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Abstract
Hurricane Harvey is one of the costliest tropical cyclones in history. In this paper,
we use a probabilistic event attribution framework to estimate the costs associated
with Hurricane Harvey that are attributable to anthropogenic influence on the
climate system. Results indicate that the “fraction of attributable risk” for the
rainfall from Harvey was likely about at least a third with a preferable/best
estimate of three quarters. With an average estimate of damages from Harvey
assessed at about US$90bn, applying this fraction gives a best estimate of
US$67bn, with a likely lower bound of at least US$30bn, of these damages that
are attributable to the human influence on climate. This “bottom-up” event-based
estimate of climate change damages contrasts sharply with the more “top-down”
approach using integrated assessment models (IAMs) or global macroeconometric
estimates: one IAM estimates annual climate change damages in the USA to be
in the region of US$21.3bn. While the two approaches are not easily comparable,
it is noteworthy that our “bottom-up” results estimate that one single extreme
weather event contributes more to climate change damages in the USA than an
entire year by the “top-down” method. Given that the “top-down” approach, at
best, parameterizes but does not resolve the effects of extreme weather events,
our findings suggest that the “bottom-up” approach is a useful avenue to pursue
in future attempts to refine estimates of climate change damages.
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1 Introduction

The use of information from climate change attribution studies to quantify damages associated
with climate change was proposed about 15 years ago (Allen, 2003), and recent work has
suggested the approach can be valuable as one component within a wider systematic assess-
ment of climate change costs (Millar et al., 2018, Frame et al., 2018). This approach can also
provide a valuable measurement tool for quantification that can be used in discussions
regarding compensation and loss and damage. Here we present an application of this approach
to the costs associated with Hurricane Harvey, one of the most expensive cyclones in history.
We compare the damages implied by this “bottom-up” attribution-based approach with
damages implied by a commonly used integrated assessment model, DICE, in a more “top-
down” type of approach (Nordhaus, 1993, Nordhaus and Boyer, 1999).

Damages from an extreme weather event occur during and immediately after the
hazard event. These damages are usually measured in physical units (e.g., units of
housing, square meters of housing, kilometers of roads or electricity lines, number of
bridges, etc.) and describe the partial or total destruction of physical assets, the
disruption of basic utility services, and damages to sources of livelihood in the
affected area (e.g., crops). Disaster damage or direct economic loss is the monetary
value of destruction of physical assets located in the affected area. Examples of
physical assets that are the basis for calculating direct economic damage include
homes, schools, hospitals, commercial and governmental buildings, transport, energy,
telecommunications infrastructures, and other infrastructures; business assets and in-
dustrial plants; and production outputs such as crops, livestock, and manufacturing
inventories. In principle, direct economic damage, a “stock” measure, may also
encompass environmental assets and cultural heritage, inasmuch as they provide
economic services (e.g., via tourism), but these are very difficult to quantify and
hence rarely quantified. Most direct economic damages are tangible and relatively
easy to measure.

Direct economic damages can cause subsequent indirect economic loss which includes
microeconomic impacts (e.g., firms’ revenue declines owing to business interruption or loss of
household wage income), meso-economic impacts (e.g., revenue declines owing to impacts on
natural assets, interruptions to supply chains, or temporary unemployment), and macroeco-
nomic impacts (e.g., declines in GDP, increases in government debt, price and exchange rate
changes, movements in stock market prices). Indirect losses can occur within or outside of the
area directly exposed to the hazard and can often be experienced with a significant time lag. In
some cases, economic losses are still identifiable decades after the event has happened. As a
result, they may be intangible or very difficult to measure.

From 17 August to 5 September 2017, Hurricane Harvey made its way across the
Caribbean Sea and onto mainland North America. It subsequently made landfall in Texas as
a Category 4 hurricane, moved slightly offshore, weakened to a tropical storm, and stalled for
several days while dumping copious amounts of rain in the greater Houston area. Much of the
damages from Harvey were a result of widespread inland flooding, mostly of a pluvial nature
(Wing et al., 2019, Abbott and Al, 2018, Lindner and Fitzgerald, 2018). Hurricane Harvey
occurred in 2017, so any comprehensive quantification of its associated indirect economic
losses is still impossible: reliable economic data are only available with a significant time lag,
and the indirect economic losses might still be observable in economic data even 3–4 years
after the event (in some extreme cases, they might even be evident decades after(Noy and
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duPont, 2018)). Here we therefore focus on the direct economic damages, as these were
counted by four different organizations (a US Federal Government agency, an international
NGO, and two large European Reinsurance companies).

The estimate of the costs we provide is not a substitute, or a direct comparison, with cost
estimates derived either from macroeconomic analyses or from IAMs. Rather, our estimate
should be seen as a new strand of evidence which, when combined with similar estimates of
other economic losses (and gains) from climate change, could provide a useful line of evidence
which could then inform macroeconomic and IAM-centered approaches.

2 Results

To develop a bottom-up assessment of the costs of Hurricane Harvey (or potentially any other
event), we require assessment of the anthropogenic contribution to the event, as well as an
accompanying estimate of the costs of the event. Probabilistic event attribution provides the
climate science input, and economic analyses provide the costs of the weather event.

3 Probabilistic event attribution

Following a flood in 2003 at his Oxford home, Allen(Allen, 2003) proposed that the
influence of anthropogenic climate change on individual extreme weather events could be
quantified with the use of climate models. Such investigations into the causal factors of
extreme weather have become known as “extreme event attribution.” Subsequent develop-
ments have expanded this field to include analyses of numerous types of extreme weather
(Peterson et al., 2012, Peterson et al., 2013, Herring et al., 2015, Herring et al., 2016,
Herring et al., 2018). Attribution of the influence of anthropogenic climate change on
individual hurricanes began in earnest with Harvey (Emanuel, 2017, Risser and Wehner,
2017) (Oldenborgh et al., 2017, Trenberth et al., 2018, Wang et al., 2018). Event attribution
analyses often treat causality with two different but equivalent approaches. In a mechanistic
approach, termed the “Boulder school”(Easterling et al., 2016), attributable changes in
event magnitude at a fixed estimate of the actual event’s probability are estimated. However,
to calculate the “fraction of attributable risk” (FAR) (Eq. 1), the probabilistic or “Oxford
school” approach of estimating attributable changes in event probability at a fixed estimate
of the actual event’s magnitude is more appropriate. We do note, however, that these
different framing approaches are scientifically consistent with each other (Otto et al.,
2012) and that many sophisticated event attribution studies present results from both
methodologies.

In estimating the risk of events attributable to anthropogenic climate change, we follow the
IPCC Working Group I definition(Bindoff et al., 2013) of the fraction of attributable risk as
follows: “Fraction Attributable Risk, defined as

FAR ¼ 1−
Po

P1
ð1Þ

P0 being the estimated probability of an event occurring in the absence of human influence on
climate, and P1 the corresponding probability in a world in which human influence is included.
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FAR is thus the fraction of the risk that is attributable to human influence (or, potentially, any
other external driver of climate change) and does not require knowledge of absolute values of
P0 and P1, only their ratio.” The ratio of these probabilities, (P1/P0), is often termed the “risk
ratio” (RR) under the assumption that exposure may be considered the same in both the actual
and counterfactual worlds. FARs are dimensionless likelihood ratios: the new likelihood of an
event above an event threshold (magnitude or frequency) compared with the old likelihood of
encountering an event above that same threshold. Other researchers have also pointed to the
potential for RRs (and FARs) to inform calculations like the one argued for here: “[risk] ratio
can be interpreted as a lower bound to relative changes in the expected losses due to the
extremes provided that the consequences of extreme events of a fixed intensity do not decrease
with warming, consistent with expectations. This simple concept may therefore provide a
powerful tool for high-level cost-benefit analysis.”(Kharin et al., 2018).

Two analyses of Hurricane Harvey, coming from independent groups using very different
methodologies, present probabilistic attribution statements about the storm’s rainfall. A recent
study (Oldenborgh et al., 2017) analyzed extreme precipitation changes in the US Gulf Coast
region from three different ~ 25 km climate models. Using the IPCC calibrated language, they
stated that the probability of the observed amount of precipitation was increased by a factor of
3 by anthropogenic climate change with a very likely range of this factor of 1.5 to 5. A different
analysis (Risser and Wehner, 2017) used a non-stationary extreme value statistical model to
analyze observed 7-day precipitation totals from weather stations in two Texas regions, one
contained within the other. For the smaller region, with its larger precipitation amount (>
700 mm), their best estimate–derived from a maximum likelihood approach–is that changes in
atmospheric CO2 since 1950 increased the storm total precipitation by a factor of 9.6 with a
likely lower bound of 3.5. For the larger region (7-day precipitation > 480 mm), their best
estimate is that precipitation was increased by a factor of 5 with a likely lower bound of 1.4.
The lower bound on the RR in (Risser and Wehner, 2017) is insensitive to uncertainties in both
observed rainfall and in estimates of its probability, consistent with a previous analysis (Jeon
et al., 2016). These RRs, and their corresponding FAR values, are shown in Table 1.

These two attribution studies are completely independent as they both use different methods
and observational datasets. The climate model-based statement is a causal statement
interpreted in the manner of (Pearl, 2009) in which an intervention is made in the experiment
by removing the anthropogenic forcings in a counterfactual simulation. The statistical model-
based statement does not use climate models and is a different class of causal inference
interpreted in the manner of Grainger (Ebert-Uphoff and Deng, 2012). Both classes of causal
inference statements have caveats. Grainger statements may lack the influence of “hidden”

Table 1 Estimates of RRs and FAR from studies of Hurricane Harvey (Risser and Wehner, 2017, Oldenborgh
et al., 2017)

Lower estimate Best estimate Upper estimate

RR FAR RR FAR RR FAR

Oldenborgh et al., 2017 (climate model) 1.5 0.33 3 0.67 5 0.8
Risser and Wehner, 2017 (statistical model)
large region

1.4 0.29 5 0.8 –

Risser and Wehner, 2017(statistical model)
small region

3.5 0.71 9.6 0.9

Average of VO and RW (large region) 1.45 0.31 4 0.75
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covariates, while Pearl statements may reflect the errors of the climate models. As the RRs for
the large region compare well across studies despite the very different tools and approaches to
causal inference (Risser and Wehner, 2017, Oldenborgh et al., 2017), confidence in a sizeable
human influence on precipitation during Harvey is increased. Hence, we simply average these
two RRs of the large region (last row of Table 1) to estimate the lower bound and best estimate
of attributable costs of Harvey due to climate change. For the upper bound, we simply use the
sole available estimate which is from the climate model-based approach.

4 Estimated economic costs

The estimated economic damage costs that we use in our calculations originate from several
sources. The National Oceanic and Atmospheric Administration (NOAA) produces estimates
of the costs associated with US weather events. For Hurricane Harvey, their current estimate of
US$125 billion is from an updated list of hurricane costs in 2017 (Information, 2018).
Generally, this should be construed as a preliminary estimate and is conservative as the
methodology used typically underestimates losses by 10–15% (Smith and Katz, 2013).

The world’s two largest reinsurance companies globally, Munich Re and Swiss Re, produce
their own estimates of the total value of damages associated with natural disasters. These
databases–NatCat and Sigma, respectively–are then used internally for their business. They
also publish estimates for the most extreme events each year, always in January of the
following year. For Hurricane Harvey, both sources cite a figure of US$85 billion, out of
which they estimate that US$30 billion was insured. While these should be independent
estimates, they do not appear to be, so we treat them as a single estimate.

Last, an international NGO, the Centre for Research on the Epidemiology of Disasters
(CRED), produces its own publicly available database of disaster damages: EMDAT (www.
emdat.be). It collects data from “various sources, including UN agencies, non-governmental
organisations, insurance companies, research institutes and press agencies.” EMDAT includes
a somewhat higher figure for the damages from Harvey of US$95 billion. The most author-
itative source for disaster data might be the UN-supported DesInventar (www.desinventar.net)
that is now the official data collection mechanism to support the Sendai Framework for
Disaster Risk Reduction (an international agreement signed by almost all countries and
endorsed by the United Nations’ General Assembly in 2015). Unfortunately for our
purposes, the USA has not yet begun to report its data to DesInventar.

Given the discussion of the available data above, the average estimate for the direct
economic cost associated with damages to physical assets from Hurricane Harvey is US$90
billion (average of EMDAT and the Munich Re/Swiss Re estimates).

In principle, the analysis tying FARs to damages should relate the amount of damage
incurred in each asset class (horizontal infrastructure by type, commercial and industrial
properties, each type of residential buildings, etc.) to its damage function, and by using the
two points in the damage function (with and without anthropogenic climate change), calculate
how much of the measured damages, for each asset class, is attributable to anthropogenic
influence. Unfortunately, we do not have this information separated by asset class. Fortunately,
however, the damage function for the most asset classes (especially the most significant ones)
are about linear in flood depths of up to 2–3 m, and flood depths in Houston were generally
significantly lower than that (Huizinga et al., 2017). Nordhaus (Nordhaus, 2010), using a more
aggregated data, describes a very convex non-linear damage function in his investigation of
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1 Using the information about the deaths from Harvey, we use an estimated average age at death of 49. This was
calculated using the distribution of age at death and gender as described in Jonkman et al., 2018. Brief
communication: Loss of life due to Hurricane Harvey. Nat. Hazards Earth Syst. Sci., 18, 1073–1078.
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hurricane damage costs and wind speed; however, the asset damage for Hurricane Harvey, and
for many other tropical cyclones, is mostly associated with water, and not wind (Yonson et al.,
2018), justifying the use of a linear damage function. Based on the methods described above,
we assess the direct economic costs of Hurricane Harvey that are attributable to anthropogenic
influences on the climate to likely be in the range of US$30bn to US$72bn, with a best
estimate of US$67bn.

This estimate quantifies only the direct damage that can be easily monetized. It does not
include mortality, morbidity, and temporary and permanent dislocations that are typically
associated with hurricanes such as Harvey. In order to include these in the estimates, one
could potentially calculate the attributable mortality using a similar method and measure it
with the monetary value of life (VSL, the “value of a statistical life” (Viscusi and Aldy, 2003)).
VSL measures, however, are difficult for any cross-country comparisons, and UNISDR (2015)
(UNISDR, 2015) and Noy(Noy, 2016) suggest a different aggregate measure, of life-years lost,
that overcomes some of these difficulties. It aims to account not only for the total direct
damage estimates described in Table 2 but also for mortality and other affected population
impacts. All are aggregated into a single measure, but without using VSL.

This life-years index consists of the following: Lifeyearsi = Li(M, Adeath, Aexp) + Ii(N) +
DAMi(Y, INC). L(∙) is the number of life-years lost due to mortality, calculated as the difference
between the age at death (Adeath) and life expectancy (Aexp).1 Using the information about the
deaths from Harvey, we use an average age at death of 49 and life expectancy of 92 (following
the WHO conventional practice when calculating disability-adjusted life years). I(N) is the cost
function associated with the people who were injured or otherwise affected by the disaster (this
information is only available from EMDAT; see Table 2). Since we do not have information
about how each individual was affected, we assume that affected people were experiencing
what the World Health Organization calls “generic uncomplicated disease: anxiety about
diagnosis.” This generic diagnosis implies that the coefficient used to convert the number of
people affected (N) to life-years lost is 0.054 (i.e., I(N) = 0.054 N).

The last component of the life-years index, DAM(Y, INC), attempts to account for the
number of human life-years lost as a result of the damage to capital assets and
infrastructure—including residential and commercial buildings, public buildings, and other
types of infrastructure such as roads, water, sewage, electricity, and communication systems,
all measured in monetary units (Y). This measure (DAM) aims to measure the opportunity cost
of spending resources (especially human effort) on the reconstruction of these destroyed assets.
We use income per capita (INC) as an indicator of the cost of human effort in calculating this
loss and assume that a quarter of a life-year is spent on generating income. This implies that
DAM Y ; INCð Þ ¼ 0:25 Y

INC

� �
. Overall, we find that about 476,000 life-years were lost as a direct

damage of Hurricane Harvey with almost 80% of the loss associated with the monetized
damages to physical assets. For life-years, we therefore estimate that it is likely that at least
148,000 life-years, with a best estimate of 357,000 life-years, lost were directly attributable to
anthropogenic climate change.This figure incorporates impacts (mortality and disruption to
life) that are not accounted for by the direct damage figures (the US$90 billion that was
previously discussed). As such, it shows that, at least by this metric, the $90 billion dollar is
underestimating the impact of Harvey’s rainfall. A fuller accounting of direct damages that



includes also mortality and morbidity will increase this figure by 25% due to the mortality and
morbidity associated with the event and potentially more because of damage to non-monetized
assets (such as environment amenities).

5 Comparisons to top-down estimates of the costs of climate change

There are two main ways of obtaining top-down global estimates of the costs of climate
change. The first relies on integrated assessment models (IAMs) that incorporate a simplified
model of the macroeconomy together with a climate model and a hypothesized link between
the two (typically based only on the impact of temperature on economic production). The three
most notable IAMs are DICE, FUND, and PAGE. The other alternative is to rely on
macroeconometric estimates that are based on the past, typically annual, national level data
on production (GDP) and average temperature (e.g., (Burke et al., 2015)).

For example, the DICE model (Nordhaus and Boyer, 1999) estimates a climate change
damage function based on the equation D = φΔT2, where D is climate change-induced
damages to the global economy in percent and ΔT is the change in global mean surface
temperature (we assume ΔT2019 = 1.0 K). The coefficient φ was calculated based on the
previous estimates from other studies and equals 0.00267. (The 2016 update has an even
lower value for φ.) If the global GDP for 2017 equals US$79,845bn (from the World Bank’s
World Development Indicators), then the DICE equation, which calculates the cost as a percent
of global GDP, suggests that the annual global climate change damages ought to be of the
order of US$213bn. Furthermore, a recent study of the domestic social cost of carbon in the
USA estimated that roughly 10% of global damages occur within the USA (Office of Air
Quality Planning and Standards, 2017) (EPA document, p162), implying that the total US
damages from climate change should currently be around US$21.3bn. This DICE-based
estimate is less than our likely lower bound of US$30bn for the direct climate change-
attributable costs of rainfall from Harvey alone, and it is much lower than our main estimate
of US$67bn. The study (Office of Air Quality Planning and Standards, 2017) of the domestic
social cost of carbon also used two other IAMs, PAGE and FUND. The central estimates of
climate damages of both of these models are lower than that of DICE, so the comparison we
make between our bottom-up estimate of attributable direct costs compared with the estimated
damages apply just as much to these other models, too.

The estimates for current climate change impacts for the USA from a recent
macroeconometric study (Burke et al., 2015) are similarly low. While the paper does not
provide country-specific estimates, they describe a general non-linear effect of temperature on
the output. They find that the output peaks at about 13 °C and declines thereafter. Since the US
annual average temperature is still below that threshold, and was below it in 2017, their

Table 2 Estimates of the direct and insured damages, number of people affected by and number of deaths arising
from Hurricane Harvey

Datasets Direct damage
(In 2017 US$ billion)

Insured damage
(In 2017 US$ billion)

Number of people affected
(in thousands)

Mortality

NOAA 125 68
EMDAT 95 30 582 88
Munich Re 85 30 88
Swiss Re 85 30 88
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modeling estimates a current benign impact of climate change on the US economy. More
recent unpublished work, using regional rather than national-level data, suggests current
adverse impacts for the USA, but as yet quite small (Kalkuhl and Wenz, 2018). It is
noteworthy, however, to point out that their macroeconometric estimates ultimately predict
future losses, for the year 2100, that are much larger than the future losses predicted by the
leading IAMs.

In any case, our “bottom-up” estimate of the anthropogenic component of this very
damaging single event, the precipitation associated with Hurricane Harvey, is far in excess
of the “top-down” macro estimate arrived at through the application of a simple damage
function in integrated assessment models (IAMs) such as DICE or those obtained from
macroeconometric estimates of historical data. That a single event can do direct damages in
excess of three times the modeled value of all annual loss in the USA as predicted by DICE is
striking. There may be several elements driving this result.

The best estimate of FAR (0.75) implies that an event similar to the rainfall associated with
Harvey has become far more likely than an event of the same magnitude would have been in
the preindustrial world. This kind of event is still very rare, so it may be possible that the
average annual losses for the USA are closer to the DICE-based estimate than to the figure
obtained in this study for one rare event. However, Hurricane Harvey was the only one event
in 2017. The inclusion of the two other destructive hurricanes that made landfall (Irma and
Maria; together, they caused more damage and took far more lives than Harvey) and the
numerous other weather events that impacted the USA that year raise the NOAA estimate of
US weather-related losses to over $300Bn, a new record. EMDAT lists 24 weather-related
disasters in 2017 in the USA, and each of them may be associated with a FAR> 0, but it is
important to note that climate change could have also made some catastrophic events less
likely (FAR< 0). Ultimately, to obtain a full bottom-up estimate of the impact of climate
change, one that could be directly comparable with the top-down estimates from the IAMs or
the macroeconometric estimates, one would have to obtain economic damage assessments of
all types of possible extreme weather events.

Damages functions are of course very difficult to estimate–they have been called “a
notoriously weak link in the economics of climate change” (Weitzman, 2012) on the basis
of deep structural uncertainty in their underlying functional form. It is quite likely that the
simple approach used to characterize damages in IAMs ignores important dimensions of
climate change. For instance, the functional form of climate damages is usually taken to be
some function of the temperature anomalies, as is the case in the DICE example above, while
losses from Harvey had very little to do with the direct effect of temperature anomalies and
more to do with increased available moisture and storm structural changes leading to super
Clausius-Clapeyron scaling of extreme precipitation (Patricola and Wehner, 2018). In other
words, some aspects of climate change that are highly relevant to economic losses from
climate change may be changing faster, and with a different pattern, than IAM-based damage
functions suggest or can account for.

In summary, this study reveals that a bottom-up approach to a single event based on the
FAR method and a top-down model-based approach such as DICE, PAGE, or FUND do not
produce consistent estimates of the cost of climate change. There are important senses in which
the two are not directly comparable: the IAM and macro-based approaches are aggregative,
and in this study, we have focused on a single event. The FAR-based estimate is not a
substitute or alternative for the total cost estimates. Nevertheless, the scale of the FAR-based
estimate is striking and indicates that considerably more research is needed to reconcile top-

278 Climatic Change (2020) 160:271–281



down and bottom-up estimates of the costs of climate change. This need to quantify the costs
has a particular urgency in light of recent decisions taken at the UN Climate Negotiations in
Katowice, which opened a path for Parties to “provide, as appropriate, information related to
enhancing understanding, action and support, on a cooperative and facilitative basis, to avert,
minimize and address loss and damage associated with climate change impacts, taking into
account projected changes in climate-related risks, vulnerabilities, adaptive capacities and
exposure, including, as appropriate, on: (a) Observed and potential climate change impacts,
including those related to extreme weather events and slow onset events, drawing upon the
best available science.”(UNFCCC, 2018). We have shown that there is a gap between the tools
we use to inform climate policy and the actual damages being done by climate change.
Research to understand the nature of this gap, and then to close it, is urgently needed.
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