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Abstract
Increases in the intensity and frequency of hydroclimatic extremes associated with
climate change can cause significant socioeconomic problems. Assessments of projected
extremes using only a limited number of general circulation model (GCM) simulations
can undermine the capacity to differentiate and communicate the contribution of internal
climate variability (ICV) and external forcing and result in an underestimation of
associated risks. In this study, we assess the impacts of climate change on extreme
temperature and precipitation and quantify the contribution of internal variability over
the Columbia, Fraser, Peace and Campbell River basins in northwestern North America
(NWNA). Seven GCMs that participated in the Coupled Model Intercomparison Project
Phase 5 (CMIP5) and a large ensemble of CanESM2model simulations (50 members) are
downscaled to 1/16° spatial resolution using Bias Correction Constructed Analogues with
Quantile mapping reordering version 2 (BCCAQ2). Spatial and temporal changes of
climate extreme indices, representing the frequency and intensity of extreme temperature
and precipitation, are assessed over the historical (1981–2010) and future (2060–2089)
periods under the Representative Concentration Pathway (RCP) 8.5. The influence of
ICV on the estimated trends of extreme indices is characterised. Overall, both the
frequency and intensity of extreme temperature and precipitation events are projected
to increase in NWNA indicating more severe dry days and wet conditions in the future.
High-elevation Rocky and the Coast Mountains are at larger risks of extreme precipita-
tion, while the Columbia basin, which already faces drought issues, is expected to
experience severe dry conditions. Internal climate variability plays a significant role,
particularly in the trends of precipitation-related indices. The signal to internal noise ratio
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analyses suggest that higher elevations experience stronger forcing signals for
precipitation-based indices compared to the other regions.

Keywords Climate extremes . External forcing . Internal climate variability .NorthwesternNorth
America . CLIMDEX . CMIP5 . CanESM2 large ensemble

1 Introduction

According to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
(IPCC AR5), the global average surface temperature has increased by 0.85 °C ± 0.20 °C
during 1880–2012 (Field et al. 2014). Temperature in Canada has increased at twice the rate of
global changes from 1948 to 2016 based on Canada’s Changing Climate Report (Bush and
Lemmen 2019). These changes can lead to decreased snow, reduced soil moisture, higher
evapotranspiration, rising sea levels, warming oceans and intensified extreme events, among
others that can threaten infrastructure and local communities (Wuebbles et al. 2017). While
rising temperature can intensify droughts and heat waves, it increases the moisture-holding
capacity of the atmosphere, according to the Clausius-Clapeyron relationship, which can
intensify rainfall and flooding events (Pal et al. 2004; Singh et al. 2020; Zhang and Najafi
2020). In addition to the anthropogenic effects, the internal processes within the climate system
and the interactions between the atmosphere, ocean and land surface components (i.e. internal
variability) play a significant role in regional precipitation and temperature variations (Deser
et al. 2012; Fischer et al. 2013; Xie et al. 2015). Therefore, to develop effective adaptation and
resilience plans, it is critical to assess projected extremes under climate change and characterise
the role of internal climate variability (ICV).

Although recent studies have investigated the effects of internal variability on hydroclimate
variables (Acero et al. 2011; Dai and Bloecker 2019; Hegerl et al. 2015), assessments of
projected extremes are mainly focused on external climate forcing particularly at regional
scales. Previous studies have found increases in the frequency and intensity of extreme events
in many regions around the world during the second half of the twentieth century (Frich et al.
2002; Kiktev et al. 2003; Najafi et al. 2017a, 2017b; Abbasian et al. 2020a, 2020b). They show
stronger heat temperature extremes and decreased cold extremes (Hansen et al. 2006;
Orlowsky and Seneviratne 2012), non-uniform patterns of change in precipitation-related
extremes (Jalili Pirani and Najafi 2020; Kharin et al. 2007; Orlowsky and Seneviratne 2012)
and nonstationary behaviour of temperature and precipitation dependencies (Singh et al. 2021).
These trends are projected to continue to increase in the future (Tebaldi et al. 2006; Sillmann
and Roeckner 2008; Sillmann et al. 2013).

Regional studies over different parts of NWNA project increases in temperature (Bürger
et al. 2013; Murdock et al. 2013; Whan and Zwiers 2016), declines in both maximum Snow
Water Equivalent (SWE) (Bürger et al. 2013; Krasting et al. 2013) and summer streamflow
(Najafi et al. 2017a, 2017b). Li et al. (2018) showed that western Canada is projected to be
warmer and wetter with increased frequency of extreme events. The mean annual temperature
and annual total precipitation are projected to increase over key river basins of western Canada
including Upper Columbia River Basin (Murdock et al. 2013), Peace River Basin (Andrishak
and Hicks 2008) and Fraser River Basin (Morrison et al. 2002).

Internal variability can dominate climate change signals at various temporal scales (Hegerl
et al. 2015), and it is important to characterize its role in the trends of climate extremes.
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Numerous studies on climate extremes have been conducted based on single realisations from
a set of GCMs, which suggest that the multi-model ensemble mean provides a more reliable
representation of external climate forcing compared to individual simulations (Bürger et al.
2013; Murdock et al. 2013; Whan and Zwiers 2016). However, distinguishing between the
response to external forcing and internal variability is challenging in multi-model ensembles
since the underlying signal can be attributed to multiple other factors such as non-linearities
arising from the model physics. Furthermore, the uncertainty associated with the spread of the
multi-model ensemble represents the effects of internal variability and model structure and
cannot be used directly to represent ICV. Single-model ensemble runs, which are generated by
driving an individual GCM multiple times with different initial conditions but similar external
forcings, provide a direct way to differentiate the two factors. The spread of different runs of
the GCM in such a case can only be attributed to the internal variability of the model itself,
while the average of all runs represents the external climate forcing (Dai and Bloecker 2019).

To address these research gaps, we quantify the contribution of ICV to climate change
impacts on temperature and precipitation extremes at regional scales. Although recent studies
have investigated the role of internal variability, however, such analyses at fine scales, in
which regional effects can be significant, are rare. We assess the climatic extremes of NWNA
at a relatively high spatial resolution (1/16°) and quantify the role of internal variability in
historical and future trends of climate extremes. Furthermore, we evaluate and compare the
uncertainties arising from the CMIP5 multi-model ensemble vs. individual model simulations
based on perturbed initial conditions (i.e. CanESM2; 50 members). NWNA has a complex
topography with highly heterogeneous river basins in terms of physiography and climatology
and high diversity in water usage, which includes major cities such as Vancouver and Seattle.
To the knowledge of the authors, this would be the first analysis of internal variability beside
the response to external forcing in this region.

The remainder of the paper is organised by describing the study area and data in Section 2.
Section 3 discusses the downscaling approach, CLIMDEX indices analysed in this study, and
the role of single-model ensemble in internal variability. Section 4 presents the spatial and
temporal changes of climate extremes and the role of internal variability over NWNA followed
by the conclusions in Section 5.

2 Study area and data

The study domain includes four key river basins in NWNA located between the Pacific Ocean
on the West and the Rocky and Columbia Mountain Ranges on the East with a total area of
958,000 km2 (Fig. 1) and a population of more than 14 million (Northcote 1996; 2016 census
population and dwelling counts). It has a complex topography and includes parts of British
Columbia and Alberta in Canada, and the states of Washington, Oregon, Idaho andMontana in
the USA.

The Columbia River is 1954 km long and drains an area of approximately 616,000 km2.
CRB ranges from 390 to 3700 m in elevation and has a humid continental climate with an
average temperature varying between −9.2 °C in January and 13.3 °C in July. CRB is mainly a
snowmelt-driven (nival) system (Pulwarty and Redmond 1997) and has a wide range of
average annual precipitation from almost 200 mm over the eastern Rockies, including the
Snake River basin, to more than 1500 mm in the coastal mountains. It receives most of its
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precipitation in winter and the remaining 20% in June to August. The Fraser River Basin
(FRB) is one of the largest watersheds in western Canada with a drainage area of 230,000 km2

that includes densely populated (67% of British Columbia’s population) urban areas (including
the city of Vancouver) and diverse ecosystems (Shrestha et al. 2012). The elevation ranges
from sea level to 4000 m. According to gridded observations derived from Environment and
Climate Change Canada’s climate station observations, FRB’s mean annual temperature and
precipitation vary between −5 and 10 °C and 200 and 5000 mm, respectively. The Peace River
Basin (PRB) is located in Northern British Columbia and extends to Alberta. It covers an area
of approximately 101,000 km2 with elevation ranging from 400 to 2800 m. PRB’s average
temperature is between −11.7 °C in January and 12.4 °C in July and most of the annual
precipitation occurs between October–April (Najafi et al. 2017a). The Campbell River Basin
(CaRB) in Vancouver Island drains an area of 1193 km2 with elevation ranging between 139
and 2200 m. It receives a large amount of total annual precipitation of 5716 mm with
temperature ranging between −4 and 16 °C (Bennett et al. 2012). Although CaRB is relatively
small in size compared to the other basins, it is included in these analyses because it has a
distinct climate and is close to the Pacific Ocean.

We used the Pacific Climate Impacts Consortium (PCIC) meteorology for NWNA
(PNWNAme) as the most recent and reliable gridded daily precipitation, maximum temper-
ature and minimum temperature dataset with 1/16° resolution for 1951–2010 (Werner et al.
2019). To assess climate change impacts, simulations from seven CMIP5 GCMs (single runs;
hereafter SR_GCM) based on the Representative Concentration Pathway (RCP) 8.5 are used
over the historical and future periods of 1981–2010 and 2060–2089, respectively. These
models include ACCESS1-0 (Bi et al. 2013), ACCESS1-3 (Bi et al. 2013), CanESM2
(Chylek et al. 2011), CCSM4 (Gent et al. 2011), CNRM-CM5 (Voldoire et al. 2013),
HadGEM2-ES (Jones et al. 2011) and MPI-ESM-LR (Giorgetta et al. 2013). In addition, a

Fig. 1 Study area including four major river basins in northwest North America
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large ensemble of 50 climate simulations generated by perturbing the CanESM2 model initial
conditions, i.e. CanESM2_LE, is used to distinguish the uncertainties in model structure and
internal variability and better assess the projected changes in regional climate extremes. All
GCMs are downscaled using Bias Correction Constructed Analogues with Quantile mapping
reordering version 2 (Werner and Cannon 2016).

3 Methodology

3.1 Downscaling

We downscale daily precipitation, maximum temperature and minimum temperature from
seven GCMs and CanESM2_LE (50 members) using the Bias Correction Constructed Ana-
logues with Quantile mapping reordering version 2 (BCCAQ2) approach (Werner and Cannon
2016). BCCAQ2 is a hybrid approach that combines bias-correction and climate imprint
(BCCI; Hunter et al. 2005) with bias correction constructed analogues (BCCA; Maurer et al.
2010). BCCI calculates daily anomalies of GCM outputs (i.e. temperature and precipitation)
based on the monthly climatology at each coarse-scale grid cell. Anomalies are interpolated to
fine-scale observed grids and multiplied (for precipitation) or added (for temperature) to the
observed monthly climatology. Downscaled GCMs are then bias-corrected using the quantile
mapping approach. BCCI preserves the temporal sequence of GCM variability but has poor
spatial covariability especially in mountainous regions due to the smoothing process in
interpolation. BCCA uses quantile mapping to bias-correct daily coarse-scale GCM outputs
(temperature and precipitation) based on coarse-scale observations (Werner et al. 2019).
Instead of using a smooth interpolation scheme, BCCA generates fine-scale downscaled
patterns by regressing future GCM simulations in each day on a linear combination of best
matching (analogue) historical observations (Hidalgo et al. 2008). The method represents the
topographic effects; however, it does not capture simulated daily sequencing and tends to
produce too much drizzle and underestimate extreme precipitation. BCCAQ2 reorders daily
BCCI outputs for each month based on BCCA to improve spatiotemporal variability and uses
quantile delta mapping instead of regular quantile mapping to preserve all projected quantiles
in the downscaled output. BCCAQ2 retains the advantages of both BCCI and BCCA
approaches and better represents extreme events, day-to-day sequencing and spatial covari-
ance. Extensive research has been conducted to evaluate the performance of downscaling
approaches and the corresponding uncertainties (Chen et al. 2012; Diaz-Nieto and Wilby
2005; Fauzi et al. 2020; Najafi et al. 2011; Singh and Najafi 2020; Werner and Cannon 2016;
Yang et al. 2019). BCCAQ has shown satisfactory performance in replicating historical
CLIMDEX indices and hydrological climate change impact assessments (Werner and
Cannon 2016). The downscaling and bias-correction process is performed over each GCM
ensemble member (57 runs) for the entire NWNA. Figure S1 shows the advantage of
downscaled GCM simulations to better represent regional variations of hydroclimatic extremes
compared to raw GCM outputs.

3.2 CLIMDEX

Twenty-seven climate extreme indices (i.e. CLIMDEX) are defined by the Expert Team on
Climate Change Detection and Indices (ETCCDI) based on daily data, from which 16 are
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temperature-related and 11 are precipitation-related. Most of these indices represent moderate
extremes that occur at least once a year. Some indices can be used to estimate hydroclimatic
extremes with long return periods using sufficiently long annual maximum data series.
CLIMDEX can be divided into two categories. One that characterises the intensity of climatic
extreme events and the other that measures the frequency of extremes exceeding a certain
threshold (Zhang et al. 2011). Analysis of both types of indices is critical for the design and
planning of structure and infrastructure, agricultural and water resource management. We
selected eight indices that best represent the intensity and frequency of extreme temperature
and precipitation (Karl et al. 1999; Zhang et al. 2005). These indices are widely used because
they can represent the impacts of climate extremes on industries, agriculture, hydropower
generation, fishery and forestry activities as well as natural disasters such as droughts, floods
and wildfires (Tebaldi et al. 2006; Werner and Cannon 2016). The climate extreme indices
used in this study (TXx, TNn, GSL, CDD, RX5day, R10, SDII and R95) are described in the
Supplementary information and summarised in Table S1.

3.3 Internal variability

Using the large ensemble simulations, we quantify the influence of ICV and external forcings
on historical and projected trends. The linear trend of each extreme climate index is estimated
using the least-squares method for both historical and future periods. Furthermore, we assess
spatial changes of internal variability across the basins over the historical and future periods.

IVi;T ¼ Vi;T−FT ; ð1Þ
The linear trend in the ensemble mean, FT, represents the forced response of the system, and the
linear trend in the anomaly time series for each ensemble member, IVi,T, represents that member’s
internal variability (Dai and Bloecker 2019). In addition, the signal-to-noise ratio (SNR) is
calculated to quantify how trends in extreme indices are affected by the underlying noise:

SNR ¼ TrendEF
∑N

i¼1SDi
� �

=N
; ð2Þ

where TrendEF is the trend in extreme index associated with the response to external forcing
(ensemble mean), SDi is the standard deviation of ensemble member i and N (=50) is the total
number of ensemble members.

4 Results

4.1 Spatial patterns of extreme precipitation and temperature over NWNA

The spatial distribution of temperature-based (intensity: TNn, TXx and frequency: GSL) and
precipitation-based (intensity: RX5day, SDII, R95 and frequency: CDD, R10) indices is
evaluated over NWNA using gridded observations, CanESM2_LE and SR_GCM simulations
over the historical (1981–2010) and future (2060–2089) periods at a 1/16° spatial resolution.
The following sections present the results of TNn, TXx (as representatives of temperature-
based indices) CDD and R95 (as representatives of precipitation-based indices). Other indices
are presented in the Supplementary information.
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Figures 2 and 3 and S2 and S3 show the CLIMDEX indices using gridded observation in
colour (left panels of the figures) and the bias of the simulations using SR_GCMs (Figs. 2 and
S2) and CanESM2_LE (Figs. 3 and S3) for the historical period (middle panels) and their
projected changes in the future period (right panels) in grayscale.

4.1.1 SR-GCM simulations

CRB particularly the western parts and southern FRB experiences the weakest extreme cold
conditions in terms of the average TNn among other regions in NWNA, while PRB and
northern FRB are the coldest during the late twentieth century (Fig. 2). Furthermore,
SR_GCMs (7 members) overestimate the average TNn over high elevation areas (the Rockies
in southeastern FRB and eastern CRB) with the highest bias over eastern parts of CRB.
SR_GCMs show relatively good performance in other areas of NWNA. The projected TNn

Fig. 2 Spatial variability of TNn (first row), TXx (second row), CDD (third row) and R95 (fourth row) based on
gridded observations (left panel), historical biases (middle panel) and future projections (right panel) of SR_GCM
means. Projected distributions of CLIMDEX (right panels) show the changes of CLIMDEX in the future period
compared to their historical period over NWNA
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(Fig. 2) shows a notable increase over the entire NWNA, with the highest increase up to 15 °C
over northern PRB. TNn over major cities of FRB (Vancouver, Surrey, Kelowna and
Kamloops) and CRB (Portland, Salem, Eugene, Yakima, Bend and Spokane) is projected to
increase between 2 and 8 °C, while over other major cities (FRB: Prince George, PRB: Grande
Prairie and Grimshaw, CRB: Twin Falls, Boise, Idaho Falls and Pocatello, entire CaRB), it is
projected to increase between 8 and 11 °C.

Central and southern CRB have been the hottest regions of NWNA based on observed TXx
reaching 38–49 °C (Fig. 2). The lowest TXx over NWNA occurs over high elevation regions
as well as CaRB ranging between 14 and 28 °C (eastern and western NWNA), while
Vancouver and Surrey, which are close to high elevation areas, experience between 1 and
2 °C higher TXx that might be due to urban heat island effect. SR_GCMs slightly underes-
timate TXx (up to 2 °C) in the same locations where SR_GCMs overestimate TNn as well as
central CRB; however, they show good performance in simulating TXx in other parts of

Fig. 3 Spatial variability of TNn (first row), TXx (second row), CDD (third row) and R95 (fourth row) based on
gridded observations (left panel), historical biases (middle panel) and future projections (right panel) of
CanESM2-LE means. Projected distributions of CLIMDEX (right panels) show the changes of CLIMDEX in
the future period compared to their historical period (middle panels) over NWNA
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NWNA. In other words, the downscaled SR_GCMs are slightly biased in capturing extreme
temperatures (minimum and maximum) over central CRB and southeastern FRB. According
to the future simulations, NWNA is projected to face a significant increase in the intensity of
TXx (averages up to 7 °C) particularly around Prince George and Kamloops with 8–9 °C.

Regions in the south and west of CRB show a higher frequency of CDD (between 41 and
82 days) over the late twentieth century compared to the other parts of NWNA, while the
lowest CDD (10–16 days) occurs along eastern FRB and western PRB including the high
elevation regions across FRB and PRB (Fig. 2). The SR_GCM mean underestimates CDD
over NWNA, which implies less persistent dry periods in the models compared to the
observations. The CDD bias of SR_GCMs increases in higher latitudes and high elevation
regions. CDD is projected to increase over CaRB, entire FRB, upper CRB including Columbia
mountains and lower PRB and decrease in parts of southern CRB as well as upper PRB. Most
of these areas are also affected by increases in TXx and TNn (temperature-related), which,
combined with more frequent CDD (precipitation-related), can experience dramatic
hydroclimatic conditions that can cause severe socioeconomic consequences such as agricul-
tural land threats, higher risk of wildfires and more frequent and severe droughts.

Coastal regions in southwestern FRB, western parts of CRB and CaRB, and the moun-
tainous areas including the Upper Rockies and the Columbia Mountains show the highest total
precipitation (between 190 and 250 mm) in very wet days (R95; Fig. 2). SR_GCMs could not
represent the observed R95 patterns well and underestimated the averages up to 20% through-
out NWNA except in northern FRB and eastern PRB where R95 has been captured well (Fig.
2). Furthermore, the mean of these ensembles project increases over NWMA with the highest
increase over high elevation areas of western PRB and FRB including Prince George as well as
CaRB (averages between 30 and 50%).

CaRB and major cities such as Vancouver, Surrey, Spokane, Fort St John, Dawson
Creek and George Prairie are projected to experience more frequent and severe hot and
wet extreme events (Fig. 2). Central and western CRB have the longest growing season
length in NWNA. Areas with the lowest TXx values including the upper CRB, along
the Columbia Mountains, western PRB and FRB, and CaRB, have shorter GSLs
compared to the other regions in NWNA. SR_GCM captures the observed spatial
pattern of this temperature-related extreme index well except southern CRB and
northern PRB that GSL has been underestimated up to 20 days. GSL is projected to
increase in the future period throughout NWNA with larger increases in southern
latitudes particularly over CRB in the USA, compared to the north (Fig. S2). The
other precipitation-based indices (R10, Rx5day and R95) are shown in Fig. S2. Their
observed spatial patterns are similar to each other such that the most intense wet events
occurred in CaRB, southwestern FRB, western parts of CRB, and CaRB, and the
mountainous areas including the Upper Rockies and the Columbia Mountains. R10 is
projected to increase over NWNA particularly on higher elevations of the Rockies;
however, SR_GCMs slightly underestimate R10 over CRB in the historical period. Due
to the high variability of precipitation over mountainous areas, the simulation based on
SR_GCM shows slight underestimations in these regions. More intense RX5day events
are projected over the future period mainly along high elevations in western and
eastern NWNA. The observed spatial pattern of SDII is well-represented by
SR_GCMs. Also, SR_GCMs project increases in the average precipitation rate during
wet periods (up to 35%) over the entire domain particularly along the upper Rocky
Mountains and the Columbia Mountains.
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4.1.2 CanESM2_LE simulations

The CanESM2_LE mean (the average of 50 members) captures TNn well, particularly over
high elevation area; however, it slightly overestimates TNn over the Rockies in southeastern
FRB and eastern CRB. Furthermore, CanESM2_LE projects remarkable increases in TNn (up
to 15 °C) particularly over western FRB and central and eastern CRB (Fig. 3). Historical TXx
is slightly underestimated over CRB but captured well by CanESM2_LE over the other river
basins (Fig. 3). According to CanESM2_LE projections (Fig. 3), TXx in the entire NWNA is
expected to increase notably (averages up to 9 °C). Results indicate that parts of NWNA such
as PRB tend to experience relatively smaller increases in extreme cold in the future but larger
increases in extreme heat. Contrary to this, central CRB can face larger increases in extreme
cold. The entire CaRB and some other major cities such as Vancouver, Surrey, Prince George,
Kamloops and Kelowna are projected to experience significantly hot temperatures in the future
(between 8 and 9 °C increase in TXx).

CanESM2_LE shows good performance in simulating CDD over NWNA except for FRB,
eastern CRB and western PRB where it underestimates CDD between 10 and 15 days (Fig. 3).
The projected spatial distribution of CDD is similar to that of SR_GCM. CanESM2_LE
captures R95 well (Fig. 3), although R95 over northern CRB and southwestern FRB is slightly
underestimated (averages up to 25%). The coastal basin of NWNA shows the highest
projected changes of R95 with 35–50% increase.

Spatial distributions of the other indices (GSL, R10, Rx5day and SDII) are shown in Fig.
S3. CanESM2_LE captures the observed spatial pattern of GSL well. This temperature-based
index is projected to increase in the future period over the entire NWNA with larger increases
in central CRB and well as entire CaRB. The spatial pattern of R10 is similar to that of R95
and CanESM2_LE shows good performance in simulating R10 in the historical period. R10 is
projected to increase (averages up to 30 days) throughout NWNA with larger increases on
higher elevations of the Rockies (similarly to SR_GCMs projections).

Downscaled CanESM2_LE underestimates RX5day over mountainous areas. RX5day is
projected to increase significantly (averages by 50%) in the future period over entire NWNA
particularly in mountainous regions as well as CaRB. Similar to other precipitation-based
indices that determine the frequency of extreme events, CanESM2_LE could capture the
spatial pattern of precipitation intensity (SDII, showing the intensity of extreme event) well.
Furthermore, it projects increase in SDII during wet periods throughout NWNA particularly
mountainous regions.

4.2 Temporal trends of extreme indices

4.2.1 SR_GCMs annual variations

Temporal variations of all aforementioned indices over NWNA are shown for the historical
and future periods using the gridded observation and SR_GCM simulations (showing the
means and 95% uncertainty ranges) (Fig. S6). The average TNn over NWNA is projected to
increase notably (almost 8 °C) based on SR_GCM. The difference between future and
historical TXx means is 6.5 °C. The ensemble means of simulated TNn and TXx averaged
over the future period exceeds their maximum observed values and the simulated historical
95th percentile. The average CDD is captured well by SR_GCMs and is projected to slightly
increase (1.5 days). The corresponding difference between the future and historical R95
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simulations is 17.9 mm. According to SR_GCMs, temporal projections of spatially averaged
GSL, R10, RX5day and SDII are projected to increase in the future period.

4.2.2 CanESM2_LE annual variations

Overall, the temporal variations of extreme indices based on CanESM2_LE (Fig. 4) are
consistent with those of SR-GCMs. The average observed TNn over NWNA is −25.1 °C,
which is projected to increase to −14.9 °C based on CanESM2_LE (top left panel of Fig. 4).
According to CanESM2_LE, the difference between future and historical TNn ensemble
means is 9.5 °C. Moreover, the average observed TXx value of 29 °C is projected to increase
to 37.3 °C. The difference between future and historical TXx means is 7.8 °C. As shown in the
bottom left panel of Fig. 4, the average number of observed consecutive dry days is 13 days,
which is slightly overestimated based on CanESM2_LE mean (as 13.5 days). CDD is
projected to slightly increase by 0.21 days in the future period according to CanESM2_LE.
The observed R95 value of 100.8 mm is projected to increase to 136.1 based on CanESM2_LE
over the future period (2060–2089). The corresponding difference between the future and
historical R95 simulations is 32.8 mm.

Temporal variability of the other indices (GSL, R10, RX5day and SDII) based on
CanESM2_LE is shown in Fig. S7. Overall, the results suggest that the intensity and frequency
of temperature-related and precipitation-related extreme indices are projected to increase in
NWNA based on both ensembles.

4.3 Impact of internal variability on trends

In both historical and future periods, TNn shows a larger trend compared to TXx indicating a
larger shift in the lower tail of the temperature distribution as compared to its upper tail. This

Fig. 4 Historical (1981–2010) and projected (2060–2089) changes of TNn, TXx, CDD and R95 using gridded
observation (solid black line) and CanESM2_LE. Red and blue dashed lines represent the 95% uncertainty range
of the simulations for the historical and future period, respectively. Multi-model ensemble means over the
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suggests a reduction in the diurnal range of temperature dominated by daily minimum
temperature (Fig. 5). The figure shows the distribution of regional-mean trend over historical
and future periods for each ensemble member across four extreme indices. The significant role
of daily minimum temperature in the reduction of the diurnal range in the future is consistent
with previous studies (Vincent et al. 2018; Vincent and Mekis 2006; Bonsal et al. 2001). The
accelerated warming of night-time temperature is associated with feedback effects, presence of
clouds, precipitation, soil moisture and the inverse relationship between boundary lateral depth
and temperature (Davy et al. 2017; Zhou et al. 2009). In both TNn and TXx, a larger portion of
historical trend corresponds to internal variability, whereas this behaviour is reversed in the
future period with the external forcing response trend dominating. Precipitation has a relatively
large internal variability which is expected as discussed by several other studies (Fischer et al.
2014; Fischer et al. 2013; Deser et al. 2012). Majority of the ensemble members project
negative trends in the average consecutive dry days over the study area, although the external
forcing response trend is marginally positive in the future period indicating an insignificant
trend in the ensemble mean and small forced response in the extreme index. For R95, there is a
small positive trend in the ensemble mean but the internal variability component brings a large
spatial heterogeneity in the spatial patterns with negative trends dominating the lower part of
the basin and high positive trends concentrated in the middle of the basin extending from west
to east (Fig. S10).

Figure 6 shows the spatial variation of internal variability and external forcing response in
historical and future periods from a single run of CanESM2_LE for TXx. The figure is
generated based on Eq. 1 in which the extreme climate index calculated using the mean of
the ensemble is subtracted from the extreme climate index calculated from a single member of
the ensemble at each time step across each grid over the entire region. This disassociates the
total trend into the two components shown in Fig. 6, highlighting the effect of external forcing
response as well as ICV on the trend of the specific extreme index (Dai and Bloecker 2019).
The comparison between historical and future periods clearly shows that the trend changes
direction across time scales. While in the historical period, the northern part of the study area is
dominated by negative residual trends, and positive residual trends in the southern region, the
future projection shows a reversal of this pattern with positive trends in the northern region and
negative trends in the south. For TNn, while the trend of response to external forcing is quite
uniform across the entire region, the residual trend dampens the extremes and produce a
slightly positive overall trend in the north and extreme south and negative trends in the middle
of the study area in the historical period (Fig. S9). It should be noted that these features are
specific to the ensemble member, and every other ensemble member would generate different
outcomes while the average over the ensemble would be zero.

The most dominant role of internal variability can be seen in CDD index, where the
response to external forcing is quite uniform across the whole region with slightly
positive trends; however, internal variability drives the total trend and shows larger
increases in the middle region of the study area and negative trends in the south
(Fig. 7). In the future period, the residual trend adds to the positive external forcing
response in the north and south while dampens the trend in the middle regions. The
prevalence of internal variability as the dominating factor in future trends presents a
counterpoint to other indices where the footprint of external response is clearly the
dominant factor in trends. R95 has a strong negative external forcing response trend
across the southern region which is added to by the residual trends while it adds to the
trend of extreme precipitation in the central region of the study area (Fig. S10).
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Furthermore, SNR results generated from Eq. 2, (Fig. 8 and S11–S17) reveal that elevation
plays a major role in the underlying signal and noise ratio in downscaled precipitation indices.
In the high elevation area, along the Rockies, the signal is the dominating factor in the extreme
index trends, whereas trends in low elevation areas are noisier. However, in the future period,
the signal dominates across the entire region (particularly for temperature-related indices),
while remaining strongest in high elevation regions. For TNn and TXx, the historical period is
entirely dominated by the underlying noise, while there is a strong signal in the future period
(Figs. S16 & S17). Elevation does not show a significant influence on spatial variations of
temperature-based index trends. It is also observed that the strength of the signal in the future
period is significantly higher for TNn as compared to that for TXx, further confirming that the
reduction in the diurnal range of temperature in the future will be dominated by increases in the
lower tail of the temperature distribution.

Fig. 5 Historical and future trends in TNn, TXx, CDD and R95 projected by CanESM2_LE spatially averaged
across the study area. The dotted vertical lines represent the external forcing response trend, while the densities
represent the spread of trends from each ensemble member accounting for the internal climate variability
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5 Conclusions

We assess the historical (1981–2010) and future (2060–2089) extreme temperature and
precipitation events over four major river basins in northwest North America including
Columbia, Fraser, Peace and Campbell with a total area of about 1 M km2. Seven GCMs,
with different structures and a large ensemble of CanESM2 model simulations (50 members),
generated by perturbing its initial conditions, are downscaled to daily temporal and 1/16°
spatial resolution using the state-of-the-art BCCAQ-v2 statistical approach.

Overall, downscaled GCM ensembles show increases in the projected frequency and
intensity of both dry and wet extremes over the domain. Both ensembles show more extreme
hot temperatures and less extreme cold temperatures in the future throughout NWNA partic-
ularly in higher latitudes and CRB, respectively. Most considerable relative projected changes

Fig. 6 Contribution of external forcing response and ICV to trends in TXx for the selected ensemble member

Fig. 7 Spatial variation of trends in CDD external forcing response and internal variability across the study area
for an ensemble member

14 Page 14 of 19 Climatic Change (2021) 165: 14



in CLIMDEX indices are associated with CaRB (indices: CDD, GSL), FRB (TNn, TXx, Rx5day,
R95), PRB (TNn, TXx) and CRB (SDII, R95). Tables S1 and S2 show the spatial averages of
these projected changes for each river basin using SR_GCMs and CanESM2_LE, respectively.
Increases in TXx and TNn can impact important industries and economic activities such as
fisheries (increase in air temperature and consequently surface water temperature can affect the
fish population (Dahlke et al. 2020)) and agriculture in terms of both plants respiration (increase in
temperature endangers plant respiration (Ryan 1991) and production (Anderegg et al. 2013).
Moreover, temperature increases are expected to result in more severe and intensified wildfires
(Wuebbles et al. 2017), intensify rain-on-snow and snowmelt flooding during winter and spring in
this region (Agnihotri and Coulibaly 2020), reduce snowpack (Najafi et al. 2016, 2017a) and
consequently the summer streamflow (Najafi et al. 2017b), increase cooling power demand
during summer particularly in cities with dense population and cause urban heat island effect
(Santamouris et al. 2015). The growing season length is simulated well by both ensembles and
projected to increase over the domain particularly over CRB. Furthermore, all precipitation-based
indices are projected to increase significantly over the high elevation area. Therefore, NWNA is
expected to experience more drastic events such as droughts (associated with increased CDD) and
floods (due to increases in R10, SDII and R95, and RX5day). The aforementioned changes would
directly affect the economy of major cities such as tourism (more intense precipitation adversely
affects the tourism (Olya and Alipour 2015)), agriculture (agriculture lands hardly recover from
severe droughts (Geng et al. 2015)) and wildfires (due to warm and dry conditions (Herring et al.
2016)).

The results of this study are consistent with previous analyses conducted over the individual
river basins, which show overall projected increases in precipitation-based and temperature-

Fig. 8 Spatial variation of absolute signal-to-noise ratio (SNR) for R95 for historical (left) and future (right)
periods
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based indices, including FRB (Shrestha et al. 2012), CRB (Rupp et al. 2017), PRB (M.
Schnorbus et al. 2011) and CaRB (Mandal et al. 2016). This study provides the first analysis of
extreme climate indices using a large ensemble of GCM simulations over NWNA. It also
quantifies the role of internal climate variability on the historical and projected trends of
CLIMDEX indices at a regional scale.

Models are evaluated using several performance metrics including Taylor diagram and
spatial and temporal plots of the ensemble means. Historically, mountainous areas in western
and eastern NWNA tend to receive higher rates of precipitation compared to the other regions.
Extreme precipitation is projected to be more frequent and intense over these regions including
the Coast Mountains, Columbia Mountains and the Rocky Mountains in the future. In
addition, the spatial patterns of precipitation-related indices are different from the spatial
patterns of temperature-related indices. The ensembles do not capture the number of observed
consecutive dry days well, although they project increases over the entire FRB in the future (up
to 15 days in a year based on the multi-model ensemble means). In addition, southern and
western parts of CRB, which are already dry, are projected to experience more consecutive dry
days. The role of internal variability in projected trends of the extremes is also explored. It is
found that internal variability plays a more significant role in precipitation trends as compared
to temperature. While considering the response to external forcing alone, precipitation ex-
tremes have a positive trend throughout the basin and the trends become more spatially distinct
when internal variability is accounted for with significant positive trends in the middle of the
study area and negative trends in the south. The results also show how internal variability can
overwhelm the forced response locally within the basin as is evident from the spatial patterns
of trends in the response to external forcing and residual trends. Based on the SNR analyses,
higher elevations show stronger forcing signals for precipitation-based indices compared to
other regions of NWNA. The trends for CDD, however, are insignificant as internal forcing
plays the dominant role rather than the response to external forcing.

The results of this study, based on a large suite of downscaled and bias-corrected GCM
simulations, show that NWNA will experience more severe extremes under the RCP 8.5
emission scenario. This can put more than 14 million people living in this region, as well as its
ecosystem, socioeconomic activities and infrastructure, at risk, which necessitates the devel-
opment of effective adaptation strategies.

Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1007/s10584-021-03037-9.
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