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Abstract
This study explores the potential response of the seasonal cycle of extreme rainfall indices
over Central Africa (CA) to the global warming for both the middle (2029–2058) and late
twenty-first century (2069–2098), based on analysis of multi-model ensembles mean of fif-
teen regional climate models (RCMs) simulations. Although few dry/wet biases are still
evident, for the present day climate, the RCMs ensemble mostly outperforms the driving
global climate models, with a better representation of the seasonal cycle of various rainfall
indices over two key sub-regions of CA chosen according to their particular rainfall patterns.
Both middle and late twenty-first century project a non-significant decrease in total wet-day
rainfall amount over the two analysed sub-regions, with peaks found during pre-monsoon
months. We also found a significant decrease in wet-day frequency which was consistent
with decreases in total wet-day rainfall amount, while wet-day intensity is projected to sig-
nificantly increase. These results suggest that the decrease in total wet-day rainfall amount
could be associated with less frequent events and not with their intensity. The results also
have shown that dry (wet) spells are projected to significantly increase (decrease) over both
sub-regions with shorter (longer) dry (wet) spells projected during pre-monsoon months.
Consequently, countries within these two sub-regions could experience a more extended
dry season, and therefore would be exposed to high drought risk in the future under global
warming. However, changes in maximum 1-day rainfall amount, maximum 5-day rainfall
amount, and 95th percentile are projected to significantly increase during monsoon months,
with the maximum 1-day rainfall amount recording largest increases. Additionally, the total
amount of rainfall events above the 95th percentile projects a significant increase of about
10–45 % during monsoon months, while the total number of occurrence of rainfall events
above the 95th percentile projects a slight significant decrease of 4–8% during pre-monsoon
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months but more pronounced for the late twenty-first century. This implies that in the future,
extremes rainfall events could be more intense both in terms of rainfall amount and intensity
during monsoon months. Such changes are likely to amplify the probability of flood risks
during monsoon months over CA, particularly the two sub-regions. This study could there-
fore be an important input for disaster preparedness, adaptation planning, and mitigation
strategies for Central African countries.

1 Introduction

Climate variations and change are induced by internal and external factors, which include
natural external forcings (e.g., solar radiation and volcanism) and anthropogenic forcings
(e.g., greenhouse gas (GHG) emission, aerosol and land use, and land cover changes).
Change in extreme weather conditions is generally the result of external forcings that affect
various aspects of the climate system (Seneviratne et al. 2012). The rapid increase of GHG
concentration, which is considered as main driver of change in extreme events, is a real
threat for Central African countries. Populations of this region of Africa are particularly
vulnerable to extreme events not only because of their low adaptive capacity, but also of the
fact that their economy is mainly based on agriculture, breeding, and hydroelectric power
generation (Sonwa et al. 2012). However, extreme weather events, such as floods and severe
drought, can directly or indirectly impact many socio-economical sectors, such as rain-feed
agriculture, infrastructures, water resources availability, hydroelectric power generation,
populations displacement, social riots, and loss of human lives (Saha 2015; Tanessong et al.
2017; Almer et al. 2017). To tackle these potential obstacles to the socio-economic devel-
opment of countries of this region, it becomes urgent to conduct investigations leading to
better understand the causes of the observed changes, which will help policy and decision-
makers to develop mitigation and adaptation strategies in accordance with the twenty-first
Conference Of Parties (COP21) held in Paris (Jacquet and Jamieson 2016).

It is well known that rainfall is one of the most important climatic variables. Its increasing
use to study the patterns as well as projections of climate extremes in Africa has demon-
strated this importance (e.g., Haensler et al. 2013; Diallo et al. 2014; Dosio et al. 2015; Sylla
et al. 2015; Pinto et al. 2016; Klutse et al. 2016; Vondou and Haensler 2017; Fotso-Nguemo
et al. 2018; Pokam et al. 2018; Sonkoué et al. 2018; Tamoffo et al. 2019, among others).
In this context, based on an multi-model ensemble mean of a combined set of regional cli-
mate models (RCMs) and global climate models (GCMs), both completed respectively in
the framework of the COordinated Regional climate Downscaling EXperiment (CORDEX;
http://www.cordex.org; Giorgi et al. 2009) and the phase 5 of the Coupled Model Intercom-
parison Project (CMIP5; https://cmip.llnl.gov/cmip5/; Taylor et al. 2012), Haensler et al.
(2013) investigated changes in the intensity of heavy rainfall events over Central Africa
(CA). Their results show that intensity of heavy rainfall events will significantly increase for
both high and low GHG emission scenarios. The results of other authors are consistent with
that of Haensler et al. (2013), also showing increasing trend in heavy rainfall events across
CA (Fotso-Nguemo et al. 2018; Pokam et al. 2018; Sonkoué et al. 2018). Such change was
linked to the increase of moisture convergence for which the Congo Basin rainforest plays
an important role (Dyer et al. 2017). On the other hand, the investigations carried out over
other regions of Africa also suggest a general increase in extreme rainfall event, mostly
driven by an intensification of the hydrological cycle (Sylla et al. 2015; Diallo et al. 2016;
Pinto et al. 2016). Through these works, its appears that rainfall change induced by enhanced

http://www.cordex.org
https://cmip.llnl.gov/cmip5/


Climatic Change (2019) 155:339–357 341

anthropogenic GHG concentrations is expected to become more frequent and more intense
over some parts of Africa at the end of the twenty-first century. In addition, according to
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), the
frequency of heavy rainfall events and severe droughts will increase worldwide, particularly
over tropical and sub-tropical regions (IPCC 2013).

It is now established that anthropogenic climate change will have as consequence a
change in rainfall patterns over Africa, which could results in more extensive dry seasons
and shorter rainy seasons (Diallo et al. 2012; Mariotti et al. 2014; Sylla et al. 2015; Fotso-
Nguemo et al. 2017). However, in comparison with other regions of Africa, CA has not
received so much attention for understanding of either climate drivers (Vondou et al. 2010;
Pokam et al. 2014; Kamsu-Tamo et al. 2014; Cook and Vizy 2015; Hua et al. 2016; Zebaze
et al. 2017; Dyer et al. 2017; Dommo et al. 2018) or extreme weather events (Haensler et al.
2013; Vondou and Haensler 2017; Fotso-Nguemo et al. 2018; Pokam et al. 2018; Sonkoué
et al. 2018; Tamoffo et al. 2019). Despite the fact that assessment of changes in extreme
weather events has been performed from multi-model ensemble mean of several models,
the analyses of these authors were more focused on the spatial distribution of these events.
In addition, to our knowledge, no studies have yet been conducted to investigate how these
events and their intensities will change throughout the seasonal cycle of the Central African
monsoon (CAM). However, such changes could probably affect the occurrence of extreme
rainfall events at seasonal time scale. Additionally, the timing of these changes and the way
in which the length of the seasons is changed can worsen the resulting impacts. It would
therefore be interesting to evaluate the seasonal cycle pattern of changes in the extreme
rainfall indices, related to changes in the CAM.

This study utilizes a multi-model ensemble mean of RCM simulations which consists
of a total of fifteen (15) RCM members, to firstly explore the response to increasing GHG
concentrations on the projected seasonal cycle of ten extreme rainfall indices for the middle
and late twenty-first century over CA. Understanding and estimating the changes in the
seasonal cycle of these extreme rainfall events could be an important input for the disaster
preparedness, adaptation planning, and mitigation strategies for the region’s countries. In
the next section, we give a brief description of dataset as well as the methodology used in
this study. In Section 3, results for current climate and also for climate change projections
obtained through the analysis of extreme rainfall indices applied to daily rainfall time series
are presented. Summary of the findings and main conclusions are presented in Section 4.

2 Datasets andmethodology

In this work, six RCMs from CORDEX-Africa experiments are used to dynamically down-
scale seven GCMs from CMIP5. The summary of the fifteen considered RCM members,
resulting from the dynamical downscaling of different GCMs, is displayed in Table 1. All
downscaling experiments were performed at 50 km horizontal grid spacing resolution (∼
0.44◦), over the same numerical domain covering the African continent, over a period of 150
years distributed as follows: historical simulations, forced by a combination of natural and
anthropogenic atmospheric conditions, cover the period from 1950 to 2005; while the future
simulations, which are forced by the high GHG-forcing namely representative concentra-
tion pathways scenario (RCP8.5; Moss et al. 2010), cover the period from 2006 to 2100.
A detailed description of the CORDEX and CMIP5 experimental set-ups can be found in
Nikulin et al. (2012) and Taylor et al. (2012) respectively. Note, for each RCMs and GCMs
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Table 1 List of RCMs and driving GCMs

Institute RCMs Driving GCMs Spatial resolution Source

CLM-Com CCLM CNRM-CM5 0.44◦ × 0.44◦ Germany

EC-EARTH

MPI-ESM-LR

HadGM2-ES

DMI HIRHAM EC-EARTH 0.44◦ × 0.44◦ Denmark

CNRM ALADIN CNRM-CM5 0.44◦ × 0.44◦ France

KNMI RACMO EC-EARTH 0.44◦ × 0.44◦ Finland

HadGM2-ES

SMHI RCA4 EC-EARTH 0.44◦ × 0.44◦ Sweden

MIROC5

MPI-ESM-LR

NorESM1-M

GERICS REMO EC-EARTH 0.44◦ × 0.44◦ Germany

IPSL-CM5A-LR

MPI-ESM-LR

For a full description of the models’ setup see, Nikulin et al. (2012) and Taylor et al. (2012) for RCMs and
GCMs, respectively

output members, three 30-year time slice periods of daily rainfall were chosen over the
Central African domain shown in Fig. 1 as follows: one historical (1976-2005) representing
the recent past and, two futures (2029–2058) and (2069–2098) referring respectively to the
middle and the late twenty-first century.

We considered ten climate indices defined by the Expert Team on Climate Change
Detection and Indices (ETCCDI; Zhang et al. 2011), in order to measure daily rainfall char-
acteristic and extreme events (see, Table 2 for details). These indices, which are increasingly
used by researchers around the world, have shown their effectiveness in detecting, attribut-
ing, and predicting changes in extreme weather conditions over several regions of Africa
(e.g., Sylla et al. 2015; Pinto et al. 2016; Diallo et al. 2016; Pokam et al. 2018; Sonkoué
et al. 2018). To obtain the time series of the data used to represent the seasonal cycle of these
indices, we proceeded as follows: firstly, each index is computed on every land grid point
for each month of the daily time series and then the long-term average for each month of
the year is calculated over the simulated 30 years. The multi-model ensemble mean for each
month including the contribution of each experiment is then constructed for the historical
and the projections.

To evaluate the performance of both GCMs and RCMs ensemble mean models in simu-
lating daily rainfall indices over CA during the historical period, we compare their results
with those of the ensemble mean of seven gridded observation products (Obs thereafter)
over a common time period across models and Obs (1998–2005). Note that, indices were
calculated using each Obs dataset, and the ensemble average of those results were used.
These Obs, which are archived and freely accessible, were built spatially and temporally by
interpolating ground-based and satellite data records. It should be mentioned that, despite
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Fig. 1 Central Africa topography and selected sub-regions for analysis

the fact that these Obs may have some uncertainties due to either ground-based measure-
ment or satellite measurement bias, they have recently shown a remarkable performance
over Africa where daily rain gauge datasets are rare and very scarce if they exist (Nikulin
et al. 2012; Sylla et al. 2013). More information on the characteristics of the different
Obs used are summarized in Table 3. For consistency purpose between RCMs, GCMs, and
Obs during the historical period, the datasets are interpolated onto the RCMs’ grid spacing
(0.44◦) as follow: all data with finer resolution than 0.44◦ are remapped using a distance-
weighted interpolation method, while all other data, with coarser resolution than 0.44◦, are
interpolated through the bilinear interpolation method.

The agreement between simulated and observed daily rainfall indices during the histor-
ical period is further evaluated using the Taylor diagram (Taylor 2001), which quantifies
the similarity between simulations and Obs in terms of correlation (PCC; pattern corre-
lations coefficient), centred root mean square error (RMSE), and amplitude of variability
(SD; standard deviation). In order to measure the model agreement and thus the reduction
of uncertainty in the projected changes, the climate change signal of the RCM ensemble
mean is considered as significant if more than 80 % of RCMs used (i.e., more than 12 out
of 15 members) agree on its sign.

All analysis on the seasonal cycles of daily rainfall indices will be done over two key
sub-regions (zone 1 and zone 2) identified in Fig. 1. These sub-regions are characterized
by a different behavior of the rainy season (see Fotso-Nguemo et al. 2016 for more details
on the main characteristics of the climate regime of the two sub-regions used). Note, the
analysis on the spatial distributions of daily rainfall indices will be made for all seasons of
the Central African domain, i.e., December–January–February (DJF), March–April–May
(MAM), June–July–August (JJA), and September–October–November (SON).
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Table 3 Description of daily observation datasets

Product name Definition Spatial resolution Reference

ARC African Rainfall 0.1◦ × 0.1◦ Novella and Thiaw (2013)

Climatology, version 2 1983 – present

CHIRPS Climate Hazards group 0.25◦ × 0.25◦ Funk et al. (2014)

InfraRed Precipitation 1981 – present

with Stations, version 2.0

CMORPH Climate Prediction Center 0.25◦ × 0.25◦ Joyce et al. (2004)

morphing method 1998 – present

GPCP Global Precipitation 1.0◦ × 1.0◦ Huffman et al. (2009)

Climatology Project, 1996 – present

version 2.1

MSWEP Multi-Source 0.25◦ × 0.25◦ Beck et al. (2017)

Weighted-Ensemble 1979 – present

Precipitation, version 1.1

PERSIANN Precipitation Estimation from 0.25◦ × 0.25◦ Ashouri et al. (2015)

Remotely Sensed Information 1983 – present

using Artificial

Neural Networks, vresion 1

TRMM Tropical Rainfall 0.25◦ × 0.25◦ Huffman et al. (2007)

Measuring Mission, 1998 – 2015

3B42

3 Results and discussion

3.1 Evaluation of extreme rainfall indices

3.1.1 Duration and intensity-based indices

Figure 2 presents the mean seasonal cycle of total wet-day rainfall amount (PRCPTOT; first
row), wet-day frequency (RR1; second row), wet-day intensity (SDII; third row), dry spell
(CDD; fourth row), and wet spell (CWD; fifth row), fromObs ensemble mean (black), GCM
ensemble mean (red), and RCMs ensemble mean (blue), averaged over zone 1 (first column)
and zone 2 (second column), during the historical period (1998–2005). Over zone 1, the sea-
sonal cycle of PRCPTOT from Obs shows a single-peaked rainy season. This rainy season
starts in March–April, peaks in August at the northernmost extent of the Inter-Tropical Con-
vergence Zone (ITCZ), and retreats in October–November. Conversely to zone 1, over zone
2, the seasonal cycle of PRCPTOT shows a double-peaked rainy season associated with the
latitudinal migration of the ITCZ. The first maximum occurs in April when the ITCZ moves
northward, while the second takes place in November when the ITCZ retreats to the south.
Comparing Obs with RCMs and GCMs, it is evident that the main features of the seasonal
timing of PRCPTOT are reasonably captured, though some discrepancies between models
and Obs can be noticed. For instance, GCMs produce larger PRCPTOT over zone 2, which
is more accentuated during the rainy seasons (bias of up to 50 mm). It is worth mention-
ing that similar feature is also noted during March-June over zone 1, where both RCMs and
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Fig. 2 Mean (1998-2005) seasonal cycles for total wet-day rainfall amount (PRCPTOT; a, b), wet-day fre-
quency (RR1; c, d), wet-day intensity (SDII; e, f), dry spell (CDD; g, h) and wet spell (CWD; i, j), over zone
1 (first column) and zone 2 (second column), from Observations ensemble mean (black), GCM ensemble
mean, and RCM ensemble mean (blue). Green shading corresponds to the full range of observations datasets

GCMs overestimate PRCPTOT. This is also reflected by the fact that RCMs have a better
variability than GCMs compared with Obs, despite their smaller PCC which still remains
>0.6 (see supplementary material; Fig. S1; sky blue).

The seasonal cycle of RR1 and SDII clearly shows that Obs and models provide a
substantially different description of daily rainfall. Furthermore, the double-peak struc-
ture found in PRCPTOT over zone 2 is evident for RR1 and SDII. Contrary to the results
found over the West African Guinean region (Sylla et al. 2015; Diallo et al. 2016), our
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results reveal that in addition to wet-day frequency, wet-day intensity also contributes to the
bimodal structure of the seasonal cycle of rainfall in zone 2. The RR1 curves clearly show
that RCM simulations improve that of GCMs in both sub-regions, by producing number of
wet-day occurrences closer to that of Obs despite some discrepancies (also see supplemen-
tary material; Fig. S1; yellow). Particularly for the SDII, the range of Obs uncertainties is
narrowed in the two sub-regions, indicating that the intensities of the different products used
vary very little at the spatial and temporal scales. RCM curves show a good agreement on
the rainfall characteristic over zone 1. In contrast to zone 2, here, the RCMs simulations are
more in line with Obs than the GCMs. This is confirmed by the RCMs’ scores with PCC of
about 0.75 in zone 1, while in zone 2, a PCC of about 0.2 is recorded. Nevertheless, in both
cases, GCMs and RCMs have a variability, which is very comparable with that of Obs with
SD between 1 ± 0.25 (see supplementary material; Fig. S1; pink). GCMs produce much
more RR1, but less SDII than Obs in both sub-regions. This behavior could be as a result of
the different dynamics used in the GCMs’ parametrization. The neutralization of the contri-
butions of these two indices in the total rainfall could explain the relative good performance
of the GCMs in the seasonal cycle of the PRCPTOT over zone 1.

The seasonal cycle of CDD from Obs shows that longer dry spells occur during dry
seasons (about 30 days), and shorter dry spells occur during rainy seasons (about 4 days).
A better agreement between models and Obs for the seasonal cycle of CDD is particularly
found in zone 1. Overall, RCM ensemble mean produces realistic simulations which are
almost similar to Obs. Although a few shortcomings are still evident, in both cases, we
always found that PCC >0.8 and RMSE <1 (see supplementary material; Fig. S1; orange).

The seasonal cycle of CWD is consistent with that of RR1 shown in Fig. 2c–d. CWD
from Obs mostly range between 0 and 6 days over zone 1, whereas in zone 2, CWD does not
exceed 10 days. GCMs consistently overestimate the observed CWD over both sub-regions,
with curves very distant from the range of Obs uncertainties. Here, the RMSE of GCMs is
always >1.5 over both sub-regions (see supplementary material; Fig. S1; dots 1, purple).
As stressed by Stephens et al. (2010), such uncertainty in GCMs could mainly be caused by
radiative feedbacks from low-level clouds, which underestimate rainfall produced by these
clouds, due to albedo simulation failures. However, although the length of CWD simulated
by RCMs is also higher, its curve is much closer to that of Obs with PCC > 0.85 and RMSE
< 1 in zone 1 (see supplementary material; Fig. S1; dot 2, purple). This result thus highlights
the improvements brought about the dynamical downscaling of GCMs. Other authors have
also shown that RCMs were able to better reproduce some daily rainfall indices such as dry
and wet spells over CA (Dosio et al. 2015; Fotso-Nguemo et al. 2017; Vondou and Haensler
2017; Tamoffo et al. 2019).

3.1.2 Intense rainfall indices

Figure 3 presents the mean seasonal cycle of maximum 1-day rainfall amount (RX1DAY;
first row), maximum consecutive 5-day rainfall amount (RX5DAY; second row), 95th per-
centile (R95; third row), number of wet-day rainfall above the 95th percentile (R95P; fourth
row), and total wet-day rainfall amount above the 95th percentile (R95PTOT; fifth row),
from Obs ensemble mean (black), GCM ensemble mean (red), and RCM ensemble mean
(blue), averaged over zone 1 (first column) and zone 2 (second column), during the histori-
cal period (1998–2005). The seasonal cycle of RX1DAY exhibited by Obs is almost similar
to that of RX5DAY and R95 (i.e., uni-modal and bimodal structures in zone 1 and zone 2
respectively). These indices provide an indication on the total rainfall amount which con-
tributes to extreme weather events both in term of total amount (RX1DAY and RX5DAY)
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Fig. 3 Same as in Fig. 2, but for maximum 1-day rainfall amount (RX1DAY; a, b), for maximum consecutive
5-day rainfall amount (RX5DAY; c, d), 95th percentile (R95; e, f), number of wet-day rainfall above the 95th
percentile (R95P; g, h), and total wet-day rainfall amount above the 95th percentile (R95PTOT; i, j)

and intensity (R95). Generally, both RCMs and GCMs overestimate these three indices over
zone 1, while an underestimation is reported over zone 2. This suggests that the simulations
fail to reproduce accurately the climatology (annual cycle) of both higher amount and inten-
sity of rainfall events over CA. The possible cause of the overestimation of heavy rainfall
amount and intensity over zone 1 could be either the horizontal resolution or the convec-
tive parametrizations, which in turn results to a poor simulation of the relationship between
deep convection occurrences and heavy rainfall (Crétat et al. 2015).

Over both sub-regions, the seasonal cycle of R95P indicates that there are generally good
agreements between Obs and RCMs, with lower number of occurrence (about 20 %) found



Climatic Change (2019) 155:339–357 349

during rainy seasons. This implied that during the rainy season most of the rainfall is not
associated with the occurrence of very wet-day events. RCMs appear to generally improve
GCMs that largely overestimate the frequency of heavy rainfall events compared with the
Obs, especially during pre- and post-monsoon months. This improvement is mainly due to
the variability of the RCMs which is clearly better than that of the GCMs over the two sub-
regions (see supplementary material; Fig. S1; red). Such improvement could result from
cancellation of errors among the different RCMs members.

The seasonal cycle of R95PTOT is generally similar to that of R95P showing minimum
values which coincides with the rainy seasons’ peaks over the studied sub-regions. Dur-
ing rainy seasons, a contribution of about 30 % to the total rainfall amount is reported in
Obs, indicating that extreme rainfall events greater than the 95th percentile are not the most
important contributor to the total rainfall amount. RCMs are generally able to successfully
capture the seasonal cycle of R95PTOT, especially in zone 2 where the RCMs show a PCC
exceeding 0.75, along with a variability almost equal to that of Obs (see supplementary
material; Fig. S1; blue). Overall, despite the magnitude of R95PTOT is slightly overesti-
mated compared with Obs during June–October over zone 1, RCMs clearly improve the
GCM results.

Overall, this analysis shows that RCM ensemble mean captures quite well the observed
seasonal cycle of extreme rainfall events over CA with few discrepancies. This good per-
formance of the RCM ensemble mean is particularly observed over zone 2 where it is able
to reduce or cancel the strong GCM ensemble mean’s bias throughout the seasonal cycle of
rainfall events.

3.2 Climate change of extreme rainfall indices

3.2.1 Change in duration and intensity-based indices

Figure 4 displays the multi-model ensemble mean change (in %) for PRCPTOT (first row),
RR1 (second row), SDII (third row), CWD , and CDD (fifth row), during the middle (p1
= 2029–2058, blue) and late twenty-first century (p2 = 2069–2098, red), relative to the
baseline historical time period (1976–2005). The RCM ensemble means change in the sea-
sonal cycle of PRCPTOT for the two sub-regions showing a decrease (up to 15 % at June
over zone 1) which is generally not significant. A slight increase in PRCPTOT is observed
just after the rainy season (September–October), particularly over north-eastern Democratic
Republic of Congo (see supplementary material; Fig. S2b, first row). Changes in PRCPTOT
are suggestive of a general reduction of rainfall throughout the year and especially during
pre-monsoon months, but are more marked at the late twenty-first century.

Changes in seasonal cycle of RR1 from RCMs also show a significant decrease through-
out the year followed by a slight increase during October–December over zone 1. Note that
their curves are consistent with that of PRCPTOT (i.e., projected a decrease throughout the
year), with peaks during pre-monsoon months. Highest decrease (>20 %) is found over
zone 1, with largest and more significant areas during late twenty-first century (see supple-
mentary material; Fig. S2a–b; second row). On the other hand, RCMs’ changes in seasonal
cycle of SDII show a significant increase of about 20 % over zone 1 and 14 % over zone 2,
which remains almost unchanged during the year. Recently, similar results showing increas-
ing wet-day intensity have been reported over CA (Sonkoué et al. 2018). For SDII curves,
timing of the maximum values seems to coincide with that of monsoon seasons over the
two sub-regions shown in Fig. 2a–b. Therefore, the decrease found in total wet-day rainfall
amount is associated only with change of wet-day frequency and not with the combination
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Fig. 4 Projected change (in %) in the seasonal cycle for total wet-day rainfall amount (PRCPTOT; a, b), wet-
day frequency (RR1; c, d), wet-day intensity (SDII; e, f), dry spell (CDD; g, h) and wet spell (CWD; i-, j),
over zone 1 (first column) and zone 2 (second column), from RCMs ensemble mean during the middle (p1 =
2029–2058, blue) and late twenty-first century (p2 = 2069–2098, red), relative to the baseline historical time
period (1976–2005). Dots on lines indicate months where the change is significant (i.e., where at least 80 %
of simulations agree on the sign of the change)

of both wet-day frequency and intensity as documented in Sylla et al. (2015) over the West
African region.

Concerning changes in CDD, its seasonal cycle shows a significant increase during pre-
monsoon months over both sub-regions, followed by a decrease at the end of year. Over
zone 1, the decrease in CDD recorded between September and December seems to be influ-
enced by the increase in RR1 during the same period. Note that area extended where CDD
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increases coincides with those where RR1 decreases (see supplementary material; Fig. S2a–
b; second and fourth rows). Contrariwise, changes in the seasonal cycle of CWD show a
significant decrease over both sub-regions throughout the year with decreasing peaks which
almost coincide with those of PRCPTOT and RR1. In general, CDD (CWD) is projected
to increase (decrease) over the entire CA with shorter (longer) dry (wet) spells projected
during pre-monsoon months. However, the area of increase (decrease) of CDD (CWD) is
more pronounced during late twenty-first century (see supplementary material; Fig. S2a–b,
fourth and fifth rows). Increases in dry spells coupled with decrease in wet spells and wet-
day frequency could have strong consequences for seasonal rainfall onset, along with total
yearly rainfall amount over CA. This implied that countries within these two sub-regions
of CA could experience a more extended dry season; therefore, would be exposed to high
drought risk in the future. Such changes induced by the global warming could likely threaten
water resources availability, which can impact the rain-fed agriculture, hydroelectric power
generation, and water resources management.

3.2.2 Change in intense rainfall indices

Figure 5 presents the multi-model ensemble mean change (in %) for RX1DAY (first row),
RX5DAY (second row), R95 (third row), R95P (fourth row), and R95PTOT (fifth row),
during the middle (p1 = 2029–2058, blue) and late twenty-first century (p2 = 2069–2098,
red), relative to the baseline historical time period (1976–2005). The projected changes in
the seasonal cycle of RX1DAY exhibited by RCMs are almost similar to those of RX5DAY
and R95. The temporal pattern of these three indices shows a significant increase of about
10–45 % throughout the year, with higher values in the case of RX1DAY. The timing of their
maximum values coincides with rainy season’s peak over these two sub-regions, except for
the second rainy season (September–November) in zone 2 where a delay (lag) of 1 month
is reported. Pattern of increase areas is more significant and more extended during the late
twenty-first century for RX1DAY than for RX5DAY and R95 (see supplementary material;
Fig. S3a–b, first to third rows). This result is consistent with the increase in RX5DAY found
by Pokam et al. (2018) over CA with an ensemble mean of twenty-five (25) RCMs.

The projected seasonal cycle of R95P exhibited by RCMs shows a significant negative
change of about 4–8 %, which follows the change of PRCPTOT and RR1 over both sub-
regions. Peaks of this change appear only during pre-monsoon months (i.e., April for zone
1; February and July for zone 2). In addition, these peaks occur 1–2 months before those of
PRCPTOT and RR1 shown in Fig. 4a–d over the two sub-regions. This result suggests that
during the pre-monsoon period, the decrease in occurrence of heavy rainfall could be a pre-
cursor to the decrease of wet-day frequency and thus of total wet-day rainfall amount. This
behavior can worsen water stress over north-eastern Nigeria, northern Cameroon, south-
ern Chad, and northern Zambia (see supplementary material; Fig. S3a–b, fourth row); since
the occurrence of its minimum during the historical period has a contribution of about 40
% to the frequency of heavy rainfall events. Nevertheless, although it is not significant,
the increase in R95P observed during post-monsoon months could explain the increase in
PRCPTOT and RR1 found over zone 1.

Changes in seasonal cycle of R95PTOT as simulated by RCMs show a significant
increase (up to 35 %) from July to December over both sub-regions for both periods, but are
more accentuated during the late twenty-first century. The timing of increase R95PTOT’s
peaks corresponds with that of rainy season’s peak over the two sub-regions. Generally, the
spatial and temporal increase patterns of R95PTOT follow the change in SDII, RX1DAY,
RX5DAY, and R95, indicating that these later share common features. This means that
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Fig. 5 Same as in Fig. 5, but for maximum 1-day rainfall amount (RX1DAY; a, b), maximum consecutive
5-day rainfall amount (RX5DAY; c, d), 95th percentile (R95; e, f), number of wet-day rainfall above the 95th
percentile (R95P; g, h), and total wet-day rainfall amount above the 95th percentile (R95PTOT; i, j)

extreme rainfall events could be more intense both in terms of rainfall amount (RX1DAY,
RX5DAY, and R95PTOT) and intensity (SDII and R95), which is likely to enhance the prob-
ability of flood risks during monsoon months. This result is particularly important as these
recent years, countries crossed by CA have experienced an increase in flood phenomena
during rainy seasons. For example, the most recent events are 3rd of March 2016 in Kin-
shasa (Democratic Republic of Congo), 18th of February 2017 in Libreville (Gabon), 3rd
of July 2017 in Douala (Cameroon), and 24th of August 2017 in Bangui (Central African
Republic), causing huge financial losses and many victims. The increase of intense rainfall
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events found here is in line with other previous studies carried out over Africa, based on
GCMs and/or RCMs (e.g., Haensler et al. 2013; Sylla et al. 2015; Diallo et al. 2016; Fotso-
Nguemo et al. 2018; Pokam et al. 2018; Sonkoué et al. 2018). In their studies, they have
shown that the spatial distribution of intense rainfall events could significantly increase over
their respective study areas, especially during the monsoon periods.

The dynamical mechanisms linked to the reported changes generally vary according to
regions, time scales, and the type of model used for the analysis. However, some important
factors such as (i) large-scale natural variability through atmospheric variables (temperature,
rainfall, cloud cover, or the occurrence of storms; (ii) anthropogenic GHG concentration
changes; and (iii) land use/land cover change play a key role (IPCC 2013). For instance, our
results show that while the amount and intensity of heavy rainfall events greatly increase
during rainy seasons (10–45 %), especially over zone 1, the frequency of occurrence of
these events slightly decreases (4–8 %). This implies that heavy rainfall events are likely
to increase during monsoon months. We can thus conclude that under global warming, CA
rainfall shifts toward a regime of more intense and less frequent extreme rainfall events.
Dyer et al. (2017) attributed this extreme rainfall response to an increase of moisture con-
vergence intensified by the presence of the Congo Basin rainforest. This interpretation
was consistent to the results of Sylla et al. (2015), done over West Africa, who associated
increases of intense rainfall events to increase of moisture convergence in the boundary
layer, driven by larger amounts of moist static energy and instability. On the other hand, the
analysis of total rainfall amount and duration-based indices (frequency, dry and wet spells)
also reveal that certain locations of CA could experience high drought risk in the future.
This will be mainly tied to the combined decrease of total rainfall amount and their number
of occurrence. One possible explanation of this trend to the dryness of CA is associated with
the anomalously sea surface temperature cooling over the Atlantic and/or Indian Ocean,
which reduces the release of latent heat flux and weakens the Walker circulation (Cook and
Vizy 2015; Hua et al. 2016).

4 Summary and conclusions

In this study, the projected seasonal cycle of ten extreme rainfall indices was investigated
over CA in order to understand the vulnerability of the region to climate change. An ensem-
ble mean of seven gridded Obs and six RCM experiments, driven by seven GCMs (a total
of fifteen members), have been analysed. We firstly evaluate their performance, and sec-
ondly describe the characteristics of daily rainfall indices as simulated by RCMs for the
middle and late twenty-first century, under the high GHG scenario (RCP8.5). Results of our
analysis are summarised as follows:

– Although some differences still exist between Obs and models, RCMs were able
to reproduce reliably the climatology of daily rainfall indices over the analysed
sub-regions, with biases which are within the Obs uncertainties in most cases.

– Contrary to the results found over West Africa (Sylla et al. 2015; Diallo et al. 2016),
in addition to wet-day frequency, wet-day intensity also contributes to the bimodal
structure of the seasonal cycle of rainfall in zone 2, dominated by a tropical rainforest
climate.

– For both the middle and the late twenty-first century, a general non-significant decrease
in total wet-day rainfall amount is projected over the two analysed sub-regions,
especially during pre-monsoon months.
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– A prevailing significant decrease in wet-day frequency is projected over whole CA,
while wet-day intensity is projected to significantly increase. This implies that the
increase in wet-day intensity is not responsible for the decrease in total wet-day rainfall
amount over these sub-regions.

– Dry (wet) spells are projected to significantly increase (decrease) over both sub-regions
with shorter (longer) dry (wet) spells projected during pre-monsoon months. This sug-
gest that countries within these two sub-regions could likely experience high drought
risk in the future, mainly caused by the combined effect of decrease of total rainfall
amount and their number of occurrence.

– The projected changes in maximum daily rainfall amount, maximum 5-day rainfall
amount, and 95th percentile show a significant increase of about 10–45 % during
monsoon months, with higher values in the case of maximum daily rainfall amount.

– The total number of occurrence of rainfall events above the 95th percentile project
a slight significant decrease of about 4–8 % during pre-monsoon month, while the
total amount of rainfall events above the 95th percentile project a significant increases
of about 10–45 % during monsoon months. This implies that heavy rainfall events
are likely to be more intense, and could amplify the probability of flood risks during
monsoon months over both sub-regions, especially in August for zone 1, April and
November for zone 2.

Thereby, the increase (decrease) in extreme rainfall events (total rainfall amount), which
occurred during monsoon phases (pre-monsoon phases), could have a direct impact on
water resources availability in the region. Effective adaptation and mitigation measures are
thus required to help design strong subregional policies, and therefore prevent the potential
impact of climate change on future rainfall extremes events.
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