In some cases, we aggregate uncertainty elements into a group of 
inputs or parameters for ease of analysis and interpretation.

Given this taxonomy, we review methods for each LULUCF inventory category 
and identify all uncertainty elements. For inventory categories where it was possible 
to recalculate the central flux estimate given available data, we attribute uncertainty to 
each element using the contribution index method (Eq. 1).

Equation 1: Contribution index

where
i = 1,…,J: refers to uncertainty element i
Range(full,k): is inventory category k 95% CI magnitude (97.5th quantile minus 2.5th 

quantile)
Range(i,k): is inventory category k 95% CI magnitude holding element i at its mean 

or point estimate
Index(i,k): is percentage contribution of element i to Range(full,k)
Other methods for uncertainty attribution have been utilized in the literature, includ-

ing sensitivity analysis (McRoberts et al. 2016; Rypdal and Flugsrud 2001), uncertainty 
importance elasticities (Smith and Heath 2001; Winiwarter and Muik 2010), regression 
correlation coefficients (Peltoniemi et al. 2006; Winiwarter and Muik 2010), and Gauss-
ian error propagation (Harmon et al. 2007; Phillips et al. 2000). We chose the contribu-
tion index method for its ability to account for full probability distributions, to allow for 
non-linear relationships between elements and model outputs and dependencies among 
uncertainty elements, and because we would be able to use previously published analy-
ses for some inventory categories (Smith and Heath 2001; Ogle et al. 2003; Skog et al. 
2004).

Where flux estimate recalculation was not possible, due to lack of access to data 
or methods, we use published uncertainty attribution results or, in the case of Tier 3 
cropland and grassland fluxes, expert elicitation. US EPA recognizes expert elicitation 
as one method for NGHGI quality assurance and uncertainty analysis (US EPA 2002). 
We tailored US EPA (2002) NGHGI expert elicitation guidance to the objectives of our 
study (methods described in more detail below).

Uncertainty elements that we identified but were not able to quantify are listed in 
SM Table  2-1. Table  2 summarizes the uncertainty attribution methods used for each 
LULUCF inventory category.

2.2 � Omitted GHG flux estimation

Most of the omitted fluxes identified in this paper are already recognized in the US 
LULUCF GHG inventory as planned improvements. We identified additional omitted 
fluxes by reviewing IPCC (2006, 2019) guidance, by including prompts to identify omit-
ted GHG fluxes in the cropland and grassland expert elicitation survey, and by prompt-
ing US LULUCF NGHGI inventory compilers to identify omitted GHG fluxes through 
direct communication.

(1)Index(i, k) =
Range(full, k) − Range(i, k)

∑J

j=1
Range(full, k) − Range(j, k)

× 100
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For each identified omitted flux, we reviewed the literature to identify activity data 
and emission factors. The resulting omitted GHG flux estimates are meant to be useful 
only for purposes of prioritizing future work.

2.3 � Methods by land use and inventory categories

We briefly summarize the methods used for each LULUCF inventory category here, 
with further details provided in the SM. Our analysis is based on the 2018 US NGHGI 
report, which covers inventory years 1990 to 2016 and which was the most complete 
inventory report available while the majority of our analytical work was completed. 
In the SM, we note any significant methodological updates in more recent US NGHGI 
reports, none of which meaningfully influences our findings.

2.3.1 � Forests

Above- and belowground biomass in living and standing dead trees (SM Sect. 2, chap-
ter 2.1): We recalculate the carbon stock change flux and 95% CI for above- and below-
ground tree biomass and standing dead trees (hereafter, tree biomass), accounting for 
uncertainty in nine groups of allometric model parameters (Table 2-2) as well as sam-
pling error. We use Forest Inventory and Analysis (FIA) data and allometric models 
specific to eastern Texas as the basis for analysis to reduce Monte Carlo computational 
burden. Eastern Texas was chosen as a representative region for national forest carbon 
fluxes, encompassing both shrub species common in the western USA and hardwood 
and softwood species present in higher precipitation regions. We find that eastern Texas 
tree biomass exhibits similar proportional uncertainty to national uncertainty reported 
in the US NGHGI (see SM Sect. 2, chapter 2.1 for more detail).

Litter and soil (SM Sect. 2, chapters 2.2 and 2.3): Using literature estimates of mean 
litter carbon stocks by forest type (Domke et al. 2016), and the reported model predic-
tion uncertainty for litter carbon stocks (US NGHGI 2018), we use Monte Carlo simu-
lation to estimate the national 95% CI for litter carbon stock change. Similar methods 
were used for soils, accounting for model prediction uncertainty from estimating soil 
carbon stocks to 100  cm depth at a subset of FIA plots as well as the random forest 
model used to extrapolate soil carbon stock estimates to all FIA plots (Domke et  al. 
2017). A significant shortcoming of our approach for both litter and soil carbon pools is 
that it requires assuming covariance of carbon stocks between two time periods, because 
the US NGHGI does not report 95% CIs by forest carbon pool. For this reason, we pro-
vide sensitivity analysis for different levels of intertemporal covariance.

Non-CO2 from forest fires (SM Sect. 2, chapter 2.4): We recalculate the CH4 and N2O 
emissions from forest fires and their respective 95% CIs, using Monte Carlo simula-
tion to account for uncertainty from four input variables (burned area, fuel availability, 
combustion factor, and emission factor) using standard deviations reported in the US 
NGHGI (2018) and IPCC (2006).

Harvested wood products (SM Sect. 2, chapter 2.5): We modify contribution index 
results from Skog et al. (2004) to focus on inputs and parameters used in Skog (2008), 
which most closely aligns with US NGHGI (2018) methods.
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2.3.2 � Cropland and grassland

The US NGHGI uses consistent methods across many cropland and grassland inven-
tory categories, so we collapse analysis across the two land uses. The US NGHGI uses 
Tier 3 methods on 78% of managed cropland and grassland soils, and Tiers 1 and 2 on 
organic soils, federal grasslands, shaley and gravelly soils, and minor crop types.

Carbon stock change, N2O, and rice CH4 on Tier 3 soils (SM Sect. 2, chapter 3.1): 
It was not possible to recalculate Tier 3 fluxes, due to National Resources Inventory 
(NRI) dataset confidentiality. Therefore, we use expert elicitation to identify the larg-
est sources of uncertainty stemming from inputs and structure of the biogeochemi-
cal model DayCent as well as scaling NRI plot estimates to population area. The 
expert elicitation included prompts to identify primary research, model development 
and intermodel comparison, and data priorities for reducing cropland and grassland 
Tier 3 flux uncertainty. Participation in uncertainty attribution sections of the survey 
required knowledge of Century, DayCent, or similar biogeochemical soil models and 
IPCC GHG accounting guidance. Respondents were asked to confirm that they pos-
sessed this knowledge before completing the survey. Respondent expertise was con-
centrated in soil science (87%), biogeochemistry (67%), and the carbon cycle (67%); 
53% worked in academia, 33% in government, and the remainder in NGO or private 
sectors. Details on the expert elicitation protocol and results are provided in the SM 
Sect. 2, chapter 3.1, and the full expert elicitation survey is available in SM Sect. 3.

Carbon stock change and N2O in Tier 1 and 2 soils (SM Sect. 2, chapter 3.2): We 
apply contribution index results from Ogle et al. (2003) to 95% CIs reported in the US 
NGHGI (2018).

Non-CO2 from grassland fires (SM Sect. 2, chapter 3.3): We recalculate 2014 CH4 
and N2O emissions, the most recent year for which burned grassland area estimates are 
available, and follow methods similar to the forest fire inventory category.

Omitted cropland and grassland GHG fluxes (SM Sect.  2, chapter  3.4): We use 
IPCC (2006) default equations and literature emission factors to estimate carbon stock 
change in woody biomass and litter (USDA 2012; Udawatta and Jose 2011); non-CO2 
emissions from woody biomass in grassland fires (US NGHGI 2018; IPCC 2006); soil 
microbial CH4 sink (Dutaur and Verchot 2007; Del Grosso et  al. 2000); and select 
GHG sinks and sources on federal cropland and grassland (US NGHGI 2018).

2.3.3 � Settlements

Carbon stock change in urban trees (SM Sect. 2, chapter 4.1): We recalculate the CO2 
flux and 95% CI attributable to carbon stock change in urban trees (Nowak et al. 2008; 
Nowak et  al. 2013). We attribute uncertainty to all inputs (Table  2-30) using error 
propagation and contribution index methods.

Carbon stock change in yard trimmings and food scraps (SM Sect. 2, chapter 4.2): 
We recalculate CO2 fluxes and 95% CIs attributable to yard trimmings and food scraps 
discarded in landfills (US NGHGI 2018; De la Cruz and Barlaz 2010), accounting for 
uncertainty from all inputs.

Omitted settlement GHG fluxes (SM Sect. 2, chapter 4.5): We estimate CO2 emis-
sions resulting from US settlement mineral soils, which is omitted from the US NGHGI 
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due to lack of data, consistent with IPCC (2006) guidelines. Using Tier 1 methods and 
IPCC (2006) default values, we provide an initial estimate of this flux.

2.3.4 � Wetlands

The US NGHGI (2018) indicates that there are 43 million hectares of wetlands in the 
USA, yet GHG fluxes are calculated for only 2.9 million hectares of wetlands. The 
omission is due to lack of data that would allow for designating non-coastal wetlands as 
managed (that is, wetlands directly created by human activity or areas where the water 
level has been artificially altered) (US NGHGI 2018). Due to this data gap, we were not 
able to estimate omitted wetland fluxes (SM Sect. 2, chapter 5).

2.3.5 � Alaska, Hawaii, and US territories

Alaska, Hawaii, and US territories comprise nearly 20% of the total US land base 
(nearly all of this in Alaska), but they are not completely accounted for in the US 
NGHGI. The 2019 US NGHGI included forest carbon stock changes in interior Alaska 
for the first time, an area covering 24.5 million acres (9% of US managed forest area). 
We provide estimates for omitted fluxes in Alaska, Hawaii, and Puerto Rico (the larg-
est US territory), based on IPCC (2006) guidance, emission data derived from the US 
NGHGI (2018, 2019), and literature review (SM Sect. 2, chapter 6).

3 � Results

Uncertainty contribution results are reported as the uncertainty element’s contribution 
index value (%) multiplied by its respective inventory category 95% CI range (MMT 
CO2e). We present the 10 largest sources of uncertainty for each land use category and 
then collectively show omitted GHG flux results. Complete results for all inventory cat-
egories and uncertainty elements are available in the SM.

3.1 � Forests

The largest source of forest GHG flux uncertainty is design-based sampling error in 
estimating tree biomass carbon stock change (434.3 MMT CO2e) (Table 3). Two groups 
of allometric parameters are the largest sources of uncertainty in estimating individual 
tree biomass (together, 131.9 MMT CO2e), which govern the conversion of tree diam-
eter and height to gross bole volume (volume coefficients) and the conversion of bole 
volume to biomass (wood and bark specific gravities).

While we find that allometric volume coefficients are a large source of forest carbon 
stock change uncertainty, we were not able to find an empirical estimate of volume coef-
ficient uncertainty. Sensitivity analysis of the coefficient of variation (5%, 10% (base 
case), and 20%) found that this assumption has large impacts on both the tree biomass 
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95% CI and the uncertainty contribution ranking of allometric parameter groups (SM 
Table 2-4).

Model uncertainty for soil and litter carbon stock change are substantial (together, 91.7 
to 288.9 MMT CO2e); we report a range for these pools to reflect sensitivity to carbon 
stock intertemporal covariance (SM Sect. 2, chapters 2.2 and 2.3).

3.2 � Cropland and grassland

The DayCent model accounts for the vast majority of cropland and grassland soil carbon 
stock change, agricultural N2O, and rice methane uncertainty (Table 4). DayCent model 
structure and parameters (including organic matter formation and decomposition; nitri-
fication and denitrification; leaching, runoff, and volatilization) collectively contribute 
117.2 MMT CO2e, while DayCent inputs (including tillage, fertilization management, and 
manure and organic fertilizer application) contribute 222.0 MMT CO2e. Input uncertainty 
is primarily driven by randomly assigning management activities to NRI plots consistent 
with county-level statistics (Ogle et al. 2010).

3.3 � Settlements

Urban tree gross to net sequestration ratio contribution is an order of magnitude larger than 
any other settlement uncertainty element (Table 5). This uncertainty arises due to a major-
ity of states lacking data on net urban tree growth rates, requiring use of a national average 
(Nowak et al. 2013).

Yard trimmings and food scraps carbon stock change inputs account for less than 12% 
of settlement GHG flux uncertainty, with negligible contributions from remaining fluxes 
(carbon stock change on drained organic soils and N2O emissions from soil N additions).

3.4 � Uncertainty attribution synthesis

Our findings suggest higher LULUCF uncertainty in the US NGHGI than is currently 
reported. While our recalculated uncertainty estimates generally align with reported val-
ues, two notable exceptions are forest carbon stock change and cropland and grassland Tier 
3 fluxes, where we found 5–27% (with sensitivity to litter and soil carbon stock change 
uncertainty) and 94% larger CI ranges, respectively. Total LULUCF CI magnitude could be 
18–35% higher than US NGHGI (2018) reported values (Fig. 1).

Higher cropland and grassland Tier 3 uncertainty can be directly attributed to the expert 
elicitation, which directed respondents to identify the uncertainty contribution from ele-
ments not currently accounted for in reported US NGHGI CIs, which ultimately included 
the two largest DayCent uncertainty elements (soil properties; leaching, runoff, and vola-
tilization) (US NGHGI 2018).

It is less clear whether higher forest carbon stock change uncertainty can be attributed 
to our choice of analytical region (eastern Texas), including a larger number of uncertainty 
elements in our analysis, or other assumptions made in our analysis (e.g., intertemporal 
covariance for litter and soil carbon pools). Accounting for sensitivity to uncertainty con-
tributions from soil and litter carbon stock change and tree biomass volume coefficient 
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assumptions, our high (low) end uncertainty estimates for these elements result in 27% 
(5%) higher forest carbon pool CI compared to US NGHGI (2018) reported values.

A meaningful reduction in US LULUCF uncertainty would require addressing many 
of the largest elements simultaneously. No single element or element group would reduce 
the LULUCF CI by more than 10% except for tree biomass sampling error (Fig. 2a). A 
50% reduction in LULUCF CI magnitude would require reducing tree biomass sampling 
error by at least 15%, and reducing contributions of all other uncertainty elements by at 
least 50% (Fig. 2b). The optimal uncertainty reduction approach depends on availability 
and costs of alternative methods, but this exercise illustrates the inevitable need to focus on 
forest sampling error, soil carbon modeling, and urban tree methods.

3.5 � Omitted fluxes

In total, we find that net emissions of 123 MMT CO2e could be omitted from the US 
NGHGI, with the majority occurring on croplands and grasslands (Fig.  3). The largest 
omissions are due to data gaps in Alaska, where grassland soil carbon stock changes (31 
MMT CO2e) and wetland soil carbon and methane emissions (41 MMT CO2e) are not cur-
rently estimated.

Emissions from settlement mineral soils are not included in the US NGHGI due to 
a lack of activity data and emission factors, a challenge that the IPCC acknowledges in 
allowing this omission as a Tier 1 method (IPCC 2006, 2019). We find that settlement 

Fig. 1   Reported and recalculated confidence intervals (CI) by inventory category. Magnitude of one-direc-
tion CI as percentage of the point estimate is shown at the end of each bar. US NGHGI (2018) values for 
“LULUCF” reflect only inventory categories assessed in this paper and so is inconsistent with US NGHGI 
(2018) Table  1-5; “non-LULUCF CO2” results are as listed in Table  1.5. “Forest carbon pools” (which 
includes tree biomass, soil, and litter) CI estimates are aggregated using error propagation to allow for com-
parison with NGHGI (2018) reported values. “Forest carbon pools” and “LULUCF” results show sensi-
tivity to soil, litter, and tree biomass volume coefficients uncertainty attribution (all uncertainty contribu-
tion values in MMT CO2e: soil carbon stock change (CSC) = *255.7, **81.2, ***81.2; litter CSC = *33.2, 
**10.5, ***10.5; tree biomass volume coefficient = *77.7, **77.7, ***16.9)
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Fig. 2   Inventory uncertainty reduction potential. Percent reduction in LULUCF NGHGI 95% confidence 
interval (CI) magnitude (97.5% upper bound – 2.5% lower bound) given reduction in uncertainty contribu-
tion for each uncertainty element or element group. a LULUCF uncertainty reduction for each uncertainty 
element, holding all other element contributions constant. b Cumulative LULUCF NGHGI uncertainty 
reduction if element uncertainty contributions are sequentially reduced by 50%. “ < 10% cum. CI reduction” 
refers to uncertainty elements that, in aggregate, reduce LULUCF NGHGI CI magnitude by less than 10% 
if known with complete certainty. Forest soil model contribution is 255.7 MMT CO2e

Fig. 3   US NGHGI omitted GHG 
fluxes. “CSC” = carbon stock 
change. “Alaska” fluxes labeled 
as (A) wetland soil CH4, (B) 
wetland soil CSC, (C) grassland 
soil CSC, and (D) agricultural 
soil management N2O. “Omitted 
flux as % of NGHGI reported 
fluxes” is calculated by summing 
absolute values of all omitted 
fluxes by land use category and 
dividing result by sum of abso-
lute values of all fluxes for that 
land use category as reported in 
US NGHGI (2018)
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mineral soils could emit 35 MMT CO2e, assuming they are managed similarly to low 
input cropland (IPCC 2006, 2019).5 While the low input cropland emission factor may 
reasonably reflect dynamics in undisturbed lawns and parks, settlement soils undergo 
intensive disturbance at irregular intervals, driven by landscaping and land grading, 
building development, and impervious surface cover, which are unlikely to be captured 
by cropland emission factors. However, an emission factor based on Boston mineral 
soil emissions suggests that the omitted flux value could be much higher (Decina et al. 
2016).

The US NGHGI does not currently account for indirect and direct N2O emissions 
from federally owned croplands and grasslands with the exception of pasture, range, and 
paddock (PRP) sources. Assuming that federal croplands and grasslands emit direct and 
indirect N2O at the same per-area rates as non-federal lands, net of PRP N2O emissions, 
we find that this omission could reach 22 MMT CO2e.

The largest omitted sink category is microbial methane sequestration in cropland, 
grassland, and forest soils (− 25 MMT CO2e). However, we note that the soil methane 
sink is directly tied to methane’s atmospheric lifetime and is likely already incorporated 
to some extent in methane global warming potential (GWP) values. The IPCC (2006, 
2019) does not yet provide guidance on these issues. If countries decide to include the 
soil microbial methane sink in NGHGIs, new methods may be needed to align inventory 
reporting with methane GWP estimates.

We do not provide error bars for these estimates to avoid suggesting precision—as 
described above, these values are generated using highly simplified assumptions about 
average GHG fluxes over large areas. Our estimates are meant only to provide a basis for 
prioritizing research and data collection.

4 � Discussion

4.1 � Comparison to other studies

Our results compare well with US NGHGI Approach 2 key category analysis, which 
ranks source and sink categories, as defined by UNFCCC common reporting format 
(CRF) guidelines, by their one-direction 95% CI magnitude (IPCC 2006, 2019). The 
top five LULUCF key categories as identified using Approach 2 encompass the largest 
uncertainty elements identified in Fig. 2 (US NGHGI 2018).

However, our analysis provides important additional detail. For example, “Net CO2 
Emissions from Settlements Remaining Settlements” is the second ranked key category, 
while our analysis finds that addressing DayCent model uncertainty would have a larger 
impact than focusing on urban trees. This inconsistency is due to the fact that the Day-
Cent model is used across nine different CRF key categories. Thus, uncertainty attribu-
tion analysis can usefully focus on highly ranked CRF key categories, as long as cross-
cutting uncertainty elements are recognized.

It is difficult to compare uncertainty attribution results across studies, since they vary 
widely in scope and structure. However, our findings are consistent with studies that 

5  “Low input” refers to low carbon input management practices, including residue collection and low resi-
due return, residue burning, frequent bare fallow, production of low-residue crops, and no or low mineral 
fertilization (IPCC 2006).
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suggest design-based sampling error outweighs allometric model uncertainty (Breiden-
bach et al. 2014; Ståhl et al. 2014; McRoberts et al. 2016), that forest soils are a large 
source of uncertainty (Peltoniemi et al. 2006; Monni et al. 2007b), and that N2O emis-
sions drive uncertainty in croplands and grasslands (Winiwarter and Muik 2010; Ramírez 
et al. 2008; Monni et al. 2007a; Petrescu et al. 2020).

4.2 � Opportunities for inventory improvements

Countries looking to improve LULUCF GHG estimation methods can take advantage of 
existing research, data gathering, and model development targeting the largest uncertainty 
elements identified above.

4.2.1 � Forest sampling error

Increasing the sampling rate or number of plots in existing forest inventories is a costly 
option for reducing sampling error. Rather, research has increasingly focused on using 
remote sensing data like LiDAR or radar to generate wall-to-wall forest biomass estimates 
(e.g., Blackard et al. 2008; McRoberts et al. 2016; Ma et al. 2021). Model-assisted estima-
tors that utilize LiDAR and plot data have increased aboveground forest biomass precision 
by 2.5–6 times compared to plot-based simple random sample or post-stratified estimators 
(McRoberts et al. 2013; McRoberts et al. 2016; Gregoire et al. 2016). Historically, the nec-
essary LiDAR and radar data has been costly to collect and only intermittently available 
over space and time, but new and planned global LiDAR and radar missions, including 
GEDI, ICE-Sat2, and NISAR, have the potential to greatly improve LULUCF monitor-
ing precision and to help align aboveground biomass monitoring methods across countries 
(Duncanson et al. 2020; Babcock et al. 2018). Ongoing availability of LiDAR or radar data 
will be critical to ensure countries can sustain new LULUCF monitoring methods.

Care must be taken in comparing precision of plot-based and remote sensing-based 
methods. Countries with national forest inventories tend to use design-based or probabil-
ity-based statistical inference to estimate forest carbon fluxes, assuming that uncertainty 
is a function of the probability of selecting a given sample (observations are considered 
constant). When using remote sensing-based models, analysts may instead choose model-
based inference, assuming that uncertainty is driven by a population probability distribu-
tion (observations are realizations of a random variable) (McRoberts 2010). It is not valid 
to rank precision across the two methods due to different assumptions about the source 
of randomness (McRoberts et al. 2013). Inventory compilers are therefore encouraged to 
clarify inference frameworks used to ensure uncertainty reporting transparency.

Annually updated remote sensing data products can help address concerns that land 
cover and land use changes are not reflected in LULUCF flux estimates, a source of uncer-
tainty that we were not able to evaluate in this paper due to data constraints. For example, 
the 2018 US NGHGI uses the 2011 National Land Cover Database (NLCD) to stratify 
eastern Texas forest by canopy cover. Though individual plots could capture disturbance 
after 2011, spatial weights would reflect only area disturbed prior to 2011. As a result, 
large changes in US forest GHG fluxes would not be reflected in the inventory for up to 
five years under current stratification methods. To address this issue, the USA has begun 
generating annual NLCD updates to more closely monitor land use change (LCMAP 2021, 
LCMS 2021).
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4.2.2 � Tree‑level biomass estimation

We find a higher contribution from allometric model uncertainty compared to other studies 
(e.g., McRoberts et al. 2014; Breidenbach et al. 2014; Ståhl et al. 2014), possibly due to 
our assumption that allometric parameters are assigned by tree species or species group for 
each Monte Carlo iterate rather than to individual trees. This approach was chosen for its 
computational efficiency and mimics a high degree of positive covariance between individ-
ual trees of the same species or species group, but results in higher variance of forest car-
bon stocks across Monte Carlo iterates than studies that assume independence at tree-level.

Tree-level biomass estimates are an important input to remote sensing models and so 
will be key to inventory methods even as remote sensing data is increasingly utilized. Chal-
lenges to allometric model improvements include inconsistent methods in biomass meas-
urement field studies (Weiskittel et al. 2015); a dearth of data and models for estimating 
belowground biomass (Russell et  al. 2015); a lack of accounting for impacts of climatic 
variables on tree density and other allometric parameters over time (Clough et al. 2017); 
and a lack of species-specific or region-specific data and incomplete or non-random sam-
ples across studies (Jenkins et al. 2003).

In an effort to address some of these challenges, the US Forest Service has compiled the 
Legacy Tree Data platform, which contains over 15,000 individual tree biomass measure-
ments (Radtke et al. 2015). However, to address the climatic dependency of tree variables 
and to fully address the data limitations described above, ongoing data collection and tar-
geted research programs are required.

4.2.3 � Cropland and grassland fluxes

Our expert elicitation survey asked respondents to rank research, modeling, and data pri-
orities, as identified in the literature, for reducing uncertainty in cropland and grassland 
Tier 3 GHG flux estimates (SM Table 2–18).

Survey respondents noted that they were keen to have more empirical data in order to 
improve and validate existing soil models (Schmidt et al. 2011; Spencer et al. 2011). They 
acknowledged the difficulties in modeling such a complex system but noted that more data 
is the primary way to help reduce both input and structural uncertainty. For example, the 
NRI plot system, which provides key inputs to DayCent, could form the basis of a national 
soil carbon monitoring network, similar to FIA plots for forests. The US NGHGI notes that 
the US Department of Agriculture (USDA) is developing a national soil monitoring net-
work (US NGHGI 2018), but it is unclear the extent to which this framework will address 
limitations identified in this study—particularly, the input uncertainty driven by lacking 
model output (GHG fluxes) and model input observations at the same plots.

Survey respondents also indicated that increased collaboration among model developers 
would help refine soil carbon flux predictions (Paustian et al. 2016; Schmidt et al. 2011). 
Increased intermodel comparison, model validation, and collaboration were highly ranked 
as opportunities to reduce uncertainty (Brevik et al. 2015; Stockmann et al. 2013).

4.3 � Application to other countries

Other countries with similar land cover and NGHGI methods can use US-based uncer-
tainty attribution to inform priorities for further analysis. For example, most of the world’s 
forest area is now covered by strategic forest inventories, with many countries utilizing 
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statistical sampling methods similar to the USA (McRoberts et al. 2010). Large forested 
countries continue to develop systems to increase precision and accuracy of forest carbon 
stock estimates, particularly in response to REDD + financing programs (Brazil NC4 2020; 
Tewari et al. 2020; Zeng et al. 2015). For example, as part of the Estimativa de biomassa 
na Amazonia (EBA) program, Brazilian researchers are working to integrate forest plot 
data, allometric models, and remote sensing (both LiDAR and Landsat) data to estimate 
landscape-scale aboveground forest biomass (INPE 2021). Many of the same uncertainty 
elements described above are relevant to countries developing such systems.

There is more international heterogeneity in non-forest flux estimation methods, with 
many non-Annex I countries omitting these inventory categories entirely (Smith et  al. 
2020). Other countries may use results from this paper to inform priorities for expanding 
inventory coverage. Several of the omitted fluxes identified here will be relevant for all 
other countries, given current IPCC (2006, 2019) inventory guidance, including the soil 
microbial CH4 sink and settlement mineral soil fluxes.

5 � Conclusion

Many countries have deprioritized NGHGI uncertainty estimation and reporting due to 
lack of data and programmatic resources, as well as the complexity of uncertainty methods. 
As Brazil indicated in their Third National Communication (2016), “Quantifying uncer-
tainty for individual data items is as or more difficult to assess as the actual information 
sought.” Countries are likely to prioritize improvements in LULUCF accuracy by increas-
ing the use of Tier 3 methods and updating Tier 1 and 2 methods with the most recent sci-
ence (Yona et al. 2020). However, investments in uncertainty estimation and transparency 
will also be required as more complex methods are adopted.

NGHGI LULUCF uncertainty is a challenge for many major emitting countries and, 
for some, including the USA, is large enough that planned LULUCF emission reductions 
fall within the margin of estimation error. The analytical framework suggested here is one 
approach that governments can use to both transparently report uncertainty estimation 
methods and to identify opportunities for improving NGHGI accuracy and precision, with 
a view to increasing international confidence in NDC emission reduction progress.

Using the USA as a case study, we detail the contribution of over 90 LULUCF uncer-
tainty elements and omitted fluxes to uncertainty and bias in the US NGHGI. Most inven-
tory uncertainty is driven by a small set of elements distributed across forestry, cropland 
and grassland, and settlement land use categories. Omitted fluxes could account for up to 
13% of the current LULUCF inventory on an absolute value basis, primarily driven by CO2 
and CH4 emissions in Alaska and urban mineral soils. Other countries can use these results 
to inform initial priorities for further analysis, particularly those using similar NGHGI 
methods or those that plan to take up similar methods in the future.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10584-​021-​03254-2.

Acknowledgements  We thank experts who reviewed earlier versions of this manuscript and analytical com-
ponents, including Steve Campbell, Adam Chambers, Steven Del Grosso, David Nowak, Stephen Ogle, Sara 
Ohrel, John Steller, and Tom Wirth.

Page 21 of 25    5Climatic Change (2022) 170: 5

https://doi.org/10.1007/s10584-021-03254-2
https://doi.org/10.1007/s10584-021-03254-2


1 3

Author contribution  Emily McGlynn developed research objectives and analytical methods for all land use 
categories, wrote manuscript, and carried out analysis for Wetlands and Alaska, Hawaii, and US Territories.

Serena Li carried out analysis for cropland and grasslands sections, including the expert survey.
Michael F. Berger developed and oversaw analysis for settlements.
Meredith Amend coded the Monte Carlo analysis in R for settlements analysis.
Kandice L. Harper developed and carried out analysis for Forests section and provided support for all 

other analysis.

Funding  This work was funded by the Doris Duke Charitable Foundation.

Data availability  All data generated in this paper are available in Supplementary Materials and Spreadsheet 
Appendix.

Code availability  Code for Monte Carlo analyses is available by request.

Declarations 

Competing interests  The authors declare no competing interests.

Open Access    This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Andersson K et al. (2008) National forest carbon inventories: policy needs and assessment capacity. Clim 
Change 93(1):69

Babcock C et  al. (2018) Geostatistical estimation of forest biomass in interior Alaska combining Land-
sat-derived tree cover, sampled airborne Lidar and field observations. Remote Sens Environ 
212(June):212–230

Blackard J et al. (2008) Mapping U.S. forest biomass using nationwide forest inventory data and moderate 
resolution information. Remote Sens Environ 112(4):1658–1677

Breidenbach J et al. (2014) Quantifying the model-related variability of biomass stock and change estimates 
in the Norwegian National Forest Inventory. Forest Science 60(1):25–33

Brevik EC et al. (2015) The Interdisciplinary Nature of Soil. Soil 1(1):117–129
Bun R et al. (2010) Spatial GHG inventory at the regional level: accounting for uncertainty. Clim Change 

103(1):227–244
CAIT (2021) Climate analysis indicators tool (CAIT): WRI’s climate data explorer. World Resources Insti-

tute. http://​cait2.​wri.​org. Accessed 23 April  2021
Clough BJ et al. (2017) Climate-driven trends in stem wood density of tree species in the Eastern United 

States: ecological impact and implications for national forest carbon assessments. Glob Ecol Biogeogr 
26(10):1153–1164

De la Cruz FB, Barlaz MA (2010) Estimation of waste component-specific landfill decay rates using labora-
tory-scale decomposition data. Environ Sci Technol 44(12):4722–28

Decina SM et al. (2016) Soil respiration contributes substantially to urban carbon fluxes in the Greater Bos-
ton area. Environ Pollut 212:433–439

Del Grosso SJ et al. (2000) General CH4 oxidation model and comparisons of CH4 oxidation in natural and 
managed systems. Global Biogeochem Cycles 14:999–1020

Domke GM et al. (2016) Estimating litter carbon stocks on forest land in the United States. Sci Total Envi-
ron 557–558(July):469–478

5   Page 22 of 25 Climatic Change (2022) 170: 5

http://creativecommons.org/licenses/by/4.0/
http://cait2.wri.org


1 3

Domke GM et al. (2017) Toward inventory-based estimates of soil organic carbon in forests of the United 
States. Ecol Appl 27(4):1223–1235

Duncanson L et al. (2020) Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environ-
mental gradients in Sonoma County, California. Remote Sensing of Environment 242:111779

Dutaur L, Verchot LV (2007) A global inventory of the soil CH4 sink. Global Biogeochemical 
Cycles. https://​doi.​org/​10.​1029/​2006G​B0027​34

Erb KH et al. (2013) Bias in the attribution of forest carbon sinks. Nat Clim Chang 3(10):854–856
Fourth National Communication of Brazil to the UNFCCC (Brazil NC4) (2020) Ministry of Science, Tech-

nology and Innovations. https://​unfccc.​int/​docum​ents/​267657. Accessed 16  April 2021
Friedlingstein P et al. (2020) Global carbon budget 2020. Earth System Science Data 12(4):3269–3340
Grassi G et al. (2017) The key role of forests in meeting climate targets requires science for credible mitiga-

tion. Nat Clim Chang 7(3):220–226
Grassi G et  al. (2018) Reconciling global-model estimates and country reporting of anthropogenic forest 

CO2 sinks. Nat Clim Chang 8(10):914–920
Gregoire TG et  al. (2016) Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass. 

Remote Sens Environ 173:98–108
Hamal K (2010) Reporting GHG emissions: change in uncertainty and its relevance for detection of emis-

sion changes. IIASA Interim Report IR-10–003
Harmon ME, et  al (2015) Uncertainty analysis: an evaluation metric for synthesis science. Ecosphere 

6(4):1–12.  https://​doi.​org/​10.​1890/​ES14-​00235.1
Harmon ME, et al. (2007) Quantifying uncertainty in net primary production measurements. In Principles 

and standards for measuring primary production. Oxford University Press, New York
INPE (2021) EBA - Estimativa de Biomassa Na Amazônia - Divisão de Impactos, Adaptação e Vulnera-

bilidades. http://​www.​ccst.​inpe.​br/​proje​tos/​eba-​estim​ativa-​de-​bioma​ssa-​na-​amazo​nia/. Accessed 23 
April 2021

IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories. HS Eggleston, L Buendia, K 
Miwa, T Ngara, K Tanabe (eds) IGES, Japan

IPCC (2019) 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventories. Inter-
governmental Panel on Climate Change. https://​www.​ipcc-​nggip.​iges.​or.​jp/​public/​2019rf/​index.​html. 
Accessed 31 Dec 2019

Jenkins JC et  al. (2003) National-scale biomass estimators for United States tree species. Forest Science 
49:12–35

Jonas M et al. (2010) Comparison of preparatory signal analysis techniques for consideration in the (post-) 
Kyoto policy process. Clim Change 103(1–2):175–213

Jonas M et al. (2014) Uncertainty in an emissions-constrained world. Clim Change 124(3):459–476
Leip A (2010) Quantitative quality assessment of the greenhouse gas inventory for agriculture in Europe. 

Clim Change 103(1–2):245–261
Lieberman D et al. (2007) Accounting for climate change: uncertainty in greenhouse gas inventories - verifi-

cation, compliance, and trading. Springer, Dordrecht
Ma L et al. (2021) High-resolution forest carbon modelling for climate mitigation planning over the RGGI 

region, USA. Environmental Research Letters 16(4):045014
Magnussen S et al. (2014) Error propagation in stock-difference and gain–loss estimates of a forest biomass 

carbon balance. Eur J Forest Res 133(6):1137–1155
McRoberts RE et al. (2013) Inference for Lidar-assisted estimation of forest growing stock volume. Remote 

Sens Environ 128:268–275
McRoberts RE (2010) Probability- and model-based approaches to inference for proportion forest using sat-

ellite imagery as ancillary data. Remote Sens Environ 114(5):1017–1025
McRoberts RE et al. (2010) Advances and emerging issues in national forest inventories. Scand J for Res 

25(4):368–381
McRoberts RE et al. (2014) A general method for assessing the effects of uncertainty in individual-tree vol-

ume model predictions on large-area volume estimates with a subtropical forest illustration. Can J for 
Res 45(1):44–51

McRoberts RE et al. (2016) Hybrid estimators for mean aboveground carbon per unit area. For Ecol Manage 
378:44–56

Monni S et al. (2007a) Uncertainty of forest carbon stock changes – implications to the total uncertainty of 
GHG inventory of Finland. Clim Change 81(3–4):391–413

Monni S et al. (2007b) Uncertainty in agricultural CH4 AND N2O emissions from Finland – possibilities to 
increase accuracy in emission estimates. Mitig Adapt Strat Glob Change 12(4):545–571

Muyskens J, Narayanswamy A, Mooney C (2021) The Washington Post’s analysis of UNFCCC emis-
sions reporting. Washington Post. https://​www.​washi​ngton​post.​com/​clima​teenv​ironm​ent/​inter​active/​

Page 23 of 25    5Climatic Change (2022) 170: 5

https://doi.org/10.1029/2006GB002734
https://unfccc.int/documents/267657
https://doi.org/10.1890/ES14-00235.1
http://www.ccst.inpe.br/projetos/eba-estimativa-de-biomassa-na-amazonia/
https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html
https://www.washingtonpost.com/climateenvironment/interactive/2021/greenhouse‐gas‐emissions‐pledgesdata/methodology/?itid=lk_inline_manual_53#Expert_Review


1 3

2021/​green​house​‐gas‐emiss​ions‐pledg​esdata/​metho​dolog​y/?​itid=​lk_​inline_​manual_​53#​Expert_​
Review. Accessed 22 Dec 2021

National Research Council (2011) Verifying greenhouse gas emissions: methods to support international 
climate agreements. The National Academies Press, Washington, DC

Nilsson S, et al (2007) Uncertainties of a regional terrestrial biota full carbon account: a systems analysis. 
In: Lieberman, et al (eds) Accounting for climate change: uncertainty in greenhouse gas inventories — 
verification, compliance, and trading. Springer, Dordrecht, pp 5–21

Nowak DJ, et  al (2008) A ground-based method of assessing urban forest structure and ecosystem ser-
vices. Aboriculture & Urban Forestry 34(6):347–358

Nowak DJ et  al (2013) Carbon storage and sequestration by trees in urban and community areas of the 
United States. Environ Pollut 178:229–236

Ogle SM et al (2006) Bias and variance in model results associated with spatial scaling of measurements for 
parameterization in regional assessments. Glob Change Biol 12(3):516–523

Ogle SM et al (2010) Scale and uncertainty in modeled soil organic carbon stock changes for US croplands 
using a process-based model. Glob Change Biol 16(2):810–822

Ogle SM et al (2003) Uncertainty in estimating land use and management impacts on soil organic carbon 
storage for US agricultural lands between 1982 and 1997. Glob Change Biol 9(11):1521–1542

Paustian K et al (2016) Climate-smart soils. Nature 532:49–57
Peltoniemi M et al (2006) Factors affecting the uncertainty of sinks and stocks of carbon in Finnish forests 

soils and vegetation. For Ecol Manage 232(1):75–85
Petrescu AM et al (2020) European anthropogenic AFOLU greenhouse gas emissions: a review and bench-

mark data. Earth System Science Data 12(2):961–1001
Phillips DL et  al (2000) Toward error analysis of large-scale forest carbon budgets. Glob Ecol Biogeogr 

9(4):305–313
Pulles T (2017) Did the UNFCCC review process improve the national GHG inventory submissions? Car-

bon Management 8(1):19–31
Radtke PJ et  al (2015) “Legacy tree data: a national database of detailed tree measurements for volume, 

weight, and physical properties.” In Pushing boundaries: new directions in inventory techniques and 
applications: Forest Inventory and Analysis (FIA) symposium 2015

Ramírez A et al (2008) Monte Carlo analysis of uncertainties in the Netherlands greenhouse gas emission 
inventory for 1990–2004. Atmos Environ 42(35):8263–8272

Roe S et al (2019) Contribution of the land sector to a 1.5 °C world. Nat Clim Chang 9(11):817–828
Russell MB et al (2015) Comparisons of allometric and climate-derived estimates of tree coarse root carbon 

stocks in forests of the United States. Carbon Balance Manage 10(1):20
Rypdal K, Flugsrud K (2001) Sensitivity analysis as a tool for systematic reductions in greenhouse gas 

inventory uncertainties. Environ Sci Policy 4(2–3):117–135
Rypdal K, Winiwarter W (2001) Uncertainties in greenhouse gas emission inventories — evaluation, com-

parability and implications. Environ Sci Policy 4(2):107–116
Schmidt MW et al. (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56
Shvidenko A et  al (2010) Can the uncertainty of full carbon accounting of forest ecosystems be made 

acceptable to policymakers? Clim Change 103(1):137–157
Skog KE (2008) Sequestration of carbon in harvested wood products for the United States. For Prod J 

58(6):17
Skog KE, et al (2004) A method countries can use to estimate changes in carbon stored in harvested wood 

products and the uncertainty of such estimates. Environmental Management 33 (S1):565–573
Smith JE, Heath LS (2001) Identifying influences on model uncertainty: an application using a forest carbon 

budget model. Environ Manage 27(2):253–267
Smith P et al (2008) Sectoral approaches to improve regional carbon budgets. Clim Change 88(3):209–249
Smith P et al (2020) How to measure, report and verify soil carbon change to realize the potential of soil 

carbon sequestration for atmospheric greenhouse gas removal. Glob Change Biol 26(1):219–241
Spencer S et al (2011) Designing a national soil carbon monitoring network to support climate change pol-

icy: a case example for US agricultural lands. GHG Measure Manage 1(3–4):167–178
Ståhl G et al (2014) Sample-based estimation of greenhouse gas emissions from forests—a new approach to 

account for both sampling and model errors. Forest Science 60(1):3–13
Stockmann U et al. (2013) The knowns, known unknowns and unknowns of sequestration of soil organic 

carbon. Agr Ecosyst Environ 164:80–99
Tewari VP, et  al (2020) “National Forest Inventory in India: developments toward a new design to meet 

emerging challenges.” In Statistical methods and applications in forestry and environmental sciences, 
edited by Girish Chandra, Raman Nautiyal, and Hukum Chandra, Springer Singapore, Singapore, pp 
13–33

5   Page 24 of 25 Climatic Change (2022) 170: 5

https://www.washingtonpost.com/climateenvironment/interactive/2021/greenhouse‐gas‐emissions‐pledgesdata/methodology/?itid=lk_inline_manual_53#Expert_Review
https://www.washingtonpost.com/climateenvironment/interactive/2021/greenhouse‐gas‐emissions‐pledgesdata/methodology/?itid=lk_inline_manual_53#Expert_Review


1 3

Third National Communication of Brazil to the UNFCCC (Brazil NC3) (2016) Ministry of Science, Tech-
nology and Innovations. https://​unfccc.​int/​docum​ents/​66129. Accessed  16 April 2021

Udawatta RP, Jose S (2011) “Carbon sequestration potential of agroforestry practices in temperate North 
America.” In Carbon sequestration potential of agroforestry systems: opportunities and challenges, 
edited by B. Mohan Kumar and P. K. Ramachandran Nair. Springer, Dordrecht,  pp 17–42

U.S. Department of Agriculture (2012) Agroforestry USDA Reports to America, Fiscal Years 201–2012 
– Comprehensive Version. https://​www.​usda.​gov/​sites/​defau​lt/​files/​docum​ents/​usda-​repor​ts-​to-​ameri​
ca-​compr​ehens​ive.​pdf. Accessed 20 Dec 2018

U.S. Forest Service (2021) “Landscape Change Monitoring System (LCMS).”  https://​www.​rmrs/​groups/​
lands​cape-​change-​monit​oring-​system-​lcms-​scien​ce-​team. Accessed 20 April 2021

U.S. Geological Survey (2021) “Land Change Monitoring, Assessment, and Projection (LCMAP).” https://​
www.​usgs.​gov/​core-​scien​ce-​syste​ms/​eros/​lcmap. Accessed 20 April 2021

UNFCCC (2015) “Paris Agreement to the United Nations Framework Convention on Climate Change.” 
T.I.A.S. No. 16–1104

UNFCCC (2019a) “Decisions adopted by the conference of the parties serving as the meeting of the parties 
to the Paris Agreement.” FCCC/PA/CMA/2018/3/Add.2

UNFCCC (2019b) “Preparations for the implementation of the Paris Agreement and the first session of 
the conference of the parties serving as the meeting of the parties to the Paris Agreement.” FCCC/
CP/2018/10/Add.1.

US EPA, OAR (2002) “Quality assurance/quality control and uncertainty management plan for the U.S. 
greenhouse gas inventory: procedures manual for quality assurance/quality control and uncertainty 
analysis.” 430-R-02–007B

US NGHGI (2018) "Inventory of U.S. greenhouse gas emissions and sinks: 1990-2016." US Environmental 
Protection Agency.  https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-
sinks-1990-2016. Accessed  19 Dec 2019

US NGHGI (2019) “Inventory of U.S. greenhouse gas emissions and sinks: 1990-2017.” US Environmental 
Protection Agency. Accessed December 19, 2019. https://​www.​epa.​gov/​ghgem​issio​ns/​inven​tory-​us-​
green​house-​gas-​emiss​ions-​and-​sinks-​1990-​2017

US NGHGI (2021) “Inventory of U.S. greenhouse gas emissions and sinks: 1990–2019.” US Environmental 
Protection Agency. Accessed September 20, 2021. https://​www.​epa.​gov/​ghgem​issio​ns/​inven​tory-​us-​
green​house-​gas-​emiss​ions-​and-​sinks-​1990-​2019

Walker WE et al. (2003) Defining uncertainty: a conceptual basis for uncertainty management in model-
based decision support. Integr Assess 4(1):5–17

Weiskittel AR et al. (2015) A call to improve methods for estimating tree biomass for regional and national 
assessments. J Forest 113(4):414–424

Winiwarter W, Muik B (2010) Statistical dependence in input data of national greenhouse gas inventories: 
effects on the overall inventory uncertainty. Clim Change 103(1–2):19–36

Winiwarter W, Rypdal K (2001) Assessing the uncertainty associated with national greenhouse gas emis-
sion inventories: a case study for Austria. Atmospheric Environment. https://​doi.​org/​10.​1016/​S1352-​
2310(01)​00171-6

Yanai RD, et al. (2019) “Uncertainty in measurements of trees in the US Forest Service Forest Inventory 
and Analysis (FIA) program.” Accessed December 30, 2019. https://​agu.​confex.​com/​agu/​fm19/​meeti​
ngapp.​cgi/​Paper/​506321

Yona L et al. (2020) Refining national greenhouse gas inventories. Ambio 49(10):1581–1586
Zeng W et al. (2015) The National Forest Inventory in China: history - results - international context. Forest 

Ecosystems 2(1):23

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Page 25 of 25    5Climatic Change (2022) 170: 5

https://unfccc.int/documents/66129
https://www.usda.gov/sites/default/files/documents/usda-reports-to-america-comprehensive.pdf
https://www.usda.gov/sites/default/files/documents/usda-reports-to-america-comprehensive.pdf
https://www.rmrs/groups/landscape-change-monitoring-system-lcms-science-team
https://www.rmrs/groups/landscape-change-monitoring-system-lcms-science-team
https://www.usgs.gov/core-science-systems/eros/lcmap
https://www.usgs.gov/core-science-systems/eros/lcmap
https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2017
https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2017
https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2019
https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2019
https://doi.org/10.1016/S1352-2310(01)00171-6
https://doi.org/10.1016/S1352-2310(01)00171-6
https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/506321
https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/506321

	Addressing uncertainty and bias in land use, land use change, and forestry greenhouse gas inventories
	Abstract
	1 Introduction
	1.1 Evidence of global and national LULUCF uncertainty
	1.2 Defining and quantifying NGHGI uncertainty

	2 Methods
	2.1 Uncertainty attribution
	2.2 Omitted GHG flux estimation
	2.3 Methods by land use and inventory categories
	2.3.1 Forests
	2.3.2 Cropland and grassland
	2.3.3 Settlements
	2.3.4 Wetlands
	2.3.5 Alaska, Hawaii, and US territories


	3 Results
	3.1 Forests
	3.2 Cropland and grassland
	3.3 Settlements
	3.4 Uncertainty attribution synthesis
	3.5 Omitted fluxes

	4 Discussion
	4.1 Comparison to other studies
	4.2 Opportunities for inventory improvements
	4.2.1 Forest sampling error
	4.2.2 Tree-level biomass estimation
	4.2.3 Cropland and grassland fluxes

	4.3 Application to other countries

	5 Conclusion
	Acknowledgements 
	References


