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Abstract
How much evidence would it take to convince climate skeptics that they are wrong? I
explore this question within an empirical Bayesian framework. I consider a group of styl-
ized skeptics and examine how these individuals rationally update their beliefs in the face
of ongoing climate change. I find that available evidence in the form of instrumental cli-
mate data tends to overwhelm all but the most extreme priors. Most skeptics form updated
beliefs about climate sensitivity that correspond closely to estimates from the scientific liter-
ature. However, belief convergence is a nonlinear function of prior strength and it becomes
increasingly difficult to convince the remaining pool of dissenters. I discuss the neces-
sary conditions for consensus formation under Bayesian learning and show that apparent
deviations from the Bayesian ideal can still be accommodated within the same conceptual
framework. I argue that a generalized Bayesian model provides a bridge between competing
theories of climate skepticism as a social phenomenon.

Keywords Climate skeptics · Social cost of carbon · Bayesian econometrics

1 Introduction

Climate change has come to represent a defining policy issue of our age. Yet support for
comprehensive climate policy at the global scale remains elusive. Decades of accumulated
research and an overwhelming scientific consensus have not been enough to convince every-
one. Many policy makers and ordinary citizens remain openly skeptical about the human
role in our changing climate (Oreskes 2004; Anderegg et al. 2010; Doran and Zimmerman
2011; Cook et al. 2013; Verheggen et al. 2014; Tol 2014; Cook et al. 2016; Saad 2019). What
are we to make of this skepticism? And just how much evidence would it take to convince
climate skeptics that they are wrong? I seek to answer these questions within an empirical
Bayesian framework. My goal is to understand how skeptics would respond to increasing
evidence for human-induced climate change, provided that they update their beliefs ratio-
nally. In so doing, I hope to shed light on our current policy impasse and the possibility for
finding common ground in the near future.
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Beliefs about climate change are powerful. They dictate our choices as individuals and
policies as societies. Our beliefs also shape how we interpret new information about the
world. We are more predisposed to accept data that accords with our priors, and vice versa.
For a climate skeptic, as for anyone else, beliefs provide a lens through which information is
subjectively interrogated and made intelligible. This is not to say that beliefs are immutable.
A central theme of Bayesianism—the intellectual framework for this paper—is the process
by which beliefs are updated through exposure to new information. But our responsiveness
to this new information may be greatly diminished, depending on how strongly we hold our
existing beliefs. Exactly how great of a diminishing effect is the focus of this paper. To pre-
view my method and findings, I consider a range of skeptic beliefs and examine how these
“priors” modulate a person’s responsiveness to climate data. I find that available evidence
in the form of instrumental climate data tends to overwhelm all but the most extreme cases.
However, I also document the nonlinear effect that beliefs have on convergence with the sci-
entific consensus. Even as most skeptic priors are overwhelmed by the evidence for climate
change, it becomes increasingly difficult to convince the remaining dissenters that they are
wrong.

Numerous studies have explored the cultural and psychological factors underlying cli-
mate skepticism. These include Kahan et al., (2011, 2012), McCright and Dunlap (2011a,
b), Corner et al. (2012), Ranney et al. (2012), Clark et al. (2013), Lewandowsky et al.
(2019)—see Hornsey et al. (2016) for a review. Broadly speaking, these studies divide into
two camps. One strand of the literature emphasizes the so-called “deficit model,” which
posits that climate skepticism originates from a lack of relevant background knowledge.
This includes an understanding of the underlying evidence and physical mechanisms, as
well as the true extent of the scientific consensus. However, another camp has come to
advocate for a theory of “cultural cognition,” which interprets climate skepticism as a social
phenomenon resulting from shared value systems and group identity dynamics. In this lat-
ter view, a person’s scientific sophistication is relevant only insofar as it allows them to
better marshal arguments in support of pre-determined positions (i.e., reinforcing cultural
and tribal affiliations). I shall return to these two competing frameworks later in the paper.
For the moment, my concern is less with the origins of climate skepticism than what it
represents: namely, a set of beliefs about the rates and causes of global climate change.

A convenient way to model beliefs about climate change is by defining skepticism in
terms of climate sensitivity, i.e., the temperature response to a doubling of CO2. Specifically,
we can map skeptic beliefs directly on to subjective estimates of climate sensitivity, because
they both describe the probable causes and distribution of future warming. The particular
measure of climate sensitivity that I focus on here is the transient climate response (TCR).
Formally, TCR describes the warming at the time of CO2 doubling—i.e., after 70 years—
in a 1% per year increasing CO2 experiment (IPCC 2013). For the purposes of this paper,
however, it will simply be thought of as the contemporaneous change in global temperature
that results from a steady doubling of atmospheric CO2.

According to the the Intergovernmental Panel on Climate Change (IPCC), TCR is
“likely” to be somewhere in the range of 1.0–2.5 ◦C (IPCC 2013). This corresponds to an
approximate 66–100% probability interval in IPCC terminology. The IPCC further empha-
sizes the inherently Bayesian nature of climate sensitivity estimates, going so far as to
state:

[T]he probabilistic estimates available in the literature for climate system parame-
ters, such as ECS [i.e. equilibrium climate sensitivity] and TCR have all been based,
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implicitly or explicitly, on adopting a Bayesian approach and therefore, even if it is not
explicitly stated, involve using some kind of prior information. (IPCC 2013, p. 922)

To understand why classical (i.e., frequentist) methods are ill-suited for the task of pro-
ducing credible estimates of climate sensitivity, recall that frequentism interprets probability
as the limiting frequency in a large number of repeated draws. Such a narrow defini-
tion holds little relevance to the question of climate sensitivity, for which there exists but
one unique value. There is no population of “sensitivities” to draw samples from. I too
adopt a Bayesian framework for determining climate sensitivity and its concomitant pol-
icy implications. However, my approach differs from the previous literature along several
dimensions.

The most obvious point of departure is the fact that I deliberately focus on the beliefs
of skeptics. Priors for determining climate sensitivity are usually based on paleo data, the
judgments of scientific experts, or noninformative methods. Such approaches may possess
obvious scientific merit for establishing a best estimate of climate sensitivity. Yet, they are of
limited relevance for understanding people’s motivations and voting behavior when it comes
to actual climate policy. My approach is to take skeptics at their word and work through
to the conclusions of their stated priors. In other words, my goal is to recover posterior
probabilities about the rate and causes of climate change that are logically consistent with
the initial beliefs of these skeptics.

Contrarian climate beliefs have also been largely ignored in the economic and policy
literature to date. The handful of studies that do consider policy options from the skeptic
perspective have tended to emphasize edge scenarios like climate catastrophe and irre-
versibility. For example, Kiseleva (2016) introduces an integrated assessment model (IAM)
of heterogeneous agents that incorporates various degrees of climate skepticism. She shows
that a world comprised only of skeptical policy makers will make sufficient investments in
mitigation measures to avoid catastrophic outcomes. The key mechanism is a dominant sub-
set of “weak” skeptics who are sufficiently concerned by anthropogenic climate change that
they reduce their emissions accordingly. Kiseleva (2016) does not allow for learning in her
simulations.1 However, theoretical work by Van Wijnbergen and Willems (2015) show that
climate skeptics actually have an incentive to reduce emissions, since it will facilitate learn-
ing about the true causes of climate change. While it is possible for an increase in emissions
to yield similar learning effects, the irreversibility of climate change renders this an inferior
strategy. From a methodological perspective, the present paper differs from these earlier
studies by combining Bayesian learning with an empirical framework.2 Unlike the exist-
ing numerical and game-theoretic approaches, I am not attempting to prescribe an optimal
emissions strategy or learning paths for climate skeptics under future uncertainty. Rather,
my goal is to establish some ground rules for thinking about climate policy today, given the
information that is already available to us.

1It should be said that there is an important literature on Bayesian learning in IAMs that originates with Kelly
and Kolstad (1999). But I am unaware of any IAM studies that explicitly try to model learning by climate
skeptics.
2In terms of tangentially related empirical work, Kaufmann et al. (2017) shows that spatial heterogeneity in
local climate change effects and temperatures can partially explain persistent skepticism in different regions
of the United States. Moore (2017) does not deal with skeptics per se, but characterizes learning about
climate as a (potentially) Bayesian process where individuals make inferences based on local weather shocks.
This builds off of earlier work by Deryugina (2013), who finds that longer spells of abnormal local weather
patterns are consistent with Bayesian updating about climate beliefs.
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Another distinguishing feature of this paper is that the results are derived via conceptu-
ally straightforward time-series regression analysis. While climate scientists have typically
relied on complex computer models to simulate TCR, a growing body of research is aimed
at understanding the link between human activities and climate change through the purview
of time-series econometrics. Much of this literature has concerned itself with the apparent
nonstationarity of climate data over time. The present paper takes as its foundation recent
research (Gay-Garcia et al. 2009; Estrada et al. 2013a, b; Kim et al. 2020), which argues
convincingly that global surface temperatures and anthropogenic forcings are best described
as trend-stationary processes, incorporating common structural breaks.3 The upshot is to
permit the use of level terms within an ordinary least squares (OLS) regression framework.
Such matters notwithstanding, virtually all econometric studies of climate change attribu-
tion to date have been carried out in the frequentist paradigm. They do not consider the
influence of priors, nor are they able to yield the probabilistic estimates that are characteris-
tic of Bayesian analysis. A noteworthy and early exception is that of Tol and De Vos (1998),
who are motivated to adopt a Bayesian approach because of multicollinearity in their anthro-
pogenic emissions data. Such multicollinearity does not plague newer datasets, since these
are defined in terms of common units (e.g., Wm−2). Furthermore, Tol and De Vos (1998)
do not consider the influence of overtly contrarian priors as a basis for affecting policy.

2 Econometric approach

2.1 Bayesian regression overview

The Bayesian regression framework is less familiar to many researchers than the frequentist
paradigm that is commonly taught in universities. For this reason, I provide a brief overview
of the key principles of the Bayesian method and highlight some important distinctions
versus the frequentist approach.

A Bayesian regression model uses the logical structure of Bayes’ theorem to estimate
probable values of a set of parameters θ , given data X:

p(θ |X) = p(X|θ)p(θ)

p(X)
. (1)

Here, p(θ |X) is known as the posterior and serves as the fundamental criterion of inter-
est in the Bayesian framework. The posterior asks, “What are the probable values of our
parameters, given the observed data?” This stands in direct contrast to the first term in the
right-hand numerator, p(X|θ), which is the familiar likelihood function from frequentist
statistics. The likelihood essentially reverses the question posed by the posterior and instead
asks, “How likely we are to observe some data for a given set of parameters (e.g. based on
an assumption about the data generating process)?” The second term in the numerator is
the prior, p(θ). While the prior can take on any distributional form, it should in principle
encapsulate our knowledge about the parameters before we have observed the data. Inso-
far as we are interested in learning about θ , it is common practice to ignore the term in the
denominator, p(X). This is simply the marginal probability of the data and can be thought

3Another group of researchers beginning with Stern and Kaufmann (2000), has argued that the instrumental
temperature record contains a stochastic trend that is imparted by, and therefore cointegrates with, the time-
series data of radiative forcings. The reader is referred to Estrada and Perron (2013) and Hillebrand et al.
(2020) for helpful overviews of this debate.
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of as a normalization constant, which helps to ensure that the posterior is a proper proba-
bility distribution (i.e., integrates to one) and can be calculated ad hoc if needed. For this
reason, Eq. 1 is typically re-written as

p(θ |X) ∝ p(X|θ)p(θ). (2)

Equation 2 embodies the mantra of Bayesian statistics: “The posterior is proportional to
the likelihood times the prior.” Solving for the posterior typically involves the combination
of various integrals, which cannot be calculated analytically.4 Fortunately, we can simulate
the posterior density computationally using Markov Chain Monte Carlo (MCMC) routines.
This can be done for virtually any combination of prior and likelihood function. Obtaining
a valid posterior is then simply a matter of: (i) choosing a prior distribution for our regres-
sion parameters, i.e., regression coefficients and variances, and (ii) specifying a likelihood
function to fit the data. For ease of exposition—how we map parameter values to beliefs
about TCR will be determined by the specification of the regression model—I begin with
the likelihood function.

2.2 Likelihood function

The likelihood function is governed by the choice of empirical model. Following Estrada
and Perron (2012) and Estrada et al. (2013a), I model global temperatures using the
regression equation

GMSTt = α0 + β1RFt + γ2V OLCt + δ3SOIt + η4AMOt + εt , (3)

where εt = φεt−1 + νt is a first-order autoregressive, or AR(1), error process.
Here, GMST is the global mean surface temperature anomaly relative to the pre-

industrial period (defined as the 1871–1900 average); RF is total radiative forcing due to
both anthropogenic and natural factors (excluding volcanic eruptions); V OLC is the radia-
tive forcing due to volcanic stratospheric aerosols; and SOI and AMO are scaled indices
of these respective climatic phenomena. The subscript t denotes time. Specifying that the
error term ε follows an AR(1) process allows us to account for dynamic elements such as
potential autocorrelation.

Two points merit further discussion before continuing. First, nothing much hinges on the
use of OLS for estimating TCR. For example, the β1 coefficient above is equivalent to the
“climate resistance” constant (ρ) described in Gregory and Forster (2008); a point I return
to later. OLS simply provides a convenient method for combining data and priors in a con-
sistent Bayesian framework. Other methods could in principle be used to derive the same
results. Second, the use of a composite RF variable that combines both anthropogenic and
natural forcings may, at first blush, seem an odd choice. After all, the goal of this paper
is to separate out and interrogate skepticism specifically about the human role in climate
change. However, recall that the underlying forcings in my dataset are all expressed in terms
of a common unit (i.e., Wm−2). This circumvents the multicollinearity problems that would
arise from estimating an econometric model on forcings that have been separated out.5

Econometric issues aside, the use of a common forcing unit ensures that I don’t run the risk

4So-called conjugate priors are a prominent exception and belong to the same distribution family as the
resulting posterior. However, conjugacy places strong restrictions on the questions that can asked of the data.
5Anthropogenic forcings such as CO2, CH4, and N2O all follow very similar trends over time. Any empir-
ical model that does not constrain these forcings in some way will therefore struggle to correctly attribute
warming between them.
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of estimating different coefficients, which would imply an inconsistent response of the cli-
mate system to identical forcings. The use of a composite forcing series is thus a necessary
step to ensure that the model remains physically consistent.6 I shall demonstrate that relax-
ing these constraints later in the paper nonetheless yields virtually identical conclusions as
the physically correct specification.

Returning to my primary regression model, Eq. 3 implies a likelihood function that is
multivariate normal,

p(GMST |β, σ 2) = 1
(
2πσ 2

)T/2
exp

[
− (GMST − Xβ)′(GMST − Xβ)

2σ 2

]
, (4)

where X is the design matrix of explanatory variables; β is the coefficient vector; σ 2 =
Var(ε) is the variance of the error term; and T = 140 is the number of years in the col-
lated, historical dataset. Equation 4 can also be written more simply as GMST |β, σ 2 ∼
NT (Xβ, σ 2I).

An important feature of Eqs. 3 and 4 is that they define how we should map prob-
abilities about the regression parameters to beliefs about climate sensitivity. Recall that
TCR describes the contemporaneous change in temperature that will accompany a steady
doubling of atmospheric CO2 concentrations. It follows that

TCR = β1 ∗ F2× , (5)

where β1 is the regression coefficient describing how responsive global temperatures are to
a change in total radiative forcing, and F2× is the change in forcing that results from a dou-
bling of CO2. For the latter, I use the IPCC’s best estimate of F2× = 3.71 Wm−2 and further
assume an additional ±10% variation to account for uncertainties over spatial heterogeneity
and cloud formation (Schmidt 2007; IPCC 2001).7 The key point is that assigning a distri-
bution over the parameter β1 will necessarily imply a distribution for TCR, and vice versa.
We therefore have a direct means of linking prior and posterior probabilities of the regres-
sion parameters to beliefs about TCR. It also means that the primary goal of the regression
analysis will be to determine probable values of β1. The rest of the parameters will take a
backseat in the analysis that follows, acting largely as controls.

Equation 5 contains an implicit assumption that will have bearing on the external valid-
ity of my results—specifically, the extent to which they can be extrapolated to different
future climate scenarios. Recall that β1 is equivalent to the “climate resistance” parameter
(ρ) defined in Gregory and Forster (2008) as the constant sum of the ocean heat uptake
efficiency and the climate feedback parameter. The importance of this equivalence is that
it underscores the role of oceanic thermal dynamics, and the implicit assumption of a lin-
ear scaling between the different climate components of my regression model. This linear
scaling holds for climate scenarios that are characterized by a steady increase in radiative
forcing—as was the case during the instrumental temperature record. However, it cannot
be expected to hold in future scenarios that are characterized by significant changes in the
rate of radiative forcing (e.g., due to aggressive mitigation action). In such cases, ocean heat
uptake would need to be modeled separately to account for inertia in the climate system and

6Volcanic aerosols are an exception because they impart only a transitory level of forcing. This explains why
V OLC may be included as a separate component in the regression equation (Estrada et al. 2013a).
7It is worth noting that a number of studies which provide climate sensitivity estimates via time-series
methods — e.g., Kaufmann et al. (2006), Mills (2009), and Estrada and Perron (2012)—do so under the
assumption that F2× = 4.37 Wm−2. This outdated figure appears to be based on early calculations by Hansen
et al. (1988). The climate sensitivity estimates of these studies may consequently be regarded as inflated.
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Table 1 Skeptic priors

Type TCR (◦C) Implied β1

Moderate lukewarmer N (1, 0.252) N (0.27, 0.06742)

Strong lukewarmer N (1, 0.0652) N (0.27, 0.01752)

Moderate denier N (0, 0.252) N (0, 0.06742)

Strong denier N (0, 0.0652) N (0, 0.01752)

Noninformative – N (0, 1.2142)

Subjective priors types are defined according to the mean (lukewarmer vs denier) and variance (moderate
vs strong) parameters of normal distributions over TCR. The implied priors for β1 are obtained using the
simple formula described in Eq. 5, i.e., β1 = TCR/3.71. The noninformative prior presented at the bottom
of the table is weakly data-dependent (i.e., depends on the scale of the data) and is obtained using the default
calculation proposed by Goodrich et al. (2020), β1 ∼ N (0, 2.5 · sd(GMST )/sd(RF)). See text for details

its resultant impact on GMST (ibid.). All of which is to say that I will limit my analysis
to the historical period, as well as future climate scenarios that are characterized by steady
increases in radiative forcing.

3 Priors

Climate skepticism is a matter of degree. I account for this fact by defining a simple
typology of skeptics as per Table 1. Summarizing, I distinguish between two basic skeptic
archetypes based on their best guess for TCR. Lukewarmers (c.f. Ridley 2015) believe that
TCR lies around 1 ◦C—i.e., the lower bound of the IPCC “likely” range—while deniers
believe that TCR is likely zero. I further distinguish these individuals based on how certain
they are about their best guess. A person with moderate convictions believes that the true
value of TCR lies within a 1 ◦C uncertainty interval of their prior mean (95% probability),
while that interval falls to just 0.25 ◦C for someone with strong convictions. Altogether, this
yields a spectrum of skeptic priors that ranges from moderate lukewarmers to strong deniers.
Importantly, each skeptic can all be represented mathematically by a prior distribution on
TCR. I assume normal distributions for simplicity, where the mean represents an individ-
ual’s best guess and the variance their uncertainty.8 Following Eq. 5, obtaining priors over
β1 is a simple matter of dividing the respective TCR distributions by F2× = 3.71 Wm−2.
These are the parameters that actually enter the Bayesian regression model and are also
shown in Table 1.

In addition to the subjective priors of our stylized skeptics, a useful reference case for the
analysis is provided by a set of so-called noninformative priors. Loosely speaking, nonin-
formative priors are vague and should not privilege particular parameter values over others.
In practice, applied Bayesian researchers are advised to use noninformative priors that are
weakly data-dependent (Gelman et al. 2020). For example, priors should be scaled to reflect

8The choice of normally distributed priors should have little bearing on the generality of the results. An
exception might occur if I assumed a bounded prior, like a triangular or uniform distribution. Because these
bounded distributions assign zero weight to outcomes beyond a specific interval, no amount of data can
shift the posterior beyond that interval. This idea, that a Bayesian posterior can converge on a particular
outcome only if the prior allocates some (infinitesimal) weight to it, is known colloquially as Cromwell’s
rule (Jackman 2009).
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feasible magnitudes of the underlying data. If the data are observed in the order of millime-
ters, then the prior should not allocate plausible weight to values in the order of kilometers,
and so forth. This modest form of regularisation not only helps to ensure computational
stability, but also avoids some of the theoretical pathologies associated with uniform priors
(c.f. Annan and Hargreaves 2011). I therefore use a set of reference priors that have been
scaled to reflect this limited data dependence. Given generic dependent variable y and inde-
pendent variable x, I define a noninformative prior for the associated regression coefficient
βx ∼ N (0, 2.5 sy

sx
), where sx = sd(x).9 In other words, my noninformative priors take the

form of normal distributions with wide variances. For my default regression specification,
this equates to a prior on the key radiative forcing coefficient of β1 ∼ N (0, 1.2142).

Note that my group of skeptics only hold subjective priors over TCR (and thus β1).
Noninformative priors are always assumed for the remaining parameters in the regression
equation. Similarly, I acknowledge that these skeptics are, of course, highly stylized car-
icatures. Their priors are simply taken as given. I am not concerned with where these
priors come from and why they are of a particular strength. However, such abstractions are
ultimately unimportant given the objectives of this study. My goal is to explore how dif-
ferent climate skeptics would respond to evidence for climate change, provided that they
update their beliefs rationally. Moreover, this simple typology gives a sense of just how
strong someone’s prior beliefs need to be, so as to preclude the acceptance of any policy
interventions.

4 Data

The various data sources for this paper are summarized in Table 2. Global mean surface
temperature data (1850–2017) are taken from the HadCRUT4 dataset, jointly compiled
by the UK Met Office and the Climatic Research Unit at the University of East Anglia.
Two alternate global temperature reconstructions—one provided by Cowtan and Way
(2014) (hereafter, CW14) and the other by the NASA Goddard Institute for Space Studies
(GISTEMP)—are used as a check against spatial coverage issues and other uncertainties.10

Radiative forcing data, covering both historic estimates (1765–2005) and future scenarios
(2006–2300), are taken from the Representative Concentration Pathway (RCP) database,
hosted by the Potsdam Institute for Climate Impact Research. These data include anthro-
pogenic sources of radiative forcing like industrial greenhouse gas emissions, as well as
natural sources like solar irradiance and volcanic eruptions. As a part of the sensitivity anal-
yses, I use an ensemble of 1000 forcing estimates to capture measurement uncertainty about
radiative forcing data. This ensemble originates with Dessler and Forster (2018), although I
use a recapitulated version provided by Hausfather et al. (2020) for ease of access. Data for
two major oceanic-atmospheric phenomena, the Atlantic Multidecadal Oscillation (AMO,
1856–2017) and the Southern Oscillation Index (SOI, 1866–2017), are taken from the US
National Oceanic and Atmospheric Administration (NOAA) and National Center for Atmo-
spheric Research (NCAR). Summarizing the common historic dataset for which data are
available across all series, we have 140 annual observations running over 1866–2005. RCP
scenarios until 2100 will also be considered for making future predictions later in the paper.

9This is the default prior suggested by Goodrich et al. (2020), which they refer to as “weakly informative.”
10HadCRUT5 (Morice et al. 2020) was released during the late revision stages of the manuscript. Among
other things, this updated version of the HadCRUT temperature record adopts a similar approach to
interpolating coverage gaps as in CW14.
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Table 2 Data sources

Variable Key Description Period

GMST HadCRUT4a Global mean surface temperature. Primary 1850–2019

series. Compiled by the UK Met Office and the

Climatic Research Unit at the University of

East Anglia.

CW14b Secondary series. Compiled by Cowtan and Way (2014). 1850–2019

Corrects for coverage bias in HadCRUT4.

GISTEMPc Secondary series. Compiled by the NASA 1880–2019

Goddard Institute for Space Studies.

RF RCPd Total radiative forcing due to anthropogenic 1765–2300

and natural factors (excluding volcanic

aerosols). Compiled by Meinshausen et al. (2011).

Historical data until 2005, simulated scenarios

thereafter.

DF18e Ensemble of 1000 radiative forcing estimates 1750–2017

compiled by Dessler and Forster (2018).

Used for sensitivity analysis.

VOLC RCPd Radiative forcing due to volcanic stratospheric 1750–2005

aerosols. Compiled by Meinshausen et al. (2011).

AMO NOAAf Atlantic Multidecadal Oscillation. 1856–2019

SOI NCARg Southern Oscillation Index. 1866–2019

The compiled dataset, as well as the code needed to reconstruct from source, are available at https://github.
com/grantmcdermott/skeptic-priors. Sources are listed below
ahttp://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.html
bhttp://www-users.york.ac.uk/∼kdc3/papers/coverage2013/series.html
chttp://data.giss.nasa.gov/gistemp
dhttp://www.pik-potsdam.de/∼mmalte/rcps
ehttps://doi.org/10.5281/zenodo.1323162, (original) https://github.com/hausfath/OldModels (accessed)
fhttp://www.esrl.noaa.gov/psd/data/timeseries/AMO
ghttp://www.cgd.ucar.edu/cas/catalog/climind/soi.html

5 Results

The analysis for this project was primarily conducted in R (R Core Team 2020, version
4.0.2), with the Bayesian computation being passed on to the Stan programming language
(Gabry and Češnovar 2020). All of the code and data needed to reproduce the results can be
found at the companion GitHub repository.11

5.1 Regression results and updated TCR beliefs

The posterior regression results for the various prior types are presented in Table 3. Each
column contains the results from running the Bayesian regression Eq. 3 over the full

11https://github.com/grantmcdermott/skeptic-priors.
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Table 3 Posterior regression results and implied TCR

Lukewarmer Denier

Noninformative Moderate Strong Moderate Strong

RF 0.426 0.417 0.345 0.402 0.076

(0.395, 0.455) (0.387, 0.448) (0.317, 0.373) (0.371, 0.433) (0.040, 0.112)

VOLC 0.048 0.048 0.046 0.047 0.034

(−0.002, 0.098) (−0.000, 0.097) (−0.013, 0.102) (−0.006, 0.097) (−0.080, 0.148)

SOI −0.024 −0.024 −0.025 −0.024 −0.025

(−0.035, −0.012) (−0.035, −0.013) (−0.038, −0.014) (−0.036, −0.013) (−0.044, −0.006)

AMO 0.470 0.468 0.460 0.468 0.448

(0.393, 0.548) (0.386, 0.547) (0.367, 0.552) (0.386, 0.549) (0.289, 0.614)

AR(1) 0.320 0.321 0.378 0.326 0.648

(0.181, 0.444) (0.187, 0.446) (0.245, 0.503) (0.194, 0.454) (0.549, 0.733)

TCR 1.6 1.5 1.3 1.5 0.3

(1.4, 1.8) (1.4, 1.7) (1.1, 1.4) (1.3, 1.7) (0.1, 0.4)

Results from running the Bayesian regression Eq. 3. The table lists the posterior parameter means, with
95% Bayesian credible intervals in parentheses. Models are distinguished by the set of priors that were used
during the Bayesian estimation. For the first model in column (1), noninformative priors were specified over
all regression parameters. For the remaining models in columns (2)–(5), subjective priors were specified over
the total radiative forcing (RF) coefficient, with noninformative priors being used for all other parameters.
See Table 1 for details. RF and volcanic stratospheric aerosols (VOLC) are measured in Wm−2. The Southern
Oscillation Index (SOI) and Atlantic Multidecadal Oscillation (AMO) are measured as scaled indices. The
AR(1) term denotes an autoregressive error coefficient. The implied TCR values at the bottom of the table
are measured in ◦C and are obtained by multiplying the coefficient on RF by F2× per Eq. 5. The data have
been centered, hence the lack of intercept, and comprise annual observations over 1866–2005

historical dataset (1866–2005), using a particular set of priors. Beginning with the noninfor-
mative case in the first column, all of the regression coefficients are credibly different from
zero and of the anticipated sign. For example, GMST is negatively correlated with SOI. This
is to be expected since the El Niño phenomenon is defined by SOI moving into its negative
phase. The posterior coefficient density on our main parameter of interest, total radiative
forcing (RF ), shows that global temperature will rise by an average of 0.426 ◦C for every
Wm−2 increase. Of greater interest, however, is the fact that the posterior estimates yielded
by the group of skeptic priors are very similar to this noninformative case. With the excep-
tion of the strong denier, there is a clear tendency to congregate towards the noninformative
parameter values.

Of course, the exact values of the regression parameters are themselves of somewhat lim-
ited interest. Rather, their primary usefulness is to enable the recovery of posterior beliefs
about TCR. These are summarized at the bottom of Table 3, while the full prior and posterior
distributions are plotted in Fig. 1. We see that the posterior TCR distributions are gener-
ally clustered around a best estimate of 1.5 ◦C, with a 95% credible interval in the region
of 1.1–1.8 ◦C, depending on the prior. Excepting the strong denier, these posterior beliefs
about TCR fall comfortably within the IPCC “likely” range. However, the derived proba-
bility intervals are decidedly narrower and TCR values at the upper end of the spectrum are
discounted accordingly.

Further insight into the updating behavior of our stylized skeptics is provided by the
recursive TCR estimates shown in Fig. 2. Note these recursive estimates are run backwards
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Fig. 1 TCR densities. Dashed lines denote priors, solid lines denote posteriors. The grey shaded region
denotes the IPCC “likely” TCR range of 1.0–2.5 ◦C

in time to mimic the perspective of present-day skeptic looking back over an increasing
body of historical evidence. It is apparent that stronger convictions about one’s prior beliefs
(in the form of a smaller prior variance) have a greater dampening effect on posterior out-
comes than the prior mean. For example, the moderate denier converges more rapidly to
the noninformative distribution than the strong lukewarmer. However, most skeptics will
converge to the noninformative distribution only after “observing” data from a number of

Fig. 2 Recursive TCR estimates. In each panel, the resulting posterior TCR estimate from a skeptic prior is
contrasted with the noninformative case (in black). Solid lines denote means, while shaded regions (or dashed
lines) denote 95% credible intervals. The recursive estimates are obtained by running regression Eq. 5 on an
increasing fraction of the historical dataset, starting nearest to the present day and then iterating backwards
in time. Each pass of the iteration adds another year of data to the sample and re-runs the regression to obtain
an updated posterior TCR. This recursive process continues until the full historical dataset is encompassed

Climatic Change (2021) 166: 7 Page 11 of 23 7



decades. Note that this does not alter the conclusions that we are able to draw from our
Bayesian analysis. As long as we have fully specified a prior that encapsulates a person’s
initial beliefs, then we should in principle treat the full historical dataset as new information
for updating those beliefs.12 Yet it does highlight the importance of using all the available
instrumental climate data for building any kind of policy consensus. Limiting the sample
period under observation to, say, the last 35 years would largely preclude the possibility of
consensus formation. The tendency of some prominent skeptics to rely on satellite records
of global temperatures—which only stretch back as far as 1979—could be seen as anec-
dotal evidence in support of this claim (e.g., Mooney 2016). A similar argument could be
made for a reliance on short-term climate trends and fluctuations that do accurately reflect
longer-term trends. For example, the relatively brief “hiatus” in warming that followed the
exceptionally strong 1998 El Niño event (Lewandowsky et al. 2016).

Returning to the question posed at the beginning of this paper: How much evidence
would it take to convince climate skeptics that they are wrong about global warming? One
way to reframe this question is to think about how much data a skeptic needs to observe
before their best estimate of climate sensitivity begins to look reasonable to a mainstream
climate scientist. For example, how long would it take before they obtained a mean poste-
rior TCR of 1.3 ◦C or 1.5 ◦C? While it is possible to look at the skeptics’ recursive TCR
estimates using only historical data, we run into problems with the more extreme priors.
Put plainly, there is simply not enough historical data to overcome higher orders of skepti-
cism. I therefore simulate over 200 years worth of global temperature and climate data using
parameters obtained from the noninformative Bayesian regression in Table 3. I then use this
simulated data to run a set of secondary regressions that are distinguished by a range of
different skeptic priors on TCR. (This range is much more granular than my original four-
skeptic typology.) Each regression is estimated recursively, incrementing one year at a time,
until I obtain a posterior TCR distribution that has a mean value equal to the relevant target.

The results are shown in Fig. 3. While the instrumental climate record constitutes enough
data to convince many skeptics in this hypothetical pool, it does not suffice in all cases.
Similarly, although we expect that many present-day skeptics will eventually acquiesce their
beliefs if climate change continues into the future, there remains a small group of hardcore
skeptics who defiantly refuse convergence with the mainstream even if we project as far
ahead as 2100. Such is the strength of their priors. Note further that the year of convergence
is a nonlinear function of prior strength, so that it becomes increasingly difficult to convince
the marginal skeptic. The steady accumulation of evidence over time will inexorably bring
more skeptics into the mainstream fold. But the delay between each round of new converts
is increasing.

An implication of this thought experiment is the following. If someone is unpersuaded
of the human influence on climate today—despite all of the available evidence—then there
is a high probability that they will remain unconvinced for many years hence. The extent
to which these extreme skeptics constitute a meaningful voting block is an open empiri-
cal question. However, it is striking to think that such individuals are perhaps already out
of reach from the perspective of comprehensive climate policy. Even the accumulation of
evidence over the next several decades may not be enough to convince them. Scientific

12As a corollary, concerns over the use of the full historical dataset would only hold sway in cases where
priors already incorporate information that has been obtained from applying the same model on a sub-sample
of the dataset. In that case, we would need to exclude the sub-sample from the analysis to derive a valid
posterior that avoids double counting.

Climatic Change (2021) 166: 7Page 12 of 237



Fig. 3 When do skeptic beliefs about TCR converge with mainstream estimates? Axes denote the means
and standard deviations of a range of normally distributed skeptic priors on TCR. Convergence is defined as
occurring when the mean posterior TCR for a particular prior equals the relevant target value, i.e., a 1.3 ◦C
or b 1.5 ◦C. The year of convergence assumes a starting date of 1866 to coincide with the common historical
dataset. Blue shading indicates that convergence is feasible with historically available data. Red shading
indicates that convergence can only occur once additional data has been accumulated in the future

communication efforts should be tailored appropriately, specifically targeting moderates for
persuasion (e.g., lukewarmers) rather than engaging skeptics en masse.

5.2 Sensitivity analysis

I test the sensitivity of my findings to a variety of potential data issues and alternate model
specifications. These range from the use of alternative GMST reconstructions, to analyzing
the impact of measurement error and uncertainty over forcing efficacies. A full discussion
of the motivating context and technical details underlying each sensitivity run—with results
across all prior types—is provided in the Supplementary Material. Unsurprisingly, I obtain
wider posterior distributions under specifications that explicitly introduce additional forms
of uncertainty into the estimation. However, the general effect of these alternate specifica-
tions is to nudge the posterior TCR mean slightly higher. Table 4 summarizes the posterior
TCR distributions for various sensitivity runs when using noninformative priors. I am left
to conclude that my primary data and modeling choices do not unduly bias the results.

5.3 Future temperatures

Climate policy is largely predicated upon the risks to future generations. As such, any policy
discussion must consider predictions that run many years into the future. TCR estimates are
one means of gaining an insight into how global temperatures will evolve over the coming
decades. A more explicit way of demonstrating this is by predicting temperatures until the
end of the century.

While the trajectory of future radiative forcings is subject to much uncertainty, some
guidance is available in the form of the IPCC’s Representative Concentration Pathways
(Van Vuuren et al. 2011). These so-called “RCPs” describe a family of emissions scenar-
ios, where total anthropogenic forcings evolve according to various economic, demographic
and technological assumptions. Each RCP includes a core component of atmospheric CO2
concentrations, while they all share a common prediction for radiative forcing due to solar
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Table 4 TCR: Sensitivity analysis and alternative specifications

Key TCR Comment

CW14 1.6 (1.4, 1.9) Alternative GMST series.

GISTEMP 1.8 (1.5, 2.0) Alternative GMST series.

HadCRUT ME 1.6 (1.4, 1.8) Measurement error in GMST data.

DF18 1.4 (0.9, 2.6) Measurement error in forcings data.

MEA16 I 2.2 (1.9, 2.5) Adjusted forcing efficacies (means).

MEA16 II 1.9 (-0.7, 3.4) Adjusted forcing efficacies (distributions).

Anthro 1.6 (1.4, 1.8) Separate anthropogenic from natural forcings.

CO2 1.7 (1.3, 2.0) Separate CO2 from other forcings.

TCR means are given in ◦C, with 95% credible intervals in parentheses. The estimates above are computed
using noninformative priors only. Full distributions for all prior types across all sensitivity runs are provided
in the Supplementary Material

activity. I take these series as the basis for constructing covariate vectors to predict temper-
atures until the year 2100. For the remaining explanatory variables—stratospheric aerosols,
SOI and AMO—I take the mean historical values from my dataset. A summary of covariate
vectors in 2100 for each RCP scenario is provided in the Supplementary Material.

Figure 4 shows the temperature evolution for each RCP under the noninformative case,
which I again take as the benchmark. As discussed in Section 2.2, it would be inappropriate
to extrapolate my regression framework to scenarios that are characterized by significant
changes in the rate of radiative forcing. The confounding effect of (unaccounted for) ther-
mal inertia in the oceans would render these model predictions ill-conditioned. I therefore

Fig. 4 Model fit and prediction: noninformative priors. Temperature anomaly relative to the 1871–1900 aver-
age. Shaded regions denote 95% credible intervals. Note that predictions for RCPs 2.6 and 4.5 are potentially
ill-conditioned and are included for reference purposes only. See text for details
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Fig. 5 Predicted temperature anomaly by 2100: all priors types. Points denote means and error bars denote
95% credible intervals

focus on RCPs 6.0 and 8.5, which maintain steady rates of forcing increase.13 The principal
message is that CO2 concentrations must be constrained to well below RCP 6.0, if we are
to avoid a 2 ◦C rise in global temperatures. Given the prominence of this particular thresh-
old in international climate treaties and the popular narrative, the result is a reinforcement
of commonly cited emissions targets such as 450 and 540 ppmv. On the other hand, we can
expect to breech even 3 ◦C by the year 2100 if we continue along a truly unconstrained
emissions path à la RCP 8.5.

What of the predictions yielded by our group of climate skeptics? While it is straight-
forward to redraw Fig. 4 for each prior type, a more intuitive comparison can be made by
looking at the full distribution of warming that each skeptic expects by the end of the cen-
tury. Figure 5 plots the predictive temperature density in the year 2100 for all prior types
by RCP scenarios 6.0 and 8.5. Again, the data have a clear tendency to overwhelm even
reasonably staunch forms of climate skepticism. Nearly all of the stylized skeptics would
expect to breach the 2 ◦C threshold by 2100 under RCP 6.0, while a temperature rise of
more than 3 ◦C is likely under under RCP 8.5. An exception can only be found in the form
of the strong denier, whose extreme prior dominates the posterior in a way that obviates
nearly all concern about large temperature increases.

5.4 Welfare implications and the social cost of carbon

Provided they consider enough data, we have seen that most climate skeptics should be
able to agree that a 2 ◦C target requires limiting CO2 concentrations to around 540 ppmv.
Whether someone actually subscribes to policy measures aimed at achieving the 2 ◦C goal
is dependent on many things: their choice of discount rate, beliefs about the efficacy of
policy, damage expectations, etc. Such issues are largely beyond the scope of this paper.
Nonetheless, we may still gain a deeper insight into the welfare implications of our posterior
TCR values by analysing their effect on the social cost of carbon (SCC). The SCC represents
the economic costs associated with a marginal unit of CO2 emissions. It can therefore be

13Temperature predictions for RCPs 2.6 and 4.5—depicting respective CO2 stabilisation scenarios—are
included in Fig. 4 for reference purposes only.
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Table 5 Social cost of carbon (US$2020 per ton)

Mean Median 95% Prob. Interval

Noninformative 99 56 (17, 306)

Moderate lukewarmer 85 53 (16, 249)

Strong lukewarmer 51 30 (9, 134)

Moderate denier 82 47 (15, 224)

Strong denier 1 1 (0, 4)

Results for each prior type are obtained by simulating over the full posterior TCR distributions in Table 3
using PAGE (Hope 2011; Moore et al. 2018). All remaining parameters are set to the PAGE model defaults

thought of as society’s willingness to pay for the prevention of future damages associated
with human-induced climate change.

Obtaining SCC estimates generally requires the use of integrated assessment models
(IAMs), which are able to solve for optimal climate policy along a dynamic path by simulat-
ing across economic and climate systems. The PAGE model originally developed by Hope
(2011), is ideally suited to our present needs. It is widely used as one of the major IAMs for
evaluating climate policy (Nordhaus 2014; IWG 2016). More importantly, PAGE accepts
random variables as inputs and yields the type of probabilistic output that is consistent with
the rest of this paper. I take the posterior TCR distributions yielded by my Bayesian regres-
sion model and use these as inputs for calculating the SCC. The PAGE defaults are used for
the remaining parameters.14

Table 5 summarizes the SCC distributions across all prior groups in 2020 US dollars.
The full probability distributions are highly skewed and characterized by extremely long
upper tails (see the Supplementary Material). This is largely due to the fact that PAGE
allows for the possibility of major disruptions—e.g., melting of the Greenland ice sheet—at
temperatures above 3 ◦C. Such low probability, high impact events would yield tremendous
economic losses and result in some extreme SCC values as a consequence. Note too that the
frequency of these events are more common in my adapted version of PAGE, since I replace
the default triangular (i.e., bounded) TCR distribution with the posterior TCR distributions
from my model. The latter are approximately normally distributed, thus permitting small
but positive weight in the tails. For this reason, I provide both the mean and median SCC
values alongside the 95% probability interval.

Excepting the strong denier, the SCC for all prior types is comfortably larger than zero.
The median value ranges from approximately $30 to $60 per ton (2020 prices), while the
95% probability interval extends from $10 to upwards of $130 per ton. These results are
consistent with the SCC estimates found within the literature. For example, an influential
synthesis review conducted by the US government under the Obama administration estab-
lished a mean SCC value of $12–$62 per ton (2007 prices), depending on the preferred
discount rate (IWG 2016). The encouraging point from a policy perspective is that such
congruence exists despite the fact that the analysis proceeds from an initial position of skep-
ticism. Another way to frame the SCC estimates presented here is to imagine that each
prior type represents an equal segment of a voting population. We would then expect to see
broad support for a carbon tax of at least $20–$25. While such a thought experiment clearly

14I use the open-source implementation of the model, MimiPAGE2009 (Moore et al. 2018), which has been
re-written in the Julia programming language (Bezanson et al. 2017).
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abstracts from the many complications that would arise from free-riding and so forth, again
we see that nominal climate skepticism does not correspond to a mechanical dismissal of
climate policy.

6 Discussion

We have seen that a nontrivial carbon price is consistent with a range of contrarian priors
once we allow for updating of beliefs and, crucially, consider enough of the available data.
An optimist might interpret these findings as a sign that common ground on climate policy
is closer than many people think. On the other hand, they may also help to explain why the
policy debate is so polarized in the first place. As all intermediate positions are absorbed into
the mainstream, only the most hardcore skeptics will remain wedded to their priors. Such
a group is unlikely to brook any proposals for reduced carbon emissions and virtually no
amount of new information will convince them otherwise. Taken together with the persistent
skepticism that one sees in actual polling data (e.g., Saad 2019), it then becomes reasonable
to ask whether real-life climate skeptics hold such extreme views? For that matter, are they
numerous or vocal enough to prevent political action? Such considerations are reinforced by
the idealized nature of the analysis until now. Irrespective of the scientific merit of working
through such a set-up, normal people clearly do not update their priors in lockstep with a
formal Bayesian regression model, supported by large dataset of time-series observations.15

A natural starting point for thinking about these issues is to take a closer look at the mech-
anisms underlying posterior agreement formation. The notion that partisans should converge
toward consensus with increasing information has long been taken as a logical consequence
of Bayes’ theorem. Indeed, empirical evidence to the contrary has been cited as a weak-
ness of the Bayesian paradigm and its relevance to real-life problems (e.g., Kahneman and
Tversky 1972). This is a misconception. Nothing in the Bayesian paradigm precludes the
possibility of diverging opinions in the face of shared information (Jaynes 2003; Bullock
2009). It may even be the case that the same information has a polarizing effect on indi-
viduals, pushing them towards opposite conclusions. This is perhaps most easily shown by
incorporating perceptions of trust and source credibility into our Bayesian model. In other
words, we must broaden our conception of someone’s “prior” so that it describes not only
their existing beliefs about some phenomenon S, but also the credibility that they assign to
different sources of information about S.

Consider an example, which is closely adapted from a related discussion in Jaynes
(2003). Al, Bob and Christie hold different beliefs about climate change. Al is a “warmist,”
Bob is a “lukewarmer” and Christie is a “denier.” These labels are encapsulated by the prior
probabilities that each person assigns to climate sensitivity S, which we assume for simplic-
ity is either high or low: S ∈ SL, SH . Denote by I an individual’s prior information about
the world. Then, indexing by the first letter of their names, we summarize their prior beliefs
about climate change as the following probabilities: P(SH |IA) = 0.90, P(SH |IB) = 0.40,
and P(SH |IC) = 0.10.

Suppose that the IPCC now publishes its latest assessment report, wherein it claims
that climate sensitivity is high. How do Al, Bob, and Christie respond to this new data,
D = DH ? It turns out that the answer hinges on the regard that each individual holds for

15This is not to say that people fail to update rationally, or even heuristically, in a Bayesian manner. For
further discussion in the context of climate, see Lewandowsky et al. (2019).
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the IPCC itself. For example, let us say that all three individuals agree the IPCC would
undoubtedly present data supporting a high climate sensitivity if that were the true state
of the world, i.e., P(DH |SH , IA) = P(DH |SH , IB) = P(DH |SH , IC) = 1.00. However,
they disagree on whether the IPCC can be trusted to disavow the high sensitivity hypothesis
if the scientific evidence actually supported a low climate sensitivity. Despite their differ-
ent beliefs about climate sensitivity, assume that Al and Christie both regard the IPCC as
an upstanding institution that can be trusted to accurately represent the science on climate
change. In contrast, Bob is dubious about the motives of the IPCC and believes that the
organization is willing to lie in advancement of a preconceived agenda. Representing these
beliefs in terms of probabilities, we have P(DH |SL, IA) = P(DH |SL, IC) = 0.05 and
P(DH |SL, IB) = 0.89.

Recovering the posterior beliefs about climate sensitivity for our three individuals is now
a simple matter of modifying Bayes’ theorem to account for each person’s relative trust in
the IPCC. For Al, we have

P(SH |DH , IA) = P(DH |SH , IA)P (SH |IA)

P (DH |SH , IA)P (SH |IA) + P(DH |SL, IA)P (SL|IA)

= 1.0 × 0.9

1.0 × 0.9 + 0.05 × 0.1
≈ 0.98.

Similarly, we obtain posterior probabilities of 0.43 for Bob and 0.69 for Christie.
Taking a step back, Al now believes even more strongly in the high climate sensitivity

hypothesis, having raised his subjective probability for SH from 90 to 98%. Christie has
experienced a still greater effect and has updated her subjective probability for SH from 10
to 69%. She now attaches a larger probability to the high sensitivity hypothesis than the low
sensitivity alternative. However, the same cannot be said of Bob, who has not been swayed
by the IPCC report in the slightest. Both his prior and posterior probabilities suggest that SH

only has an approximately 40% chance of being true. Bob’s extreme mistrust has effectively
led him to discount the IPCC’s high sensitivity claim in its entirety.

Extending the above framework to account for increasing granularity is conceptually
straightforward. The principal insight remains the same: Trust is as much a determi-
nant of whether beliefs are amenable to data—and whether individuals converge towards
consensus—as the precision of the data itself. Such an extension seems especially rele-
vant to the climate change debate given the sense of scientific distrust that pervades certain
segments of society (Malka et al. 2009; Gauchat 2012; Leiserowitz et al. 2013; Fiske and
Dupree 2014; Hmielowski et al. 2014). Indeed, recent research supports the notion that
distrust of scientists is causing belief polarization about climate change in some demo-
graphic groups, even as scientific evidence may increase consensus in others (Cook and
Lewandowsky 2016; Zhou 2016). Similar “backfire” effects have been well documented in
other fields (Nyhan and Reifler 2010; Harris et al. 2015).

Perhaps the most important feature of generalising the Bayesian framework in this way
is that it offers a bridge between competing explanations of climate skepticism as a social
phenomenon. Whereas the so-called “deficit model” posits a lack of scientific knowledge
and understanding as key drivers of skepticism, advocates of the “cultural cognition” theory
argue that group identity and value systems are more relevant (Kahan et al. 2011, 2012; Ran-
ney and Clark 2016). A Bayesian model that incorporates perceptions of source credibility
is able to accommodate both camps. Exposure to new scientific evidence can ameliorate
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a person’s skepticism, but only if their priors allow for it. This includes factors like cul-
tural identity and whether they cause us to discount some sources of information more than
others.16

7 Concluding remarks

The goal of this paper has been to explore the way in which prior beliefs affect our respon-
siveness to information about climate change. The Bayesian paradigm provides a natural
framework and I have proposed a group of stylized skeptics to embody the degrees of real-
world climate skepticism. The headline finding is that subjective skeptic priors are generally
overwhelmed by the empirical evidence for climate change. Once they have updated their
beliefs in accordance with the available data, most skeptics demonstrate a clear tendency to
congregate towards the noninformative case that serves as an objective reference point for
this study. My primary regression specification yields a posterior TCR mean and 95% cred-
ible interval of 1.6 ◦C (1.4–1.8 ◦C) under the noninformative prior. This distribution sits
comfortably within the IPCC’s “likely” TCR range of 1.0–2.5 ◦C and is robust to a vari-
ety of sensitivity checks. Indeed, accounting for factors that could conceivably affect the
results—alternate data sources, adjusted forcing efficacies, measurement error, etc.—tends
to nudge the mean TCR estimate upwards.

Unsurprisingly, given their congruence with mainstream estimates, I show that the
updated beliefs of various skeptics are generally consistent with a social cost of carbon of at
least US$25 per ton. Only those with extreme a priori skeptic beliefs would find themselves
in disagreement. Or, dispute the claim that unconstrained emissions will lead to substantial
future warming. This suggests that a rational climate skeptic, even one that holds relatively
strong prior beliefs to begin with, could embrace policy measures to constrain CO2 emis-
sions once they have seen all of the available data. At the same time, perhaps the most salient
finding of this paper is that belief convergence is a nonlinear function of prior strength.
Anyone who remains unconvinced by the available data today is unlikely to converge with
the mainstream consensus for many years hence. Their implied priors are of such a strength
that even decades more of accumulated evidence may not be enough to convince them.
Fully disentangling the root causes of such information immunity—whether climate skep-
tics are extremely sure of their priors, distrustful of scientists and other experts, or some
combination thereof—remains an important area for future research.
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