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Abstract
Climate change has substantial impacts on regional hydrology in the major river basins.
To figure out such latent hydrological impacts of changing climate, more reliable
hydrological simulations are imperative. In this study, we evaluated the impacts of
climate change on hydrological regime in the Upper Yangtze River Basin based on four
downscaled and bias-corrected Global Climate Model outputs from Coupled Model
Intercomparison Project Phase 5 under four Representative Concentration Pathways
(RCP2.6, RCP4.5, RCP6.0, and RCP8.5) driving three hydrological models. Two model
evaluation approaches were applied: simple and comprehensive. The comprehensive
approach was used to evaluate models in the historical period, optimizing objective
function at four gauges, and hydrological models were weighted for impact assessment
based on their performance. In such a way, projected streamflow time series are obtained
under different emission scenarios. Results show that the annual average discharge is
projected to increase by 4.1–10.5% under the RCP scenarios at the end of twenty-first
century relative to the reference period (1970–1999). Moreover, the high flow is projected
to increase and the low flow to decrease indicating a higher probability of flood and
drought occurrence in the basin. The severity of floods and droughts may increase. In
comparison with the simple one-site model evaluation approach, the comprehensive
method reveals that the anticipated extreme flow events would be less severe, and annual
mean discharge slightly lower. The projected results imply that application of the
comprehensive model evaluation approach could narrow the simulated spreads of pro-
jections significantly, and might provide more credible results.
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1 Introduction

Climate change is a present reality that alters our physical environment and perturbs the
societies around the globe. The earth’s temperature equilibrium has been destabilized due to
enhanced global warming, resulting in changes of the radiation balance of ground surface and
atmosphere circulation. The global warming speeds up the circulation of water vapor, influ-
ences the spatiotemporal distribution and intensity of precipitation, directly influences the
hydrological features, such as evaporation, runoff, and soil water, which could lead to raise of
the number of extreme climate events (Beaulieu et al. 2012; IPCC 2013). Hydrological cycle is
recognized as a complex process; the climate change impact on the water cycle is determined
as one of the most challenging issues of widespread concern, especially under the background
of the continuous fast development of the economy (Tomer and Schilling, 2009).

There are large uncertainties involved in the impact analysis (Bastola et al. 2011, Teng et al.
2012). Several studies revealing discharge trends have been published to highlight the
alteration of global streamflow in response to climate change (Ejder et al. 2016; Su et al.
2017). The global and regional climate models and the hydrological models with their
structures and parameterizations could obviously influence the uncertainty in climate change
impacts on water resources (Bosshard et al. 2013; Vetter et al. 2017). Therefore, enormous
research efforts have focused on climate change impact assessment by using combinations of
multiple GCMs, emission scenarios, and hydrological models (HMs) (Braud et al. 2010;
Vetter et al. 2015; Su et al. 2017). The multi-model ensembles of climate models and sets
of hydrological impact models allow to obtain more robust results (Knutti and Sedlácek 2013;
Kundzewicz et al. 2018).

HMs are usually used as important and convenient tools for impact assessment. One of the
important features in using HMs for climate change impact studies is its scale. Typically,
regional HMs are calibrated and validated specifically for the location of interest, whereas
global HMs are usually applied for impact studies with a default global parameterization
without calibration. Several model intercomparison studies (Gosling et al. 2017; Hattermann
et al. 2017; Kundzewicz et al. 2018) suggested that the calibration and validation of HMs are
highly recommended before applying them for climate change impact assessment, especially
at the regional/basin scale.

The simple and commonly used model calibration/validation (or evaluation) approach
mainly focuses on a single variable (i.e., streamflow) in a single point (catchment outlet).
Though this method is still being widely used in climate change impact assessment
nowadays (Hattermann et al. 2017; Huang et al. 2017; Gao et al. 2020), significant
efforts have been done for using multi-site multi-variable and multi-objective approaches
for evaluation of models in advance of climate change impact assessment (Chiang et al.
2014; Franco and Bonumá 2017; Eghdamirad et al. 2019; Puertes et al. 2019). The
results of such studies have shown that a better streamflow performance can be achieved
for the whole catchment, compared to the single-variable (streamflow only) and single-
site calibration strategy. Furthermore, temporal and spatial variability in the basin could
be represented through different parameter values; hence, an effective HM evaluation
procedure should include testing the model performance for several relevant variables
considering their spatial distribution, rather than in a particular point (i.e., catchment
outlet) only (Krysanova et al. 2016). Besides, it is important to test models in a variety of
climate conditions (including the conditions of the selected study area) (Kundzewicz
et al. 2018; Motavita et al. 2019).
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When multi-site calibration is ready, a multi-model combination (MMC) approach could be
used to better characterize the uncertainty in simulated results. The simplest and common way
to generate a MMC is to use the arithmetic mean or median of the selected models. However,
although many previous studies have demonstrated that the ensemble mean/median result
often shows a better performance than the individual models (Cloke and Pappenberger 2009;
Arsenault et al. 2015), it is still considered problematic solution because of ignoring the
limitations of the model applicability, and assigning the same weights to all models regardless
their performance. Thus, another approach employing a weighting scheme was recommended
by some researchers in the field of climate change impact research, in which different
weighting coefficients are applied to each model to reflect their relative strengths or weak-
nesses in performance (Shamseldin et al. 2007). Though all the aforementioned points could
play important roles in hydrological impact assessment, seldom all of them are taken into
consideration.

A comprehensive model evaluation framework has been proposed by Krysanova et al.
(2018), with a view to generating the model-based projections of hydrological variables, and it
is recommended by the regional water sector group in the Inter-Sectoral Impact Model
Intercomparison Project (ISIMIP, www.isimip.org). It is assumed that after the
comprehensive model evaluation, the uncertainties related to HMs would be notably
reduced in climate change impact assessment, and the models will provide more credible
results. Therefore, it is imperative to test how this framework will work at both the global and
regional scales. In this paper, we selected the Upper Yangtze River Basin (UYR) as the study
area to study the influence of the HM evaluation methods on climate change impacts.

Numerous studies have been conducted to evaluate streamflow variations and to simulate
hydrological projections in the context of climate change in the UYR (Sun et al. 2013; Chen
et al. 2014; Liu and Du 2017; Wang et al. 2019; Gao et al. 2020). Both climate and
socioeconomic factors and variabilities play crucial roles in the change of hydrological regime
in this basin (Chai et al. 2019). A notable decrease in annual runoff was observed in the Upper
Yangtze River since the second half of the twentieth century, global climate change is
increasing the risk of disastrous extreme hydrological events, and the booming economy
inevitably is increasing water demands. Research on the influence of future climate changes
on hydrological processes in the basin would be useful for the development of water resources
and for the regional economy. Whereas many previous studies reported that the changes in
streamflow may occur in the future, the projected impacts usually incorporate significant
uncertainty.

Therefore, the main purpose of this study is to investigate whether and how the impact
model evaluation influences the climate change impact assessment results using three semi-
distributed HMs driven by climate projections from four global climate models (GCMs),
which have been prepared within the ISIMIP2b simulation round. The aforementioned
comprehensive model performance evaluation approach will be used first, and further the
projected discharge will be compared with simulations based on the simple HM calibration/
validation approach to explore whether the comprehensive evaluation will provide different
impact results than the simple one, and whether the uncertainty related to hydrological models
could be reduced. For this purpose, differences in annual average discharge, high/low flows,
and mean seasonal dynamics of river flow will be analyzed. It is believed that the methods and
results of this study on climate change impacts for water sector at the regional scale will
contribute to further research, and will be helpful in policy making to ensure sustainable water
management and climate change adaptation issues.
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2 Materials and methods

2.1 Study area

This study was conducted for the Upper Yangtze River Basin which is located upstream of the
Cuntan hydrological gauging station (29° 37′ N, 106° 36′ E) in China. The area extends from
longitude 90° 30′ E to 108° 10′ E and from latitude 25°N to 35° 45′N. It covers a drainage area
of about 8.6 × 105 km2, and spreads over six provinces, providing more than 80% of the river
flow to the Three Gorges Project (Fig. 1). Three other hydrological stations, Zhimenda, Shigu,
and Pingshan, are located in the mainstream of the Yangtze River upstream of Cuntan station
and their drainage areas are 1.4 × 105 km2, 2.1 × 105 km2, and 4.5 × 105 km2, respectively.

The UYR has a complex terrain, with an altitude level ranging from about 150 to 6500 m
above sea level. The mountains and plateaus lie in the western part of the UYR, and account
for more than 90% of the total basin area, whereas the rest is plain area located in the eastern
region. Forest coverage is around 26% of the entire basin. Furthermore, average annual mean
temperature in the UYR is 12.3 °C, and average annual precipitation is about 1018 mm (based
on data for 1961–2010 period). The spatial distributions are highly uneven. The mean annual
temperature and precipitation range from below 0 °C and 500 mm in the west to over 17 °C
and 1200 mm in the east, respectively (Guan et al. 2015; Su et al. 2017). It is considered a
sensitive area under climate change conditions. The climate of this region is significantly
influenced by the southeast monsoon, southwest monsoon, and the Tibetan Plateau. Notably,
the flood season normally occurs in May to September, and the amount of precipitation in this
period accounts for about 78% of the total annual precipitation, whereas the peak flood season
is from July to August (Su et al. 2017). The flood features (i.e., high peaks, flash floods) in the
UYR are controlled by rainfall distribution and topography. The UYR region faces acute water
shortages in the dry season, whereas frequent floods occur in the wet season. Such diverse
effects of climate create many difficulties in the development and utilization of water resources
in the region.

In terms of demographic distribution, the population in this region is about 180 million
(2010 census), which is 35% of the population in the entire Yangtze Basin, or 14% of the total
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Fig. 1 Location of the Upper Yangtze River Basin and its topography, as well as four hydrological stations used
for hydrological model evaluation
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population in China (National Bureau of Statistics 2011). This region has significant contri-
bution to augment sustainable development in the Yangtze River Basin, and even in the whole
nation.

2.2 Materials

2.2.1 Observation and reanalysis data

The digital elevation model constructed from the Shuttle Radar Topography Missions with
90 m resolution (Jarvis et al. 2008) was used to generate river network, delineate sub-basins,
and estimate slope parameters as the basis for HM simulations. In this study, soil features like
soil depth, texture, and bulk density were derived from the Harmonized World Soil Database
(FAO et al. 2009), and other parameters like field capacity, available water capacity, and
saturated conductivity were derived using pedo-transfer functions and tables (hoc AG-Boden
2006). In addition, information on land use was taken from Global Land Cover data for the
year of 2000 (Bartholomé and Belward 2005).

To calibrate and validate the three HMs, observed daily river discharge data at the Cuntan,
Pingshan, Shigu, and Zhimenda stations in the UYR was obtained from the China Hydrolog-
ical Yearbook, Yangtze for the 1979–2013 period. Meteorological variables including daily air
temperature, air humidity, precipitation, solar radiation, and wind speed on a 0.5° × 0.5° spatial
resolution for the period of 1979–2013 were from the global meteorological reanalysis data
source EWEMBI (abbreviation for EartH2Observe, WFDEI, and ERA-Interim data Merged,
and Bias-corrected for ISIMIP, Lange 2018) downloaded from the Inter-Sectoral Impact
Model Intercomparison Project (ISIMIP). This reanalysis dataset was developed to support
the bias correction of climate model outputs in phase 2b of ISIMIP (Frieler et al. 2017).
Moreover, to assess the quality of the EWEMBI dataset for the simulation period, gridded
observed daily meteorological datasets at 0.25° resolution were derived using quality-
controlled gauge observations from more than 2400 meteorological stations over China (Wu
and Gao 2013). The National Meteorological Information Center of the China Meteorological
Administration is responsible for processing and maintaining these station based variables
(Ren et al. 2010).

In this paper, daily evapotranspiration data is also used for cross-checking the model
performance by comparing with evapotranspiration simulated by HMs. For that, proxy-
observed evapotranspiration data was downloaded from the third version of Global Land
Evaporation Amsterdam Model (GLEAM v3.0) (Miralles et al. 2011; Martens et al., 2016).
The GLEAM is a set of algorithms dedicated for the estimation of terrestrial evaporation and
root-zone soil moisture from satellite data, rather than deriving evapotranspiration directly
from satellite imageries. It offers a long-term daily dataset spanning since 1980 with the higher
spatial resolution of 0.25° × 0.25° than other evapotranspiration products, widely used in
hydrology and climate research, provide (Miralles et al. 2014).

2.2.2 Climate model data

In this study, we used four single-realizations of the GCM outputs from the fifth phase of the
Coupled Model Intercomparison Project (CMIP5) for climate change impact assessment:
GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, and MIROC5 (Taylor et al. 2012), here-
inafter abbreviated as GFDL, Had, IPSL, and MIROC, respectively. These four GCMs provide
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the full set of output variables for multi-sectoral simulations, and span the space of global
mean temperature change and relative precipitation change as best as possible compared to all
other CMIP5 GCMs (Warszawski et al. 2014); therefore, they were selected by the ISIMIP
group and used in this study. The atmospheric component resolutions and host institution
names are presented in Table S1.

The daily climate variables including precipitation (Pre), near-surface daily average/max-
imum/minimum air temperatures (Tave/Tmax/Tmin), wind speed, relative humidity, and surface
downwelling shortwave radiation from four GCM outputs were used. All raw data were
interpolated to 0.5° horizontal resolution by using a first-order conservative remapping scheme
(Jones 1999), and bias-corrected by using a trend-preserving statistical bias correction algo-
rithm with EWEMBI reanalysis data at the daily time step (Hempel et al. 2013). Climate
simulations including the historical and future periods were selected under four representative
concentration pathways (RCPs: RCP2.6, RCP4.5, RCP6.0, and RCP8.5). The simulations
cover the period 1970 to 2099. The interval 1986–2005 was selected to evaluate the quality of
the climatic data, and the 30-year period of 1970–1999 was used to evaluate the performance
of the hydrological models and as a reference period for estimation of impacts. The period
2006–2099 was used for projections under different scenarios.

2.3 Methods

2.3.1 Hydrological models and model performance evaluation

Three semi-distributed HMs were used in this study to generate daily discharge (Table S2).
They are the following: (i) the SWAT (Soil and Water Assessment Tool) model, a process
based continuous-time hydrological model which describes major hydrological processes at
the catchment scale (Arnold et al. 1998); (ii) the VIC (Variable Infiltration Capacity) model, a
grid-based hydrological simulator for large-scale applications (Liang et al. 1994); and (iii) a
modified version of the conceptual rainfall-runoff model HBV (Hydrologiska Byrans
Vattenavdelning, Bergström, and Forsman 1973) named HBV-D, which was developed by
Krysanova et al. (1999). These three models differ in their levels of complexity, mathematical
process formulation, and spatial resolution. All three models have been successfully applied in
many different hydro-climates for a broad range of hydrological problems and climate impact
studies (Huang et al. 2017; Krysanova and Hattermann 2017; Su et al. 2017). The HBV-D
model requires precipitation and temperature as input, and the other two models need all
meteorological data listed in Section 2.2. More detailed description of these three HMs can be
found in Vetter et al. (2015) and Gao et al. (2020).

The spatial resolution of the VIC model in this study is 0.5° × 0.5°, in agreement with the
resolution of EWEMBI climate data, and totally 308 grid cells completely cover the UYR. In
SWAT model simulation, UYR was subdivided into 36 sub-basins which was further
subdivided into over 310 Hydrological Response Units (HRUs) after overlaying the sub-
basins with the spatial distribution of land use, soil, etc.

2.3.2 Comprehensive model evaluation approach

The model performance has been tested via calibration and validation of relevant variables for
the historical period (1970–1999) by applying a comprehensive model evaluation approach
(Krysanova et al. 2018) for the whole UYR. In addition, the simple method based on the one-
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site calibration procedure was applied in this study: only for discharge at the outlet station
(Cuntan). The five requirements for the comprehensive approach were slightly modified for
our study, and are as follows:

(1) To evaluate the quality of reanalysis data collected from EWEMBI against the station-
based observational climate data for the period 1986–2005, as the former is used as input
data for HM simulations.

(2) Check the model performance for the historical period or sub-periods with varying
climate conditions which may be climatically similar to the projected future climate.
This is to ensure that the models can work realistically under the future climate
conditions. In this study, the interval from 1979 to1996 is a mixed period combining
wetter and drier years, and it was selected as the calibration period. To validate the HM
performance under different climate conditions (to assure more robust impact simulation
results), the validation period was divided into a relatively wet (1997–2004) period and
a relatively dry spell (2005–2013) period. See supplementary material for further
detailed explanation.

(3) Calibrate and validate model performance at multiple gauges within the basin and for
multiple variables (runoff, evapotranspiration, etc.) to ensure internal consistency of the
simulated processes. In this study, data from the outlet station Cuntan and three
intermediate gauges (Zhimenda, Shigu, and Pingshan) were used for calibration and
validation. In addition, evapotranspiration was also used to validate the model
performance.

(4) Validation for specific hydrological indicators. At this step, we validated the models for
the annual high-flow (Q10) and low-flow (Q90) percentiles which were calculated from
the daily mean streamflow, as they are important for impact assessment.

(5) Test the observed trend directions and slopes. To ensure a good model performance,
trend comparison is required, and the observed trends (or lack of trends) should be
reproduced by the models. If both the observed and simulated streamflows show the
same trend directions at the selected confidence level (95 or 99%), or both do not show
statistically significant trends, this step can be considered passed satisfactorily in the
aspect of trend detection.

If a HM performs well in calibration and validation on the basis of the above mentioned
requirements, it can be considered ready for impact assessment. In the case of an ensemble
approach, the models could be weighted based on their performance results (Krysanova et al.
2018; Kundzewicz et al. 2018). For that, a simple multiple linear regression (MLR) method
could be used for weighting the multi-HMs, to get an MMC result (Uyanık and Güler, 2013).
More detailed information about the MLR method and the weighting scheme are given in
supplementary material.

In the simple evaluation method, a single-objective function is used to pursue the minimum
of the absolute error between the observed and simulated streamflows at one station. Applying
this approach, an unweighted multi-model mean is used, disregarding the different
performances.

During the course of model evaluation, several goodness-of-fit criteria were used: Nash-
Sutcliffe efficiency (NSE), Kling-Gupta efficiency (KGE), coefficient of determination (R2),
and ratio of root mean square error to standard deviation of observation (RSR). These all are
commonly used metrics in hydrological and climate impact studies. The optimum value

Climatic Change (2020) 163:1207–1226 1213



metrics is 1 for the first three, and 0 for the fourth, indicating perfect correspondence between
simulations and observations. For monthly data, the values of NSE ≥ 0.7, KGE ≥ 0.7, R2 ≥ 0.8,
and RSR ≤ 0.6 are considered ranges of the good model performance suggested by previous
studies (Moriasi et al. 2015; Huang et al. 2017).

Besides, SUFI (Sequential Uncertainty Fitting)-2 algorithm has been used to estimate the
sensitivity and uncertainty of hydrological models (Abbaspour et al., 2004). It is operated with
successive iterations, the calibrated parameter value intervals are reduced at each iteration. In
this study, 3–4 iterations with 800 model runs were conducted, and the best performing
parameter set was derived from the final iteration for each hydrological model.

2.3.3 Trend analysis

The Sen’s slope method was used to estimate the magnitude of trend in a data series,
and the Mann–Kendall test was used for identifying the significance of trend at
different confidence levels (Mann 1945; Sen 1968; Kendall 1975; Hipel and
McLeod 1994). In this study, the trend tests were not only used in analyzing long-
term variations in streamflow, precipitation, etc., but were also applied for checking
the HM performance in terms of trend detection.

3 Results

3.1 Quality of reanalysis data

Precipitation (Pre) and temperature indices (Tave, Tmax, Tmin) are indispensable input data for all
HMs applied in this study. The inter-annual variations of these variables derived from
meteorological stations were compared with those from the EWEMBI reanalysis dataset for
the UYR (Figs. S1–S3, here and later “S” means that table or figure is in supplementary).
Though obvious discrepancies between the annual average temperature and precipitation time
series exist, very consistent annual fluctuations and trends could be found. On average, both
the EWEMBI and station-based temperatures are significantly increasing by 0.2–0.3 °C/10a in
the basin. The annual fluctuations in temperature and precipitation of these two data sources
were quite reasonable ensuring correlation coefficients above 0.89 (significant at 0.05 level)
(Fig. S1). The probability density functions (PDFs) of regional daily Tave, Tmax, Tmin, and Pre
derived from these two datasets also showed similar patterns, and their spatial correlation
coefficients were higher than 0.94 (Fig. S2, S3). In regard to the spatial and temporal
distributions, trends and relative variations in the UYR are acceptable using EWEMBI as
proxy for observed data. Therefore, it could be used for further hydrological analysis. More
details about the comparison between the reanalysis data and the observed climate data are
provided in supplementary material.

3.2 Hydrological model evaluation

The results of comprehensive calibration and validation in terms of fit metrics (NSE, R2, KGE,
RSR) for the monthly data from three models and four hydrological gauges are presented in
Table 1. It can be seen that the dynamics are simulated satisfactorily by all three HMs at
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Cuntan, Pingshan, and Shigu gauges, with NSE and KGE ranging from 0.7 to 0.96, R2

exceeding 0.9 and RSRs lower than 0.5 in both calibration and validation periods.
In the calibration period, most of the fit metrics of the HBV-D and SWAT models

are within the thresholds at Zhimenda gauging stations. In the validation period,
HBV-D and VIC perform poorly. SWAT is the only model that performs good or
satisfactory in both periods. The Zhimenda-controlled area is the source region of the
Yangtze River, with a high altitude, low temperature, presence of frozen soil, and a
permanent snow cover. The relatively poor performance at this station could be also
explained by an inaccuracy of precipitation data in the high alpine area of the
catchment above this station. However, taking into account the fact that the
Zhimenda-controlled area only accounts for roughly 16% of drainage area of the
whole Cuntan-controlled basin, we can conclude that discharge results simulated by
the HMs are still satisfactory for the whole catchment. The differences between three
HMs are quite obvious for the Zhimenda. The SWAT-simulated results are better than
of the other two, and this will be taken into consideration in model weighting before
the multi-model ensemble will be used for impact assessment.

Table 2 shows the model performance for the monthly discharge corresponding to the one-
site simple calibration procedure, using only the outlet station (Cuntan) to calibrate/validate
discharge for the whole UYR. The results demonstrate that though all HMs perform well at
Cuntan, substantial differences in performance exist for the upstream stations compared with
Cuntan. Except for Cuntan, NSE, KGE, and R2 are lower and RSR is higher at all other three
stations, indicating a worse HM performance there.

Therefore, we can conclude that it is possible to reach satisfactory results in the upstream
subcatchments and also to improve performance in the downstream part by using the multi-

Table 1 Criteria of fitting for three hydrological models in the calibration and validation periods in the Upper
Yangtze River Basin, based on the multi-gauge comprehensive calibration/validation procedure; good criteria
values are displayed in italics

Criteria Station Calibration (1979–1996) Validation (1997–2004) Validation (2005–2013)

HBV-D VIC SWAT HBV-D VIC SWAT HBV-D VIC SWAT

NSE Cuntan 0.88 0.90 0.96 0.88 0.88 0.96 0.90 0.86 0.95
Pingshan 0.85 0.89 0.95 0.84 0.89 0.96 0.84 0.92 0.96
Shigu 0.82 0.86 0.73 0.85 0.93 0.84 0.85 0.92 0.85
Zhimenda 0.75 0.35 0.84 0.60 0.15 0.70 0.62 0.41 0.67

R2 Cuntan 0.97 0.99 0.98 0.98 0.99 0.98 0.96 0.97 0.98
Pingshan 0.93 0.97 0.97 0.95 0.97 0.99 0.92 0.96 0.98
Shigu 0.92 0.93 0.95 0.94 0.97 0.96 0.92 0.96 0.96
Zhimenda 0.89 0.88 0.93 0.89 0.91 0.94 0.88 0.92 0.95

KGE Cuntan 0.83 0.70 0.95 0.81 0.69 0.94 0.86 0.69 0.96
Pingshan 0.88 0.72 0.97 0.81 0.67 0.93 0.89 0.96 0.96
Shigu 0.85 0.90 0.57 0.85 0.88 0.67 0.91 0.95 0.75
Zhimenda 0.59 0.35 0.82 0.51 0.30 0.69 0.57 0.39 0.55

RSR Cuntan 0.35 0.32 0.19 0.35 0.35 0.20 0.31 0.37 0.22
Pingshan 0.39 0.33 0.23 0.40 0.34 0.20 0.40 0.29 0.20
Shigu 0.42 0.38 0.52 0.39 0.27 0.40 0.38 0.28 0.39
Zhimenda 0.50 0.81 0.39 0.63 0.92 0.55 0.61 0.77 0.58
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gauge comprehensive calibration procedure. This demonstrates the benefit of using all avail-
able discharge data for the hydrological analysis. Parameterizations of the models derived from
the comprehensive approach make parameters for the whole basin more representative com-
pared to the simple method.

The long-term monthly mean discharges for the calibration and validation periods at four
stations after the comprehensive evaluation are shown in Fig. 2a, b. The average annual
precipitation in this area is abundant, and due to differences in drainage areas, the range of
annual discharge is spanning from 429 m3/s at Zhimenda to 10,670 m3/s at Cuntan. Generally,
the long-term average seasonal dynamics of discharge is characterized by a single-peak (i.e.,
unimodal) curve. Some underestimation in discharge during the flood season (July–Septem-
ber) is evident in the HBV-D and SWAT simulations, and a slight overestimation by VIC. In
the dry season, underestimation in discharge at the beginning of the year is obvious for VIC at
Cuntan and Pingshan, and for SWAT at Shigu. Performance of all models in the validation
period is slightly weaker than in the calibration period.

In addition, the annual simulated values of Q10 and Q90 in the calibration and validation
periods were compared to those estimated from the observed time series (Fig. 2c, d). The
results show that all HMs have a good performance for high-flow conditions (Q10) in all four
gauges. Correlation coefficients between the observed and modeled Q10 range between 0.7
and 0.9 at all stations, and the biases become larger when stations move further upstream along
the flow path. The highest bias is over 20% at Zhimenda for the simulation runs with all HMs.
The biases at Pingshan and Shigu range from − 11.5 to 3.4% and from − 12.5 to 11.2%,

Table 2 Criteria of fitting for three hydrological models in the calibration and validation periods based on the
Cuntan single-station calibration procedure conducted using the simple approach (upper part), and model
performances at other three stations (lower part) in the same periods (without calibration); good criteria values
are displayed in italics

Performance at Cuntan gauge

Station Criteria Calibration (1979–1996) Validation (1997–2004) Validation (2005–2013)

HBV-D VIC SWAT HBV-D VIC SWAT HBV-D VIC SWAT

Cuntan NSE 0.93 0.91 0.97 0.94 0.89 0.97 0.90 0.88 0.95
R2 0.96 0.99 0.99 0.98 0.98 0.98 0.96 0.97 0.98
KGE 0.95 0.68 0.94 0.90 0.67 0.95 0.92 0.66 0.91
RSR 0.26 0.3 0.17 0.24 0.34 0.18 0.31 0.35 0.23

Performance at other gauges
Station Criteria 1979–1996 1997–2004 2005–2013

HBV-D VIC SWAT HBV-D VIC SWAT HBV-D VIC SWAT
Pingshan NSE 0.79 0.86 0.84 0.88 0.87 0.90 0.67 0.81 0.81

R2 0.92 0.97 0.96 0.94 0.97 0.96 0.91 0.96 0.95
KGE 0.83 0.65 0.84 0.89 0.63 0.87 0.77 0.6 0.81
RSR 0.46 0.38 0.40 0.35 0.36 0.31 0.57 0.43 0.44

Shigu NSE 0.59 0.62 0.68 0.66 0.62 0.76 0.33 0.63 0.81
R2 0.90 0.94 0.95 0.92 0.96 0.94 0.90 0.96 0.94
KGE 0.64 0.66 0.48 0.64 0.61 0.55 0.51 0.66 0.66
RSR 0.64 0.61 0.47 0.58 0.62 0.49 0.82 0.61 0.43

Zhimenda NSE –0.60 –1.43 0.57 –2.51 –3.96 0.14 –1.36 –1.5 0.17
R2 0.89 0.91 0.93 0.89 0.92 0.93 0.89 0.94 0.94
KGE –0.22 0.07 0.54 –0.59 –0.20 0.52 –0.31 0.06 0.46
RSR 1.26 1.56 0.58 1.87 2.23 0.93 1.54 1.58 0.91
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respectively. The bias at Cuntan is lower, between − 7.5 and 2.9%. On the contrary, for the
low-flow conditions (Q90), a slightly weaker performance can be seen. The biases at most
gauges range from − 30 to 8% with respect to SWAT and HBV-D, while for VIC, they are
generally over 40%. The correlation coefficients for VIC are about 0.2–0.3, for SWAT 0.4–
0.6, and the values for HBV-D are in between. Based on the comparison results, we can
conclude that the VIC performance is a little weaker than that of HBV-D and SWAT, mostly
showing an overestimation in discharge compared with observed results. The lowest correla-
tion and the largest bias are found at Zhimenda, and other criteria also show similar findings.

In general, the annual average river discharges simulated by all three models have captured
the inter-annual and decadal characteristics of the observations quite well (Fig. S4 in the
supplementary material), with the correlation coefficients ranging from 0.8 to 0.86 for HBV-D
and SWAT, and a little lower but still satisfactory value of about 0.65 for VIC during the
evaluation period.
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Fig. 2 Calibration (a, c) and validation (b, d) for the average monthly discharge (a, b), annual Q10 (high flow)
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EWEMBI forcing data at four hydrological stations in the Upper Yangtze River Basin: Cuntan; Pingshan; Shigu;
Zhimenda, based on multi-gauge comprehensive calibration procedure
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Furthermore, Sen’s slopes were calculated to reveal the increasing or decreasing
trends, and Mann-Kendall test was used for testing their significance in order to
evaluate the HM performance in terms of trends. Both the observed and simulated
mean annual discharges at the Cuntan station declined in the period 1979–2013 with a
slope of 0.88–1.29 mm/year (Table S3). There were no statistically significant trends
found in the observed and SWAT simulated annual discharges (agreement), whereas
HBV-D and VIC showed significant negative trends at the significance level of 0.05.
The observed Q10 at the Cuntan station significantly decreased by 5.32 mm/year, and
the simulated Q10 decreased ranging from 2.47 mm/year in SWAT to 5.42 in HBV-
D, both being statistically significant (agreement). The observed Q90 slightly in-
creased by about 1.01 mm/year, whereas the modeling results showed an increase
by 0.2 mm/year or as a negligible decrease. Though the differences in magnitudes
exist, the directions of trends in the observed and modeled discharges are generally
consistent. As for other stations, no trends could be found in all observed series, and
this was reproduced by most of HMs.

The evapotranspiration is another important hydrological variable, which was se-
lected to check the performance of HMs. The comparison results between the satellite-
based (GLEAM) and model-simulated evapotranspiration are shown in Table S4. An
apparent upward trend was detected in the annual average GLEAM evapotranspiration
time series for the 1980–2013 period with a slope of 0.36 mm/year at 0.01 significant
level, and the increasing trends were also detected in all simulations, albeit with
different rates. The positive trend was overestimated by VIC (0.64 mm/year), and
underestimated by SWAT (0.19 mm/year) and HBV-D (0.14 mm/year). The spatial
correlation coefficients between the average evapotranspiration values from GLEAM
and each model for the 1980–2013 period ranged from 0.84 to 0.90, indicating similar
spatial patterns. The same four metrics as for discharge were used for evaluation of
monthly evapotranspiration time series. The values of R2 were over 0.96 for all HMs;
the highest NSE and the lowest RSR were 0.79 and 0.46 for the VIC model,
respectively, indicating its better performance compared to the other two models.

Summarizing the HM evaluation at multiple sites, we can conclude that the results
are acceptable in terms of NSE, KGE, R2, and RSR for river discharge, high flow,
and evapotranspiration. All three HMs could be used in MMC in order to get more
credible discharge results from climate change impact studies. However, the results for
Q90 are weaker. For all stations, the average Q10 is nearly 10 times higher than Q90.
Therefore, low flows get small weights in the calibration process, leading to bias in
simulations.

In general, SWAT outperforms HBV-D and VIC in terms of variations in dis-
charge, whereas VIC outperforms two other models for variations in evapotranspira-
tion. Based on the observed multi-year averaged annual flows at the four hydrological
stations during 1979–2013, the proportions of discharge at each station to the outlet
discharge were computed. Considering this together with the evaluation results at each
station, different HMs were weighted by using the MLR method, and the following
weighting coefficients for discharge simulated by SWAT, HBV-D, and VIC were
obtained: 0.7, 0.2, and 0.1, respectively. Consequently, a weighted multi-model
ensemble discharge can be produced for the reference and future periods based on
that.
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3.3 Climate impact assessment

The long-term dynamics of discharge in the historical and future periods under four RCP
scenarios based on the comprehensive calibration/validation method are shown in Fig. 3a. The
annual mean discharge shows slightly decreasing trend with a slope of − 0.5 mm/year
(p < 0.05) in the historical period, and it is projected to significantly increase under all future
climate change scenarios with different degrees, ranging from 0.2 to 0.8 mm/year (p < 0.01).
The average rates of increase are 0.8 and 0.6 mm/year under RCP4.5 and RCP8.5, respec-
tively, which is more than twice as high as that of RCP2.6 and RCP6.0. No significant
transition years have been detected under RCP4.5 and RCP8.5 over the twenty-first century,
whereas around 2055, the long-term trend is obviously changing under the other two RCPs,
2.6 and 6.0. The varying features of discharge are highly consistent with the detected results
for the annual average precipitation simulations (more detailed information on the GCMs
simulations of temperature and precipitation are given in Supplementary, Fig. S5). Relative to
the reference period of 1970–1999, the mean discharge is projected to increase by 4.1–10.5%
under the RCP scenarios (5.7%, 10.5%, 4.1%, and 8.5% under RCP2.6, RCP4.5, RCP6.0, and
RCP8.5, respectively) at the end-century (2070–2099) over the UYR.

The river flow at the Cuntan station was also projected based on the simple model
evaluation method, aiming at answering the question on how impact model evaluation
influences the results of climate change impact assessment, and dynamics of the annual mean
discharge are presented in Fig. 3b. Compared to the comprehensive approach based results
(Fig. 3a), the general tendency of the projected discharge is the same for both methods. Both
show the increasing discharge; however, the increase is stronger based on the simple model
evaluation method. Relative to the historical period of 1970–1999, changes in the annual mean
discharge are projected to be 12.9%, 15.7%, 6.3%, and 15.2% under RCP2.6, RCP4.5,
RCP6.0, and RCP8.5, respectively, based on the simple method, in the 2070–2099 period.
Notably, they are roughly doubled compared to projections based on the comprehensive
evaluation simulated results. The greatest increases in the annual mean discharge are projected
to occur under RCP2.6 and RCP8.5 for the both methods, and the wider range of variations
based on the simple method among RCPs at the end of the century (Fig. 3b) is an indication of
a larger spread in model simulations in this case.
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The projected changes in mean annual discharge, Q10, and Q90 for the middle and end of
century relative to the reference period have been calculated based on both the comprehensive and
simple evaluation methods (Fig. 4). No matter which method is used, the relative differences in
mean average discharge andQ10 clearly show significant increases, which is an indication of facing
wetter conditions and more frequent flood events in the UYR. The Q90 is projected to decrease
under all RCPs based on the comprehensive method, and it is consistent with the simple method
based analysis for RCPs 6.0 and 8.5. After the comprehensive evaluation, the Q10 is projected to
increase by 3.9–10.7% under the RCP scenarios in the period of 2070–2099, and the Q90 is
projected to decrease by 3.1–11.8% for the same period. The absolute values are projected to be
much higher at the end of the twenty-first century compared to the mid-century. Thus, the extreme
flows are projected to increase in terms of severity. These results imply that both flood and drought
disasters might become more severe with time by the end of the century compared to the past.

The greatest differences in the changes for the annual mean discharge between simulations
based on two methods are projected under RCP2.6, as well as the end-century period for
RCP8.5 (all around 7%) (Fig. 4c). The differences for Q10 range from 1.9 to 7.4%, reaching
maximum under RCP8.5 by the end of this century (Fig. 4f). For Q90, the differences are
higher, reaching 16.2% under RCP2.6 in 2070–2099 (Fig. 4i).

In general, if the simple model evaluation method is applied, the magnitudes of mean
average and Q10 discharges are projected to increase, whereas notable reduction in Q90 could
be expected (Fig. 4). According to the comprehensive model calibration/validation based
analysis, all projected changes are expected to be softer: mean discharge would increase by
4–10%, both floods and droughts would become more severe than now, and the related
spreads of projections notably smaller.
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4 Discussion, conclusions, and outlook

This paper focuses on investigating whether and how the impact model evaluation influences
results of climate impact assessment via application of three semi-distributed HMs (HBV-D,
VIC, and SWAT) evaluated using two methods driven by climate projections from four
downscaled and bias-corrected GCMs applied within the ISIMIP2b simulation round for the
Upper Yangtze River Basin (UYR). Two HM evaluation methods, the comprehensive eval-
uation approach (multi-site and multi-variable with contrasting climate periods and trend
analysis) proposed by Krysanova et al. (2018) and the traditional or simple HM calibration/
validation approach (only for runoff at one site), have been used for simulating discharge, and
a comparison of differences in the projected impacts on annual average discharge, high/low
flows, and mean seasonal dynamics of river flow between two methods has been done.

The results show that in the UYR, according to the combined evaluation using multiple
goodness-of-fit criteria (NSE, KGE, R2, RSR) for two variables (runoff and evapotranspira-
tion) at multiple sites located in the mainstream (Zhimenda, Shigu, Pingshan, and Cuntan), all
HMs perform generally better based on the comprehensive evaluation method in comparison
to the simple method. Parameterizations of the models derived from the comprehensive
approach make parameters for the whole basin more representative in comparison to the
simple one.

All three models performed well at the three gauges after the comprehensive evaluation, but
weaker at the most upstream station Zhimenda. The drainage area of the Zhimenda sub-basin
roughly accounts for 16% of the drainage area of the whole UYR basin, and provides only
about 4% of the total river flow in the basin on average, according to the observations. The
Zhimenda sub-basin is located in the high altitude area, with elevations mostly above 4000 m.
It includes approximately 1276 km2 of glaciers (Shi et al. 2005) accounting for only 0.9% of its
area (0.15% of the whole UYR basin area), and permafrost is widespread in this sub-basin,
occupying about 75% of its area (Wang et al. 2017). The density of rain gauges is low in this
mountainous area, and wind speed can also strongly influence the observed precipitation, in
particular, the solid precipitation (snowfall) at higher altitudes, because of complex terrain
(Zhao et al. 2015; Sun et al. 2018). Though glacial meltwater and ice meltwater from thawing
permafrost soils likely present important water sources locally, precipitation is the main runoff
source for Zhimenda mountainous sub-basin (Liu et al. 2009; Chen et al. 2014; Fang et al.,
2017; Qi et al. 2019). Small errors in precipitation may translate into major changes in surface
runoff estimates, further influencing the HM performance at the Zhimenda station. The model
performance at the Shigu station is also slightly weaker compared to the two stations
downstream, and this might be explained partly by similar conditions as at the upstream area
of the Zhimenda.

Under the conditions of increasing temperature and precipitation, streamflow in UYR is
projected to increase in the twenty-first century, which is consistent with previous studies
conducted by Su et al. (2017) and Gao et al. (2020), which performed HMs parameter
estimation by optimizing the objective function at a single monitoring station only. In this
study, for further understanding how HM evaluation approaches influence the results of
climate impact assessment, river flow was projected by using two model evaluation methods.
The general tendencies of projected impacts based on two calibration/validation methods are
the same. They show an increase in mean and high flows and decrease in low flow, but there
are notable differences in the magnitudes of changes. The greatest differences in the projected
changes in the annual mean discharge are under RCP2.6 and RCP8.5. The difference in the
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projected changes for annual mean discharge is around 7%, and it is about 7.4% for Q10 under
RCP8.5, while for Q90, difference is the highest among these three indicators, reaching up to
16.2% under RCP2.6. Therefore, as models after the comprehensive evaluation are more
robust, have more representative parameters for the catchment, and climate change impacts
based on them differ in magnitude from the results based on the simple method, we can
conclude that the results based on the comprehensive evaluation are more trustworthy.
Besides, we have found that the projection spreads are smaller at the end-century based on
the comprehensive method.

The extreme flows are projected to become more severe with time based on both methods.
Mean discharges are projected to be higher under all RCPs, especially for the summer season
(Fig. S6, S7). According to the comprehensive method based analysis, both flood and drought
disasters are projected to become more severe but softer, and the related spreads smaller, in
comparison with projections based on the simple method.

The multi-model ensemble of three models was applied with the model weighting scheme,
by weighting each HM based on its performance. SWAT was given a higher weight compared
to the other two models in this study, after considering all statistics such as the discrepancy
between observed and simulated discharge, the ability of reproducing of observed trends,
simulating extreme flows, evapotranspiration, etc. However, it is worth noting that SWAT was
not an optimal model in all cases, it outperformed HBV-D and VIC in terms of variations in
discharge, whereas VIC outperformed the other two models regarding variations in evapora-
tion. Anyway, we can conclude that using multiple models with weighting coefficients is a
more reliable method in comparison with an ensemble mean approach for obtaining more
credible climate change impact assessment results.

Despite the fact that the EWEMBI reanalysis data captures the spatial patterns of
climatic variables very well (with a spatial correlation coefficient greater than 0.94),
underestimation of precipitation and minimum temperature, and overestimation of
mean temperature may indicate drier conditions in the UYR compared to the actual
state (Fig. S1-S3 in supplementary material). This may influence simulation of
hydrological regimes, and the HM performance could be further affected. However,
this might also induce a better performance in relatively dry period compared to the
wet one, though the values of goodness-of-fit estimators during the calibration period
are a little worse than for the validation period, particularly in the dry period (shown
in Tables 1 and 2 for some HMs).

According to the observations, the correlation coefficient between annual precipitation and
streamflow at the Cuntan station is over 0.8, and the runoff coefficient is over 0.5 in the UYR,
meaning that the streamflow is strongly related to precipitation, and this is consistent with
many previous studies (e.g., Chen et al. 2014). The increase in temperature and substantial
changes in precipitation can alter regional water balances and hydrological regimes. As the
UYR is extremely rich in hydropower, more and more hydraulic structures (reservoirs, dams,
and dikes) are under construction or at the preplanning stage for the upper reaches of the
Yangtze River (Chu et al. 2019). Therefore, human activities could play an increasingly
important role for streamflow in the basin in the future, and should be considered in the
modeling.

A drawback that was ignored in this study is the assumption of constant land use/land
cover. However, since land-use and/or land-cover changes are strongly influenced by human
activities, the accurate simulation of future land use patterns is needed in future impact studies;
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otherwise, the magnitude and uncertainty of climate change impact results on water resources
could be affected.

By using the models evaluated using the comprehensive method, the spreads of model
projections were narrowed. Besides, under the guidance of the comprehensive evaluation
method (checking for climate contrasting periods, intermediate gauges, additional variables,
etc.), the models parameterized after this evaluation became more robust, and more represen-
tative for describing hydrological processes in the basin, compared to the models calibrated
with the simple method. Generally, the impact results based on the weighted HMs reflect the
model performance in the historical period, and the enhanced model calibration and validation
have been expected to improve the credibility of projections under climate change (Krysanova
et al. 2018; Zaherpour et al. 2018), and it was concluded in our study, but the degree of
improvement remains uncertain. This is the question that cannot be answered adequately
unless a better and more reliable approach is developed for determining the model weighting
strategies. Further efforts are necessary to explore the model weighting approaches and
strategies. Besides, as parameters obtained from HM calibration could be affected by several
factors such as correlations among parameters, sensitivity of parameters, these may lead to the
so-called equifinality (Beven, 1996). However, it makes sense to use more sets of suitable HM
parameters for the uncertainty analysis, and this will be implemented in our future work.
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org/10.1007/s10584-020-02929-6.
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