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Abstract
Global warming is expected to have profound socio-economic and environmental con-
sequences, and one of the key concerns is extreme precipitation. The classic theory
indicates that the variation of extreme precipitation will follow the thermodynamically
based Clausius-Clapeyron relation (increasing at a rate of approximately 7%/°C). How-
ever, the interaction and the seasonal variation of the relationship between extreme
precipitation and temperature has not been thoroughly integrated. Here, we use quantile
regression and the binning method to process meteorological station data and the
reanalysis data from 78 stations on the Tibetan Plateau (TP), and estimate the sensitivity
and dependency of extreme precipitation to both surface air temperature and dew point
temperature. The results indicate that the majority of the meteorological stations experi-
ence a positive scaling between extreme precipitation and surface air temperature, with
the median of surface air temperature scaling close to 2.5%/°C. With regard to scaling
during individual seasons, 80% of stations possess negative scaling of the 99th percentile
of extreme precipitation with temperature in summer, while 63 stations (81% of the total)
display positive trends in winter, and the other 19% have negative scaling. A stronger
scaling (3.5%/°C) occurs between dewpoint temperature and extreme precipitation. For
surface air temperature < −3 °C and > 8 °C, relative humidity decreases with increasing
temperature and dewpoint depression increases, so dewpoint temperature increases more
slowly than temperature, resulting in the stronger scaling relationship with dewpoint
temperature. The depression of dewpoint temperature presents a slight decrease in −3–
8 °C interval, but dewpoint temperature increases faster than other intervals, and the
scaling relationship of dewpoint temperature is consistently larger than with surface air
temperature due to the small increasing rate with dewpoint temperature and increasing
extreme precipitation intensity. Our results emphasize that the increasing temperature has
clear scaling and seasonal relationship with extreme precipitation on the TP, and the
atmospheric humidity variation has an effect on the overall difference in the scaling
relationships of extreme precipitation with surface air temperature and dewpoint temper-
ature. The variations of seasonality and the effects of atmospheric humidity for extreme
precipitation should also be carefully considered in future research.
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1 Introduction

It is generally accepted that nature and anthropogenic activities will result in climate warming
in most regions around the world, which will increase the water vapor holding capacity of the
atmosphere, thereby leading to an increase in extreme precipitation (Hoegh-Guldberg et al.
2018; Kharin et al. 2013; Stocker et al. 2013; Zhou et al. 2014). Meanwhile, increasing
extreme precipitation events are responsible for more flooding, landslides, and ecological
damage, possibly causing loss of life and economic damage (Arshad et al. 2020; Balogun et al.
2020; Knapp et al. 2008; Xiong et al. 2019). Hence, understanding the variations in extreme
precipitation in response to global warming is crucial.

Previous research has predicted that the increase in extreme precipitation will follow the
physical basis of the Clausius-Clapeyron (C-C) relation (Min et al. 2011; Park and Min 2017).
This relation indicates that the capacity of the atmosphere holding moisture should increase
with air temperature by about 7%/°C, which is similar to the rate of increasing extreme
precipitation (Allen and Ingram 2002; Zhang and Villarini 2017). The C-C relation represents
the water vapor holding capacity of the atmosphere and is a benchmark used to interpret
variations in extreme precipitation and global mean precipitation (Held and Soden 2006).
However, previous studies have indicated that the variation of global mean precipitation
(approximately 2–3%/°C) is typically smaller than the C-C rate (Allen and Ingram 2002;
Roderick et al. 2014), which reflected that the overall intensity of the water cycle is constrained
by the ability of the excess latent heat to be released by precipitation (Zhang et al. 2017). In
contrast, variations of extreme precipitation were thought to be predominantly thermodynamic,
and thus controlled by the availability of atmospheric moisture (Trenberth 1999). It is
postulated that the variations of extreme precipitation from sufficient moisture were consistent
with the C-C relation (about 7%/°C); however, extreme precipitation intensity may increase
when it is controlled by local moisture convergence (Loriaux et al. 2013). Moreover, observed
historical extreme precipitation across global land regions increased at the rate predicted by the
C-C relation (Westra et al. 2013). Global climate model (GCM) simulations have produced
similar results with those of observations, and the extreme 1-day precipitation was indeed
increased at approximately the C-C rate (Kharin et al. 2013; Pall et al. 2007).

Nonetheless, deviations of the C-C relation have been found in many areas of the globe. For
instance, sensitivities of extreme precipitation to temperature could be up to 14%/°C (double
the C-C rate) in the mid-latitudes (Jones et al. 2010; Lenderink et al. 2011). Moreover,
negative rates were often observed in India and other high-temperature regimes (Ali and
Mishra 2017). The spatial heterogeneity may be associated with orographic fluctuations, local
scale convection, and the dominant precipitation type of a region (Berg et al. 2013). It has also
been discovered that the relationship between temperature and extreme precipitation may
change with precipitation duration (hourly, daily, and multi-day) (Shaw et al. 2011) and
may increase with increasing extreme precipitation percentile (Jones et al. 2010).

Furthermore, the availability of moisture under the influence of global warming is an
important issue. Previous researchers have argued that soil moisture deficits and resulting
decreases in relative humidity at high temperatures will be the dominant factors limiting the C-
C relation (Berg et al. 2009). These limitations in calculating the extreme precipitation scaling
may be circumvented by dew point temperature (DPT), which corresponds to the air temper-
ature at which the air is completely saturated with water (Lenderink et al. 2011; Zhang et al.
2019). The scaling of extreme precipitation with DPT possessed greater consistency with the
C-C relation (Barbero et al. 2018). The differences between the extreme precipitation scaling
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rates using surface air temperature (SAT) and DPT have been explored in a limited number of
regions (Ali et al. 2018; Ali and Mishra 2017; Wasko et al. 2018). However, it is still unclear
for most areas of the world whether the observed extreme precipitation-temperature sensitivity
is more consistent with the C-C relation when the DPT is considered rather than the SAT.

Although some studies have investigated the scaling relationship, spatial heterogeneity,
effects of climate dynamics, and surface energy budget of extreme precipitation (O’Gorman
and Muller 2010; Panthou et al. 2014; Schroeer and Kirchengast 2017; Willett et al. 2010), the
relationship between extreme precipitation and temperature is ambiguous on the Tibetan
Plateau (TP). TP is extremely sensitive to global warming, and extreme precipitation exerts
an important effect on this region and its surrounding regions (Kang et al. 2010). A report of
IPCC had shown that statistically significant changes in heavy precipitation between 1.5 and
2 °C of global warming are located in the TP (Hoegh-Guldberg et al. 2018). It is therefore of
interest to explore extreme precipitation on the TP, where the precipitation is controlled by its
unique topography and the world’s highest average elevation. If understanding whether the
variation of extreme precipitation can be explained by SAT and moisture variations based on
the C-C relation, then, we will be able to utilize the observed scaling relationship, the seasonal
scaling, and the dependency relationship to better predict the influence of global warming on
extreme precipitation on the TP (Ali et al. 2018).

In this study, we calculated the scaling relationship of extreme precipitation, SAT, and DPT
based on the quantile regression, and applied the binning method to develop the dependency of
extreme precipitation to SAT/DPT across the TP during 1980–2015. The goals of our study
were to accomplish the following: (1) assessing the relationship of extreme precipitation to
SAT/DPT across the TP; (2) evaluating the seasonal scaling of extreme precipitation to SAT/
DPT; and (3) analyzing the response of the atmospheric moisture to SAT on the TP.

2 Data sources and methods

2.1 Study area

The Tibetan Plateau, located in southwest China, covers an area of 2.5 million km2, stretching
approximately 2900 km from east (104°47′ E) to west (73°19′ E) and 1500 km from north
(39°47′ N) to south (26°00′ N) (Wang et al. 2013). Since the average elevation of the TP is
approximately 4500 m, it has been called the roof of the world and the third pole of the Earth
(Ji et al. 2015; Qiu and Jane 2007) (Fig. 1). Moreover, the TP is the source of the major rivers
flowing through the surrounding Asian countries, for example, the Yangtze, Yellow, Mekong,
Ganges, and Indus Rivers (Chen et al. 2018), providing the main water source for nearly 1.4
billion people. With its distinctive topographic and landscape features, the TP’s winter weather
is dominated by westerly jet, bringing dry air and high winds. In summer, as a result of the
profound effects of the East Asian and South Asian monsoons, temperatures rise and precip-
itation increases (Duan et al. 2012; Immerzeel and Bierkens 2012). Specifically, the annual
mean total precipitation increases from 16 mm in the northwest to 1764 mm in the southeast of
the TP, and a corresponding variation gradient in the annual mean air temperature increasing
from −5.0 °C in the northwest to 15.5 °C in the southeast from 1981 to 2011 (Chen et al.
2015). Overall, the climate of the TP is characterized by low temperatures, large annual
temperature ranges, and sufficient solar radiation, with the spatial pattern exhibiting horizontal
band differentiation from warm-humid in the southeast to dry-cold in the northwest (Fig. S1).
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2.2 Data sources

Here, we provide a brief description of the observational dataset use in this study. The dataset
was obtained from the National Meteorological Information Center (NMIC) of the China
Meteorological Administration (CMA) (http://data.cma.cn/), and consists of the daily
precipitation, daily mean air temperatures, and relative humidity measurements of 699
meteorological stations. The observational dataset was quality controlled using the NMIC’s
conventional procedures, including the climatological limit check, extremes check, and
consistency checks (Xu et al. 2013). The availability of each data element is generally more
than 99%, and the accuracy of the data is close to 100%. Our analysis is restricted to the
meteorological stations that had no more than 25% missing data for any of the variables, and in
order to apply a dataset which adequately captured the behavior of extremes, meteorological
stations with a sufficient record length were required. Imposing a requirement for too long a
record, however, limits the available data and the capacity for meaningful analysis (Molnar
et al. 2015; Wasko et al. 2018). A length of 36 years was considered an appropriate compro-
mise, with the period 1980–2015 providing the applicable number of 78meteorological stations
on the TP. The locations of the meteorological stations are indicated by dots in Fig. 1.

We also added different reanalysis datasets to compare and verify the results calculated by
the observational dataset. We obtained daily climatic data from ERA5 reanalysis dataset on the
TP for the period of 1980–2015, with the spatial resolution of 0.25° × 0.25°. The daily ERA5
data were derived from ERA5 hourly data on single levels, and are available from the
European Centre for Medium-Range Weather Forecasts website (https://cds.climate.

Fig. 1 The study area and locations of meteorological stations, and the geographical position of the Tibetan
Plateau in China
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copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form). Moreover, we also
obtained daily climatic data at 0.5° resolution from Climate Forecast System Reanalysis
(CFSR) 6-hourly Products dataset and Climate Forecast System Version 2 (CFSv2) Selected
Hourly Time-Series Products for the period of 1980–2015, and these datasets is available from
the National Centers for Environmental Prediction (NCEP) website (https://rda.ucar.edu/).
Among these datasets, CFSR 6-hourly Products dataset was initially completed over the 31-
year period from 1979 to 2009 and has been extended to March 2011 (Decker et al. 2010).
CFSv2 used the same model that was used to create the NCEP Climate Forecast System
Reanalysis (CFSR), and provided the climatic data after December 2010. In order to compare
and analyze the results, we extracted the grid data to the nearest meteorological station to
calculate the sensitivity and dependency.

We used the basic geographic data compiled from the Resource and Environment Data
Cloud Platform (http://www.resdc.cn), which includes the digital elevation model (DEM), the
boundary of the TP, provincial boundaries, and national boundaries (Table 1).

2.3 Analytical methods

2.3.1 Calculation of dew point temperature

Relationships between temperature and precipitation are difficult to assess due to the ambigu-
ity of causes and effects (Trenberth and Shea 2005). As discussed in Section 1, on the global
and climatic time scale, warmer temperatures are associated with increasing moisture and
precipitation. Nevertheless, some studies have revealed that prolonged drought could lead to a
soil moisture deficit, with further reductions in surface evaporation and increases in temper-
ature (Vautard et al. 2007).

We circumvent this ambiguity by taking the DPT as a direct measure of moisture in our
analyses. The DPT is calculated using daily surface air temperature and the relative humidity
(Eqs. 1 and 2) (Zhang et al. 2019):

DPT ¼ 257:14� Y
18:678−Y

ð1Þ

where Y can be calculated by the following:

Table 1 Source and resolution of basic geographic data sets

Data Source

Boundaries data Flash Flood Investigation and Evaluation Dataset of China, 1949–2015, 1:50,000,
vector data.

DEM Geospatial Data Cloud, 2000, 90 m×90 m, raster data.
Meteorological

observational dataset
the National Meteorological Information Center (NMIC) of the China Meteoro-

logical Administration, 1980–2015.
ERA5 reanalysis dataset the European Centre for Medium-Range Weather Forecasts (ECMWF), 0.25°×

0.25°, 1980–2015, raster data.
CFSR and CFSv2

reanalysis dataset
the National Centers for Environmental Prediction (NCEP), 0.5°×0.5°, 1980–2015,

raster data.
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Y ¼ log
RH
100

þ 18:678� Tas
275:14þ tas

ð2Þ

in which RH represents relative humidity (%), and Tas is the surface air temperature (°C).
The dewpoint depression (DPD) is a way to characterize atmospheric humidity, wherein a

small DPD indicates that the atmosphere is close to being saturated, while a large DPD
indicates that the atmosphere tends toward being dry (Wang et al. 2019). DPD can be
calculated by Eq. 3 as follows:

DPD ¼ T−D ð3Þ

where T is the SAT, and D is the DPT.

2.3.2 Quantile regression

In most previous studies, the scaling between precipitation and temperature was estimated
using the binning method (Blenkinsop et al. 2015; Mishra et al. 2012; Zhang et al. 2017).
However, bin size and the outlying data in each bin may affect the scaling estimates (Berg
et al. 2009). Therefore, we use quantile regression to evaluate the scaling relationship, which is
a more robust and flexible method without additional assumptions (Tan and H.Y 2016; Wasko
and Sharma 2014), and it gives a more comprehensive understanding of the effect of
temperature on the distribution of extreme precipitation intensity (Schroeer and Kirchengast
2017). The description of quantile regression is as follows (Ali et al. 2018).

We applied quantile regression for a set of pairs (xi, yi) of precipitation (y ≥ 0.1 mm
and corresponding temperatures (x). For i = 1, 2, …., n, the quantile regression for a
given percentile (the 90th, 95th, and 99th percentiles in our study) is calculated by Eq. 4
as

log yið Þ ¼ β pð Þ
0 þ β pð Þ

1 xi ð4Þ
where yi is the precipitation, xi is the corresponding temperature (SAT/DPT), and n the
is the length of the precipitation-temperature time series. After estimating β1

(p) via
regression analysis, the scaling of precipitation (ΔP%) with temperature is derived
using an exponential transformation of the regression coefficients (Eq. 5):

ΔP% ¼ 100� eβ
pð Þ
1 −1

� �
ð5Þ

We carried out quantile regression analysis using “quantreg” package (available at http://cran.
r-project.org/web/packages/quantreg) of R software (R Core Development Team, R
Foundation for Statistical Computing, Vienna, Austria) (Koenker 2009).

2.3.3 Binning method

We followed the binning method in order to understand the dependencies of the extreme
precipitation percentiles (90th–99.9th) of the observed daily precipitation distribution on
temperature (SAT/DPT) (Lenderink and Erik 2010; Lochbihler et al. 2017; Zhang et al.
2017). For each location, we extract wet events (precipitation ≥0.1 mm, defined as a “wet
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day”) from the period of 1980–2015 and their corresponding daily SAT/DPT based on the
observational dataset and reanalysis datasets. Precipitation on the wet days was placed in
moving 2 °C temperature bins (ordered from lowest to highest), with roughly the same number
of wet days in each, and a 1 °C overlap between bins. This is done to avoid a dependence of
the plot appearance on the arbitrary choice of the binning intervals, which sometimes occurs
when the amount of observation data is limited (Lenderink et al. 2011). In addition, previous
study found that extreme precipitation intensity changes more smoothly with an interval of
2 °C (Wang et al. 2019). Within each 2 °C bin, the different extreme percentiles (90th, 95th,
99th, and 99.9th percentiles) of wet-day precipitation amounts as well as the median of
temperature were estimated. Similarly, we scaled different extreme percentile precipitation
with DPT.

2.4 Psychrometric chart

Figure 2 is a psychrometric chart pertaining to conditions on the TP. This chart illustrates
changes for a temperature starting at 10 °C and 60% relative humidity (point T1 with dewpoint
temperature DPT1 and DPD 7.5 K). If the parcel warms 10 K with fixed relative humidity
(arriving at point T2b), the DPD stays almost the same (changing to 8 K) and DPT warms
almost the same amount (9.5 K) as SAT. If relative humidity decreases from 60 to 50%
(arriving at point T2a), the DPD increases and DPT increases more slowly than SAT (an
increase from DPT1 to DPT2a is only 6.5 K). Conversely, when relative humidity increases, the
DPD decreases and DPT increases faster than SAT (as seen with warming to points T2c and
T2d). It can also be seen that the change in DPD plus the change in DPT equals the change in
SAT plus the original DPD for all cases.

Fig. 2 Psychrometric chart on the Tibetan Plateau
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3 Results

3.1 Scaling of daily extreme precipitation

The scaling results of both SAT and DPT are calculated using quantile regression for 78
stations across the TP (Fig. 3). Inspecting Fig. 3 a, at least two broadly distinct regions
can be seen: the southwest region of the TP where the scaling of the 90th percentile of
extreme precipitation with SAT is negative, especially in the Lazi station (−7.13%/°C),
and the 19 stations generally that exhibit a positive trend at a rate exceeding 3.5%/°C.
For the 95th percentile (Fig. 3b) and 99th percentile (Fig. 3c), the results were broadly
similar, while the number of stations with the scaling >3.5%/°C decreases at the higher
threshold. The scaling of the extreme precipitation threshold to DPT is slightly different.
For the 90th percentile (Fig. 3d), the majority of the meteorological stations (55%) on the
TP exhibited positive precipitation scaling with many observatories between the 0.5 C-C
relation (3.5%/°C) and the C-C relation (7%/°C). For the spatial patterns of the 95th/99th
percentiles, more consistent results are found. The majority of the TP shows approxi-
mately 2–5%/°C scaling.

The shift in the distribution of the scaling is presented in Fig. 3a–c. For the 90th percentile
(Fig. 4a), the asymmetrical distribution shifted the center to approximately 2.73%/°C when
SAT was used above the 0.5 C-C relation (albeit with a small range) for DPT. For the 95th
percentile (Fig. 4b), a similar asymmetrical distribution centered just below the 0.5 C-C
relation was observed for DPT, whereas the median SAT scaling was close to 2.5%/°C.
Inspecting Fig. 4c, the entire distribution centered of the 99th percentile could be identified

Fig. 3 Scaling relation between extreme precipitation and SAT/DPT for 78 stations on the Tibetan Plateau with
periods of 1980–2015. a 90th percentile extreme precipitation and SAT; b 95th percentile extreme precipitation
and SAT; c 99th percentile extreme precipitation and SAT; d 90th percentile extreme precipitation and DPT; e
95th percentile extreme precipitation and DPT; f 99th percentile extreme precipitation and DPT. The color and
size of the legend markers indicate the scaling slope magnitude in %/°C
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near 2.5%/°C. Figure 4d illustrates the dependence of the daily extreme precipitation derived
using the binning method from the 78 stations on the TP. For TP, there was a clear hint of
stability in extreme precipitation intensity for temperatures above 0 °C, with the DPT
exhibiting a similar pattern. Below 0 °C, the 90th, 95th, and 99th percentile extreme precip-
itation exhibits similar approximately 0.5 C-C scaling, while the scaling of the 99.9th
percentile extreme precipitation threshold is close to the C-C scaling. These results using the
DPT are plotted in Fig. 4 e. All extreme precipitation percentile thresholds displayed temper-
ature dependencies similar to those of the SAT observations.

Furthermore, we evaluate the robustness of our observational results by comparing the
scaling relationship obtained from the observational dataset and the two reanalysis datasets
(ERA5 and CFSR). Based on the quantile regression and binning method, we find a consistent
scaling relationship between extreme precipitation and SAT/DPT from the observational
dataset and two reanalysis datasets (Fig. S2, S4). Finally, the median SAT scaling is distributed
between 2 and 4%/°C, and the dependencies of different extreme percentiles (90th–99.9th)
show similar trends (Fig. S3, S5).

3.2 Seasonal scaling of daily extreme precipitation

We begin our analysis to estimate the seasonal scaling of the daily extreme precipitation by
using SAT and DPT (Figs. 5 and 6). In spring (March to May), we find that the distribution of
scaling is somewhat similar between SAT and DPT. For instance, the positive scaling
tendency for most of the meteorological stations is consistent for 90th, 95th, and 99th
percentiles. However, all observatories located on the TP have scaling rate at less than 7%/
°C in spring (Fig. 5 a–c, Fig. 6a–c). For the summer (June to August), the distinct negative

Fig. 4 Density of a 90th, b 95th, and c 99th percentile extreme precipitation scaling (%/°C) across the Tibetan
Plateau. Green indicates SAT scaling, orange represents DPT scaling, and the dotted line represents the median
of the scaling; d Dependencies of different extreme percentiles (90th–99.9th) of the observed daily precipitation
distribution on SAT; e Dependencies of different extreme percentiles (90th–99.9th) of the observed daily
precipitation distribution on DPT. Solid lines are percentiles computed from the raw data, while dotted lines
are the exponential relationships given by 0.5 (light gray), 1 (black), and 2 (dark red) times the C-C relation. Note
the logarithmic y-axis
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scaling of extreme precipitation can be seen in the south of the TP, and the negative
scaling of SAT is shown at 87%, 82%, and 79% observatories for the 90th, 95th, and
99th percentiles, respectively (Fig. 5d–f). Moreover, the scaling of DPT at most of the
observatories also shows negative trends, and which are distributed in the southern
plateau (Fig. 6d–f). In autumn (September to November), the scaling for most of the

Fig. 5 Spatial maps of seasonal scaling slopes of extreme precipitation intensity for SAT. a–c 90th, 95th, and
99th percentile extreme precipitation and SAT in spring (MAM); d–f 90th, 95th, and 99th percentile extreme
precipitation and SAT in summer (JJA); g–i 90th, 95th, and 99th percentile extreme precipitation and SAT in
autumn (SON); j–l 90th, 95th, and 99th percentile extreme precipitation and SAT in winter (DJF). The color and
size of the legend markers indicate the scaling slope magnitude in %/°C
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observatories is similar to spring (Fig. 5g–i, Fig. 6g–i). For winter (December to
February), the 99th percentile extreme precipitation of winter displays a positive scaling
with SAT at 67.7% of stations and super C-C scaling (> 7%/°C) at 7 locations (Fig. 5l).
Nevertheless, the winter scaling between the 99th percentile extreme precipitation and
DPT is positive at most of locations (80.8%), and super C-C scaling is found at 14
stations (Fig. 6l). The scalings of the 90th and 95th percentile extreme precipitation with

Fig. 6 Spatial maps of seasonal scaling slopes of extreme precipitation intensity for DPT. a–c 90th, 95th, and
99th percentile extreme precipitation and DPT in spring (MAM); d–f 90th, 95th, and 99th percentile extreme
precipitation and DPT in summer (JJA); g–i 90th, 95th, and 99th percentile extreme precipitation and DPT in
autumn (SON); j–l 90th, 95th, and 99th percentile extreme precipitation and DPT in winter (DJF). The color and
size of the legend markers indicate the scaling slope magnitude in %/°C
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SAT/DPT are generally consistent with those of the 99th percentile precipitation (Fig. 5
j–k Fig. 6j–i).

Figure 7 summarizes the results of this analysis. Including all 90th percentile extreme
precipitation events for the SAT/DPT, the scaling varies between −7.4 and 5.0%/°C. From the
scaling analysis, we obtain smaller scaling rates, and most of which are less than 0 in summer
(Fig. 7a). For winter, the median scaling of the 90th percentile extreme precipitation for the
SAT was 0.8%/°C, which is less than the 0.5 C-C rate, while the DPT slope is 3.7%/°C, which
is close to the 0.5 C-C rate (Fig. 7a). In spring and autumn, the median scaling for SAT is
below the 0.5 C-C relation, but the median scaling for DPT is close to, even exceed 3.5%/
°C (Fig. 7a). Similarly, for 95th percentile (Fig. 7b) and 99th percentile (Fig. 7c) extreme
precipitation, the scaling of all events exhibits small rates. In summer, the median of the
scaling is <0. We find that the median scaling of the SAT is less than the 0.5 C-C relation,
while the median scaling of the DPT is greater than the 0.5 C-C relation in winter. Results
for the summer period (JJA) are characterized by stable scaling over the entire SAT range
from 1 and 19 °C (Fig. 8b). The winter period (DJF) shows a dependence of the daily
extreme precipitation on SAT, mostly along the 0.5 C-C line with the exception of
temperatures > −5 °C (Fig. 8d). Similar results are obtained when using DPT instead of
SAT (Fig. 8h). For spring, the dependence tendencies are consistent for annual values and
the spring, a stable dependence is be found for temperatures above 0 °C, and the depen-
dencies of extreme precipitation on SAT/DPT mostly follow 0.5 C-C line (Fig. 8a, e).
Furthermore, the overall dependence during autumn is similar to the spring season;
however, the dependencies of extreme precipitation follow approximately a C-C line for
temperatures below 0 °C (Fig. 8c, g).

In addition, the seasonal scaling obtained with ERA5 and CFSR reanalysis datasets
contrasts with the seasonal scaling obtained using the observational dataset. For the spring,
autumn, and winter seasons, some similar scaling relationships from the observational
dataset, ERA5, and CFSR datasets are displayed. However, we also notice that the scaling
shows different variations between the observational dataset and two reanalysis datasets in
summer (Fig. S6-S9). Specifically, our results show that these dependencies results obtain-
ed using binning method for the observational dataset and reanalysis datasets are consistent
(Fig. S10-S13).

Fig. 7 Box plots showing the distributions of scaling for extreme precipitation intensity at the a 90th percentile, b
95th percentile, and c 99th percentile on an annual and seasonal basis. The red box represents SAT, and the blue
box represents DPT. The red and blue lines within the boxes denote the median; the upper and lower bounds are
the 25th and 75th percentiles (25P and 75P), respectively. The whiskers are calculated as 75P ± 1.5 (75P–25P).
Outliers are plotted as red and blue circles. The horizontal gray dashed lines depict the 0.5 C-C rate (3.5%/°C), C-
C rate (7%/°C), and twice C-C rate (14%/°C)
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3.3 Relationship between atmospheric humidity and SAT

The relationship between the depression of the DPT (DPD) and SAT is presented in Fig. 9.
The variation of DPD with SAT for all wet days is shown in Fig. 9 a, revealing that the DPD
increases more significantly below −3 °C and above 8 °C on the TP. We estimate that the
scaling relationship differs for temperatures inside and outside the −3–8 °C interval (Table 2),
with the largest scaling of the 90th percentile of extreme precipitation in the −3 to 8 °C and the
largest scaling of the 99th percentile in the < −3 °C interval, but for any interval or percentile,
the scaling with DPT is stronger than with SAT. For temperatures above 8 °C, the scaling with
SAT is negative while the scaling with DPT is positive. With regard to scaling during
individual seasons, Fig. 9 c indicates that the DPD generally increases with increasing
temperature, and increases significantly at temperature > 10 °C in summer. Similar increasing
trends also occur in winter with subtle differences based on the binning method (Fig. 9e). For
the spring season, the DPD shows a stable variation below 5 °C, and a slightly increasing trend
is illustrated above 5 °C (Fig. 9b). In autumn, we find that the DPD displays a slightly
decreasing trend below 5 °C, and the trends of SAT above 5 °C are similar to those of the
spring season (Fig. 9d).

Figure 10 illustrates the spatial patterns of the scaling slopes of the DPD for SAT on the TP
from 1980 to 2015. The scaling rates of the 78 stations for the 90th percentile DPD with SAT
were calculated, and the results demonstrate that the non-significant slopes mainly occur in
most of observational stations. For instance, the scaling slopes of about 92% stations are
distributed between −2 and 2%/°C, and only three stations exceed the half C-C relation (3.5%/
°C) (Fig. 10a). Moreover, these results of the 95th percentile and the 99th percentile DPD are
consistent with the 90th percentile, albeit with some differences for the higher thresholds. In
particular, the number of stations where the scaling exceeds the half C-C relation declines for
the 95th and 99th percentile DPD (Fig. 10b, c).

Additionally, we find a good agreement between the dependency relationships obtained
from two reanalysis datasets and with those obtained from the observational data (Fig. S14,

Fig. 8 Seasonal dependencies of extreme percentile intensities (90th–99.9th) of the observed daily precipitation
distribution in a spring (MAM), b summer (JJA), c autumn (SON), and d winter (DJF); variation of extreme
precipitation intensity and DPT in e spring (MAM), f summer (JJA), g in autumn (SON), and h winter (DJF).
Solid lines are percentiles computed from the raw data. Dotted lines are the exponential relationships given by 0.5
(light gray), 1 (black), and 2 (dark red) times the C-C relation, respectively. Note the logarithmic y-axis
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S16), and the scaling results of different percentile extreme precipitation also are primarily
distributed between −2 and 2%/°C (Fig. S15, S17).

4 Discussion

4.1 Relationship of SAT with extreme precipitation

On a climatic time scale, warmer temperature is associated with increasing moisture, and thus
leads to increased precipitation (Lenderink et al. 2011; Stocker et al. 2013). Our study shows
that the majority of the meteorological stations on the TP exhibit positive scaling of extreme
precipitation with SAT (Fig. 2a–f), and a consistent scaling relationship from the ERA5 and
CFSR reanalysis dataset is found on the TP (Fig. S1, S3). This result indicates that the positive
scaling relationship of extreme precipitation on the TP is similar to that on a global scale. The
TP is considered to be a climate precursor area, which is more sensitive to global climate

Fig. 9 The relationship between the daily depression of the DPT (DPD) and the SAT in the Tibetan Plateau
during 1980–2015. a All wet days, b wet days in spring (MAM), c wet days in summer (JJA), d wet days in
autumn (SON), and e wet days in winter (DJF). The green, blue, purple, and red lines denote the variation of the
90th, 95th, 99th, and 99.9th percentiles of DPD with SAT, respectively, while the gray dotted lines indicate the
temperature transition values

Table 2 The scaling relationship of extreme precipitation in different temperature intervals

Temperature Precipitation <−3 °C −3–8 °C >8 °C

SAT 90th percentile 3.92%/°C 4.19%/°C −1.24%/°C
95th percentile 4.02%/°C 3.85%/°C −0.88%/°C
99th percentile 4.37%/°C 2.84%/°C −0.54%/°C

DPT 90th percentile 4.88%/°C 6.34%/°C 1.44%/°C
95th percentile 4.80%/°C 5.78%/°C 1.31%/°C
99th percentile 5.16%/°C 4.65%/°C 1.15%/°C
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warming (Kang et al. 2010). However, we also find that Lazi and its surrounding stations
present a negative scaling relationship. Other research has found that the negative scaling is
dominated by less precipitation, which favors more sunshine and less evaporative cooling
(Trenberth and Shea 2005). Therefore, the negative scaling rate in Lazi station and its
surrounding stations have been attributed to more sunlight, resulting in less soil moisture
and a higher SAT in those regions (Chen et al. 2007).

On the TP, the dependencies of the observed daily precipitation on SAT expressed a similar
distribution for each percentile and clearly display a stable trend above 0 °C and approximately
0.5 C-C scaling below 0 °C (Fig. 3a–e). At present, the classical argument is that the scaling
between extreme precipitation and temperature should be consistent with the C-C relation
(Zhao et al. 2012). However, there is no reason why extremes should follow the C-C relation
exactly. For example, changes in the atmospheric dynamics, convective clouds, and moist
adiabatic temperature profiles all could cause deviations from the C-C scaling (O’Gorman and
Schneider 2009; Trenberth et al. 2003). In general, precipitation on the TP is mainly in the
form of deep convection (Fu et al. 2018). The scaling between deep convective precipitation
and temperature is stable when the temperature is above 0 °C (Wang et al. 2019). Compared
with stratified precipitation, the sensitivity of deep convective precipitation to temperature is
less obvious. The second reason is most likely due to moisture on the TP not being locally
sourced, leading to weaker temperature sensitivities (Schroeer and Kirchengast 2017; Zhang
et al. 2017). Furthermore, for temperatures lower than 0 °C, precipitation events are considered
to be snow events. Increased snow depth has occurred on the TP since the mid-1970s (Zhu
et al. 2015), the result of an intensified subtropical westerly jet and enhanced ascending motion
over the region; hence, this research provides direct evidence for primarily positive trend
exhibited by the winter scaling (Fig. 4j–l). Local moisture is reduced, while anomalous
ascending moisture advection leads to more precipitation over the TP (Bao and You 2019).
In contrast, for the summer negative scaling in the low latitudes of the TP, the SAT is often
cooled due to precipitation, resulting in the negative sensitivity between summer SAT and
precipitation (Ali and Mishra 2017). In spring and autumn, the scaling relationship is transi-
tional between that of winter and summer, with a general increase at low temperatures and a
stable trend at higher temperatures (Fig. 7a, d). The observational dataset and two reanalysis
datasets show a high degree of agreement in the periods of 1980–2015. Moreover, previous
study has also demonstrated that radiative forcing by greenhouse gases is currently suppressing
global precipitation at the rate of −0.15%/decade (Allan et al. 2013). Specifically, other factors
have been thought to influence the scaling behaviors of extreme precipitation at higher
temperatures, for example, the influence of convective fields or systems (Berg et al. 2013),

Fig. 10 Spatial maps of scaling slopes of a 90th, b 95th, and c 99th percentile daily depression of the DPT
(DPD) for SAT on the Tibetan Plateau during 1980–2015. The color and size of the legend markers indicate the
scaling slope magnitude in %/°C
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the presence of lightning (Molnar et al. 2015), El Niño events (Allen and Luptowitz 2017),
orography (Drobinski et al. 2016), and anthropogenic aerosols (Gang et al. 2011).

4.2 Relationship of DPT with extreme precipitation

The relationship between DPT and extreme precipitation clearly reflects the effect of moisture
on precipitation, and we find that the dependence of extreme precipitation on the DPT even
exhibits a median scaling of approximately 3.5%/°C (Fig. 3d–f), which exceeds the 2.5%/°C
SAT median scaling. This result is consistent with previous studies, indicating that the
improved representation of extreme precipitation variations is possible with DPT, a metric
that specifically accounts for the variations in relative humidity, which better reflects the
responses of moisture in the atmosphere to surface warming (Zhang et al. 2019). In addition,
our results show that relative humidity decreases with increasing temperature and dewpoint
depression increases when SAT is below −3 °C and above 8 °C (Fig. 9a). Based on the
psychrometric chart (Fig. 2), DPT increases more slowly than SAT, resulting in the stronger
scaling relationship with DPT. It is worth noting that DPD shows a slight decrease in the −3–
8 °C interval rather than increasing (Fig. 9a), which causes a faster increase in DPT than
otherwise (Fig. 2), and faster than in other intervals. However, the scaling relationship with
DPT is consistently larger than with SAT. Based on quantile regression, both precipitation
intensity and DPT show an increasing trend in the −3–8 °C interval (Fig. S19), so the
regression coefficients may not be weaker, and the scaling relationship with DPT will not
decrease. In addition, Table 2 shows a small negative scaling relationship with SAT, and a
small positive scaling relationship with DPT above 8 °C. Here, as a result of evaporative
cooling from precipitation, high SAT becomes cooler during the precipitation day. SAT
cooling means that extreme precipitation on the TP occurs on lower temperature days, and
the warmer days have fewer and less intense precipitation events, resulting in a negative
apparent scaling (Ali et al. 2018; Bao et al. 2017). Moreover, relative humidity increases
during the precipitation day, DPT increases when DPD decreases, which indicates extreme
precipitation occurs on high DPT days, resulting in a positive scaling. Therefore, changes in
DPT may well be more robust and more predictable than variations in SAT (Lenderink et al.
2011). Furthermore, we discovered that the scaling of DPT exhibits a variation similar to that
of SAT on the TP (Fig. 4d–e). On wet days, the variations in SAT and DPT are closely linked
(Wasko and Nathan 2019). This is consistent with other research results indicating that on
regional and global scales, changes in temperature are similar regardless of the type of
temperature metric used (Lenderink and Attema 2015).

In summer, our study demonstrates that the median scaling between extreme precipitation
and DPT is <0%/°C (Fig. 7a–c). This result is attributed to the decreasing relative humidity
with increasing temperature on the TP. The dependency relationship between DPD and SAT
shows a consistent result in summer season, and the increasing DPD revealed that local
atmospheric humidity decreases with increasing SAT (Fig. 9c). When atmospheric humidity
does not increase, the air mass can only rise when it reaches saturation. Therefore, the
maximum water vapor content in the lower levels is larger than the maximum at upper levels
(Barbero et al. 2018; Drobinski et al. 2016). In addition, water vapor condenses into raindrops,
causing the loss of atmospheric water vapor by precipitation. Against the backdrop of global
warming, the loss of atmospheric humidity exerts an effect on the precipitation efficiency,
further weakening the precipitation intensity (Fig. S18). Furthermore, we noticed that the
scaling showed different variations between the observational dataset and two reanalysis
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datasets in summer, and previous research also found that extreme precipitation scaling in
reanalysis data was different with the observational dataset in the most of mid-latitudes (Zhang
et al. 2019). In winter, the trends of extreme precipitation could be explained reasonably well
by moisture changes, again with a dependence close to 3.5%/°C (Fig. 7), which is attributed to
the anomalous ascending moisture advection leading to more precipitation and snowfall over
the TP (Forsythe et al. 2017).

4.3 Relationship of atmospheric humidity with SAT

According to the Clausius-Clapeyron equation, atmospheric humidity is the link between extreme
precipitation and SAT. To further investigate how atmospheric humidity affects the relationship
between precipitation intensity and SAT on the TP, the relationship between DPD and SAT was
explored. Our study indicated that the DPD increased more significantly at temperatures < −3 °C
and > 8 °C in TP, while exhibiting a decreasing trend between −3 and 8 °C (Fig. 9a). When the
temperature is lower, the actual vapor pressure is strictly controlled by theC-C curve, and the relative
humidity increases. For higher temperatures, however, the actual vapor pressure slightly decreases or
remains stable and the relative humidity sharply decreases, tending the atmosphere toward being
dry, and sharply decreasing extreme precipitation. In this situation, extreme precipitation decreases
due to high temperatures and insufficient moisture capacity (Hong et al. 2018). In addition, the
spatial patterns of the DPD scaling slopes revealed that the unapparent variation (between −2 and
2%/°C) mainly occurred in the most of observational stations, which indicated that the humidity on
the TP was not sensitive to SAT. The possible reasons are that moisture on the TP was not locally
sourced, the winter moisture is dominated by westerly jet, and as a result of the profound effects of
the East Asian and South Asian monsoons in summer (Duan et al. 2012). Note that the scaling rates
using two reanalysis datasets are in good agreement with the observational dataset.

4.4 Importance and uncertainties

Extreme precipitation shows an increasing trend with the global warming. Our study used
quantile regression and binning method to analyze meteorology observational data and the
reanalysis data from 78 stations on the TP, and estimated the scaling relationship and
dependency of extreme precipitation to both SAT and DPT across the TP. Because bin size
and the outlying data in each bin may affect the scaling estimates in binning method (Ali and
Mishra 2017), we used quantile regression to evaluate the scaling relationship and seasonal
scaling characteristics of extreme precipitation during 1980–2015, and which could provide
more robust and flexible scaling relation (Wasko and Sharma 2014). The scaling relation
shows the sensitivity of extreme precipitation to temperature and its different seasonal
characteristics. Moreover, we used the binning method to understand the dependencies of
the extreme precipitation percentiles with SAT and DPT, which indicate the variation of
extreme precipitation in different temperature intervals (Zhang and Villarini 2017). Then, we
have calculated the depression of the DPT to evaluate the relation of atmospheric humidity
with SAT (Wang et al. 2019). Finally, we added different reanalysis datasets to compare the
consistency with the results of observational dataset, to give more robust conclusions (Zhang
et al. 2019). Our study highlights the scaling relationships between extreme precipitation and
SAT/DPT, their seasonal characteristics, and the variation of extreme precipitation in different
temperature intervals on the TP, which is salutary for future studies regarding the effect of
climate change on extreme precipitation.
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Despite progress being made via this study, large uncertainties remain. The link of extreme
precipitation to temperature used in this study was conservative since it includes only included
a few factors out of the many that affect climate. The findings of this study should be
considered in light of the following limitations. In this research, the scaling of extreme
precipitation with SAT/DPT adopted the daily precipitation rather than short-duration precip-
itation. The daily precipitation used in this study may produce deviations in the assessment
results of short-duration precipitation (Shaw et al. 2011). Moreover, the relationship between
extreme precipitation and temperature is complex and challenging. For example, orography
(Drobinski et al. 2016), atmospheric dynamics (Berg et al. 2013), and anthropogenic aerosols
(Gang et al. 2011) are three additional key factors in extreme precipitation. Therefore, future
works will need to focus on atmospheric stability, the effects of aerosols, and other elements
that affect the variation in extreme precipitation with temperature across the TP.

5 Conclusions

Our study focuses on the responses of extreme precipitation to temperature increase. Specif-
ically, we analyze the scaling relation between extreme precipitation and SAT/DPT across the
TP based on station observation data and reanalysis datasets, and evaluated the link of
atmospheric humidity to SAT. In conclusion, the majority of the TP meteorological stations
exhibit a positive scaling relationship of extreme precipitation with SAT, which indicates that
the variation of extreme precipitation on the TP has a similar trend to that at the global scale. In
addition, the scaling variation shows some clear seasonal characteristics, which tend toward a
negative trend in summer, but a positive trend in winter. The dependencies of extreme
precipitation on SAT displays a stable trend above 0 °C and approximately 0.5 C-C scaling
below 0 °C. These results are attributed to the influence of the deep convective precipitation
and westerly jet on the winter season of the TP. Next, the DPT results were analyzed; we found
that the scaling variations are similar to those of SAT, while the scaling rate of extreme
precipitation with DPT is larger than with SAT. Therefore, DPT can better reflect the
sensitivity of extreme precipitation to global warming on the TP. Finally, DPD displays an
increasing trend when the temperatures are either < −3 °C or > 8 °C, which indicates that DPT
increases more slowly than SAT, resulting in the stronger scaling relationship with DPT.
However, DPD decreases slightly between −3 and 8 °C, but the scaling relationship of DPT is
consistently larger than with SAT. This study provides information regarding the scaling
relationship and the seasonal characteristics of extreme precipitation with SAT and DPT, and
the dependency of extreme precipitation and atmospheric humidity in different temperature
conditions. In the future, incorporating the variations of humidity and the effects of seasonality
on extreme precipitation is helpful for producing robust relationship on the TP.
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