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Abstract
Ongoing changes in climate are expected to alter current species’ habitat and potentially result
in shifts in species distributions. While climatic conditions are important to a species’ ability to
persist in an area, for many taxa, other environmental factors, such as geology, land cover, and
topography, are also important for providing suitable habitat. Furthermore, aquatic species
experience changes in climatic conditions through the effect precipitation and air temperature
have on streamflow regimes and water temperature. In this study, species distribution models
(SDMs) for ten stream-dwelling crayfish species were generated using a maximum entropy
approach across the Mobile River Basin in the southeastern United States. SDMs were
developed using model-generated contemporary estimates of streamflow and water tempera-
ture as well as geologic, topographic, and land cover data. Future distributions were then
projected using global climate model (GCM) projections of streamflow and water temperature.
Geology, topography, and streamflow appear to be more important predictors of suitable
habitat than water temperature for crayfish species within the Mobile River Basin. Species
distributions regulated by limited influences from stream flow and water temperature displayed
relatively small changes in projected future habitat distributions based on various GCM
scenarios. When shifts in species distributions were projected into the future, these shifts did
not appear to follow a northward retreat or expansion, likely due to the limited impact of water
temperature on the modeled distributions of suitable habitat for these species. Furthermore,
species’ habitat distribution responses among future climate scenarios were variable within and
among species and did not vary unidirectionally with increased severity of climate change as
realized through increased warming patterns.
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1 Introduction

Characterizing the factors that regulate species distributions is a fundamental goal in ecology,
biogeography, and conservation (Guisan and Zimmermann 2000; Loiselle et al. 2003;
Margules et al. 1994; Sutherland et al. 2013). Accordingly, significant efforts have been made
to develop and apply species distribution modeling (SDM) algorithms to delineate areas that
constitute suitable habitat for species (Elith et al. 2006; Guisan and Thuiller 2005; Pearson
2010; Phillips et al. 2006). Considering ongoing changes in climate and potential species’
responses to these changes (Kharouba and Kerr 2010; Parmesan and Yohe 2003; Walther et al.
2005), SDM techniques have also been used to project alterations in species distributions
based on various future climate scenarios (Elith and Leathwick 2009).

While SDM approaches have been applied to freshwater taxa, many of these studies have
investigated the response of species to forecasted changes in climate (i.e., precipitation and air
temperature) (Comte et al. 2013; Heino et al. 2009; Knouft and Ficklin 2017). This focus on air
temperature and precipitation in the absence of other physical environmental characteristics, such as
geomorphology and topography (Frissell et al. 1986; Johnson and Gage 1997; Markovic et al.
2012), can potentially result in the perception of climate as being the primary regulator of species
distributions. Moreover, while precipitation and air temperature are directly relevant for estimating
suitable habitat for terrestrial species, these variables have spatially and temporally varying indirect
effects on streamflow and water temperature, which are of primary importance in regulating
freshwater species distributions (Al-Chokhachy et al. 2013; Huang and Frimpong 2016; Knouft
and Ficklin 2017). Streamflow regimes are critical to the survival, growth, and reproduction of
aquatic species, with directional alterations of the streamflow regime shown to impact local
biodiversity and cause extirpation of populations (Bain et al. 1988; Bunn and Arthington 2002;
Knouft and Chu 2015; Knouft and Ficklin 2017; Poff and Allan 1995; Poff et al. 1997). Water
temperature is known to have important effects on various life history traits of aquatic species with
species exhibiting specific thermal tolerances (Beitinger et al. 2000; Bennett et al. 2018). Conse-
quently, forecasted changes in water temperature are likely to impact species distributions (Ficke
et al. 2007; Rahel and Olden 2008).

Addressing how various environmental conditions can influence estimations of the distri-
bution of future suitable habitat is especially important for freshwater species of conservation
concern such as crayfishes, which are among the most threatened taxa in North America
(Richman et al. 2015; Taylor et al. 2007). Crayfish function as ecosystem engineers and
keystone species through direct modification of the benthos, influences on particulate and
sediment dynamics, and their role in the food chain as omnivores and key detritivores (Creed
Jr and Reed 2004; Geiger et al. 2005; Momot 1995; Reynolds et al. 2013; Statzner et al. 2000;
Statzner et al. 2003). Crayfish commonly exhibit narrow regional endemism (Taylor et al.
2007), which magnifies threats commonly associated with all freshwater aquatic taxa, includ-
ing alteration of habitat and introduction of nonindigenous organisms (Allan and Flecker 1993;
Richman et al. 2015). Nearly half of the 410 crayfish species native to North America have
been identified as being at risk, many of which are in the southeastern United States (Taylor
et al. 2007).

Considering the dependency of freshwater taxa on streamflow regimes and water temper-
ature and the current threats to native crayfish, characterizing the potential effects of changes in
climate on basin hydrology and water temperature is critical to predicting the potential impacts
of climate change on these species. Although flow regime and water temperature have been
demonstrated to be important factors influencing areas of suitable habitat for some crayfishes
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(Hossain et al. 2018; Nolen et al. 2014; Westhoff and Rosenberger 2016), the application of
SDM techniques for freshwater invertebrates has generally not incorporated these types of in-
stream environmental conditions at a watershed scale (e.g., Capinha et al. 2013; Morehouse
et al. 2013). Moreover, geology, land cover, and land slope are important environmental
predictors of suitable habitat for crayfishes due to their influence on runoff, physicochemical
attributes of the water, in-stream habitat conditions, and substrate characteristics (Dyer et al.
2013; France 1992; Joy and Death 2004; Westhoff et al. 2011). The objective of this study is to
use streamflow, water temperature, geologic, topographic, and land cover data to develop
SDMs for non-burrowing, stream-dwelling crayfish native to the biologically diverse Mobile
River Basin in the southeastern United States. We then use these models in conjunction with
estimates of future streamflow and water temperature based on various global climate model
(GCM) scenarios to project future distributions of suitable habitat for these taxa.

2 Methods

2.1 Study area

The Mobile River Basin drains approximately 110,000 km2 of the southeastern United States,
covering the majority of Alabama and extending into Georgia, Mississippi, and Tennessee
(Supplementary Fig. 1). Approximately 69% of the basin is covered by forest, with remaining
land uses including agriculture (18%), wetlands, streams, and lakes (11%), and urban areas
(2%). Elevation ranges from near sea level at the outlet to greater than 900 m above sea level in
the Appalachian Mountains located in the northeastern part of the basin. The Mobile Basin is
one of the most biodiverse freshwater systems in North America, including numerous endemic
species (Lydeard and Mayden 1995).

2.2 SWAT hydrologic modeling

The Soil and Water Assessment Tool (SWAT; Arnold et al. 1998) was used to simulate
discharge (m3/s) and water temperature (Ficklin et al. 2012) throughout the Mobile Basin.
SWAT is a physically based and distributed hydrologic model initially developed to predict
impacts of changes in landscape-management practices on water, sediment, and agricultural
yields (Arnold et al. 1998; Neitsch et al. 2005a, b). Recently, SWAT has been used to assess the
effects of climate change on hydrologic responses by adjusting precipitation, temperature, and
related climatic variables based on future global climate model (GCM) estimates (Chien et al.
2013; Ficklin et al. 2014; Zhang et al. 2016). Spatial heterogeneity is accounted for by
partitioning basins into several sub-basins, which are then segregated into hydrologic response
units (HRUs) based on unique combinations of environmental conditions (e.g., soil, land
cover), which range is size from approximately 1–540 km2. Water quantity and quality are
estimated for each sub-basin and then routed by streamflow and assigned to outlets within the
basin. See Neitsch et al. (2005b) for a more detailed overview of the SWAT model. For this
study, a water temperature model coupled within the SWAT model was used to simulate water
temperatures throughout the Mobile Basin (Ficklin et al. 2012). This model uses both air
temperature and contributing hydrology in each sub-basin to estimate water temperature. The
SWAT modeling approach used to estimate contemporary streamflows including input data,
calibration, and validation is described in detail in Chien et al. (2013).
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Streamflow generated from the SWAT Mobile Basin model was calibrated using SWAT-
CUP (Abbaspour et al. 2007) for 82 United States Geological Survey (USGS) streamflow
gauges spatially distributed throughout the Mobile Basin. The observed streamflow data were
split for calibration and validation, with half of the data used for calibration and the other half
for validation. The average Nash-Sutcliffe value, a metric used to quantify predictive power
among hydrologic models (Nash and Sutcliffe 1970), for all streamflow gauges was 0.72 with
a standard deviation of 0.21 (correlation = 0.89 ± 0.08) for calibration and 0.71 with a standard
deviation of 0.19 (correlation = 0.88 ± 0.09) for validation. Water temperature was manually
calibrated for seven stream temperature sites, but due to the limited data availability, only
calibration was performed. For these seven sites, the average Nash-Sutcliffe value was 0.66
with a mean absolute error of 1.08 °C.

To estimate future streamflows, projections of temperature and precipitation from 14 GCMs
for Representative Concentration Pathway 8.5 (RCP 8.5; Supplementary Table 1) were
extracted from the Downscaled CMIP5 Climate and Hydrology Projections Archive
(http://gdo-dcp.ucllnl.org; Maurer et al. 2014) and integrated into the calibrated and
validated SWAT model. RCP 8.5 represents the highest greenhouse gas emissions relative to
pre-industrial values for the Coupled Model Intercomparison—Phase 5 GCM (CMIP5; Taylor
et al. 2012) ensemble projections. The extracted GCM output was previously downscaled to a
12-km resolution using the daily bias-corrected and constructed analogs approach (BCCA:
Maurer et al. 2010).

2.3 Environmental predictor variables

Environmental data consisted of spatially explicit geology, topography, and land cover in
addition to the SWAT-generated streamflow and water temperature data sets. These environ-
mental variables are hypothesized to be ecologically relevant in determining suitable habitat
for stream-dwelling, non-burrowing crayfish species (Dyer et al. 2013; France 1992; Joy and
Death 2004; Nolen et al. 2014; Westhoff et al. 2011; Westhoff and Rosenberger 2016). ArcGIS
10.4.1 was used in data preparation to clip the environmental data with the stream network of
the basin. Geologic data for each state was acquired from the USGS (Hardeman et al. 1966;
Lawton et al. 1976; Moore 1969; Szabo et al. 1988) as separate shapefiles and converted to
raster coverages (spatial resolution of 400 m) of primary rock type across the entire stream
network within the Mobile Basin (total of 45 unique rock types). The most prevalent rock
types within the stream network included beach sand, shale, sand, and sandstone. The
topography of the study area was represented by the slope, which was created by applying
the slope tool in ArcGIS to a digital elevation model (DEM) (30 m spatial resolution) of the
basin (NED 2000). Land cover data (30 m spatial resolution) for the basin were obtained from
the Multi-Resolution Land Characteristic Consortium (Fry et al. 2011). Surrounding land
cover around the stream network was determined by using the majority neighborhood focal
statistic tool in ArcGIS (neighborhood represented by 2000 m radius about each pixel). Both
the slope and land cover raster coverages were simplified to a 400-m resolution for analysis in
Maxent.

To use SWAT-derived contemporary hydrologic models for the Mobile Basin in Maxent,
three metrics were calculated to summarize streamflow conditions for each sub-basin using
monthly averages of daily estimated streamflows including maximum annual streamflow (m3/
s), minimum annual streamflow (m3/s), and average intra-annual coefficient of variation in
streamflow, which quantifies intra-annual streamflow variability. The annual maximum and
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minimum metrics were computed as the most extreme (highest and lowest, respectively)
average monthly value for each sub-basin within each year, averaged across the years of the
study period. Average intra-annual coefficient of variation (CV) in streamflow variability was
calculated as:

CV ¼ 1

N
∑
N

i¼1

STD Qmð Þ
Qm

 !
i

ð1Þ

where STD(Qm) and Q̅m are the standard deviation and average of monthly streamflow in a
year, respectively (Chien et al. 2013). These same three metrics were computed identically for
the SWAT-derived model of water temperature (°C) using monthly averages in temperature for
each sub-basin.

From this set of 14 unique GCM projections of future water temperature and streamflow,
we selected the maximum, median, and minimum water warming projections (MAXwarm,
MEDwarm, and MINwarm) for the period of 2060–2079 (Supplementary Table 1). To select these
sets of future streamflows and water temperatures, we calculated the overall average (across
years and sub-basins) of water temperature for this time-period yielding a single mean value
for each of the 14 GCM projections of water temperatures. From these values, we selected the
maximum, median, and minimum values and selected the corresponding GCM to yield our
MAXwarm, MEDwarm, and MINwarm projections of water temperature across the basin. GCMs
IPSL-CM5A-LR (Institut Pierre Simon Laplace), GFDL-CM3 (NOAA Geophysical Fluid
Dynamics Laboratory), and INM-CM4 (Institute of Numerical Mathematics) produced the
MAXwarm, MEDwarm, and MINwarm projections, respectively. Maximum annual, minimum
annual, and average annual CVof streamflow and water temperature were computed as above
for the future projection period of 2060–2079 for the MAXwarm, MEDwarm, and MINwarm

scenarios. These projections of in-stream conditions allowed us to develop models predicting
contemporary and future distributions of suitable habitat for each crayfish species across the
Mobile Basin. The sub-basin shapefiles of contemporary and future streamflow, as well as
water temperature, were then converted into raster coverages (400 m spatial resolution) across
the basin and then clipped to the extent of the stream network for use in Maxent. All GIS
analyses were carried out using the NAD 1983 UTM Zone 16N projected coordinate system.

2.4 Crayfish distribution data

Only species of crayfish that are not primary or secondary burrowers were included because
these taxa generally occupy the stream channel and are subject to variation in flow and water
temperature (Hobbs 1981). Distribution data were extracted from a database of all Alabama
crayfish vouchered records (Schuster and Taylor, unpublished data). Georeferenced species
records from approximately 2600 unique sampling locations in this database are represented
by vouchered museum holdings at the Illinois Natural History Survey (INHS), National
Museum of Natural History Smithsonian Institution (USNM), and the University of Alabama
Decapod Collection (UADC). Species records are represented by vouchered specimens
collected by authors CAT and GAS during crayfish-specific field surveys that saved all
crayfish species present at the location or from field surveys conducted by other aquatic
biologists. Most records not collected by CAT or GAS, particularly those that were obvious
range outliers, were visually examined and confirmed by CAT or GAS. All locality data were
within the stream sections modeled by SWAT and each species was represented by at least 20
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unique sites (Supplementary Fig. 1; Hernandez et al. 2006). Locality data included specimen
collections that occurred between 1980 and 2009 to coincide with the time period of the
contemporary SWAT hydrologic and water temperature models. The final dataset consisted of
ten species from three genera including Cambarus (C. coosae, C. halli, C. obstipus, and
C. striatus), Faxonius (F. erichsonianus, F. perfectus, and F. validus), and Procambarus
(P. acutus, P. spiculifer, and P. versutus). Taxonomy used in this paper follows the recent
proposal of Crandall and De Grave (2017). One species, C. striatus, will burrow in southern
portions of its North American range, but within the majority of the Mobile Basin, the species
is most frequently found in flowing streams (Taylor and Schuster, unpublished data). P. acutus
can also occur in backwaters and swamps; however, like C. striatus, P. acutus is frequently
encountered in lower gradient flowing streams within the Mobile Basin. The total number of
locality records across all ten species was 366 and the number of observations per species
ranged from 20 to 90 (Supplementary Table 2).

2.5 Species distribution modeling

Distributions of suitable habitat were predicted for all species using Maxent, which has been
demonstrated to be a generally accurate and useful method for species distribution modeling
based on presence-only data (in comparison to generalized additive models and generalized
linear models) (Maxent 3.3.3k; Elith and Leathwick 2009; Phillips and Dudík 2008; Phillips
et al. 2006). This approach uses occurrence data and environmental variables across a study
region to determine the environmental conditions that constitute a species’ abiotic ecological
requirements. The resulting SDM is then used to generate probability of occurrence estimates
across geographic space (Phillips et al. 2006). We interpret probability of occurrence as a
measure of habitat suitability for each species, as unmeasured biotic and abiotic factors may
not allow a species to reside in a predicted area despite habitat being otherwise suitable. The
environmental variables used in Maxent models for each species included geology (categor-
ical), land cover (categorical), and slope (continuous), as well as maximum annual, minimum
annual, and average annual CV of streamflow and water temperature (all continuous). Al-
though some of these environmental variables (e.g., average, maximum, and minimum annual
streamflow) co-vary to some degree, Maxent has been demonstrated to be robust to such
correlations, and therefore, all variables were retained for analyses (Elith et al. 2011). All
crayfish localities occurred only in Alabama; thus, models were developed based on the
environmental data along the stream network of the Mobile Basin that fell within Alabama,
which represents the majority of the watershed (Supplementary Fig. 1). These models were
then projected into the entire basin (including areas in Georgia, Mississippi, and Tennessee).
Half of the localities for each species were randomly selected and used for model generation
(training data) and the other half were used to validate the models (test data). We set the
maximum number of iterations to 100,000 and used the default settings for all other parameters
in Maxent (Phillips 2005).

Estimates of the distribution of future suitable habitat for each species were generated using
contemporary SDMs projected onto future MAXwarm, MEDwarm, and MINwarm climate projec-
tion streamflow and water temperature data as well as contemporary geologic, slope, and land
cover data. While geology and slope should be stable physical variables over the projected
time period, we also assume landcover will not change. We acknowledge that landcover will
likely change over the next 50 years; however, reasonable estimates of future land use changes
are not available at the required resolution within the Mobile Basin.
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2.6 Model and data analysis

Several measures of SDM quality and variable importance were examined for each species.
Model accuracy can be determined by analyzing the area under the receiver operating curve
(AUC) value, which ranges from 0.0 to 1.0 (Elith et al. 2006; Phillips et al. 2006). When
training and test data are used, an AUC score is calculated for both sets of data. The training
data value indicates model fit based on the data used in generating the model, while the test
data AUC demonstrates the predictive capabilities of the model (Phillips 2005). An AUC value
of 0.5 suggests a model that does not predict better than a random model. While no single
AUC score is agreed upon as a threshold for model quality, values greater than 0.5 suggest a
better than random prediction (Elith et al. 2006).

The relative contributions of each abiotic variable in determining suitable habitat for each
species were also quantified based on permutation importance values, which are determined by
taking each variable in turn and altering the values of that variable at training localities. The
effects of these permutations are then measured by calculating the corresponding drop in
training AUC and normalizing the value to produce a percentage (Phillips 2005). This method
is preferable to the percent contribution of variables because it relies on permutation of the
final model rather than gains in model fit based on the path in which variables were added
during model development (Searcy and Shaffer 2016).

Minimum training presence threshold distributions allow for areas to be considered unsuit-
able or suitable with a threshold defined as the lowest probability of occurrence at which a
species locality was observed. This threshold was used to calculate the length of suitable
habitat (linear km) for each species under contemporary and future models across the Mobile
Basin (ArcGIS 10.4.1). The length of suitable habitat (measured in linear stream km) was
estimated from future distribution projections based on the RCP 8.5 MAXwarm, MEDwarm, and
MINwarm climate scenarios. Differences among species and climate projections were assessed
by comparing the percent change in habitat availability in future climates relative to contem-
porary distributions. Amounts of overlap between contemporary and future projections were
also quantified. The percent of areas predicted to be suitable based on contemporary estimates
projected to remain suitable under future climate scenarios was computed for each species to
understand the degree to which distributions of viable habitat were contracting, expanding, or
shifting for each species.

3 Results

Training data AUC values were greater than 0.85 for all species (Supplementary Table 2).
Testing data AUC values were greater than 0.65, with models for seven of the ten species
having AUC values greater than 0.85, suggesting that models were appropriate for estimating
the distribution of suitable habitat across the Mobile Basin (Supplementary Table 2). While we
recognize that AUC scores greater than 0.65 but less than 0.85 do not suggest relatively high
model accuracy, these models are still considered to be better than random (AUC= 0.5) and
the environmental variables have some predictive capacity. Therefore, we report results from
models developed for all ten species to allow for examination of what degree various
environmental factors explain the distributions of suitable habitat for each species.

The quantity of suitable habitat estimated under contemporary climatic conditions was
variable among species (Supplementary Table 2). Assessment of SDM variable contributions
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indicated that each species’ distribution was regulated by a different combination of environ-
mental conditions (Fig. 1). Geology (primary rock type) exhibited the highest permutation
importance for six species, suggesting the general influence of this variable in regulating
crayfish species distributions in the Mobile Basin. Maximum annual stream flow was the most
important predictor variable for two species, and response curves indicated generally negative
relationships between maximum flow and probability of suitability among all species (al-
though P. acutus exhibited a positive relationship). Slope was the most important variable in
estimating suitable habitat for P. acutus and P. spiculifer, with a negative relationship between
probability of presence and slope. None of the water temperature measures were the primary
factor regulating suitable habitat for a species. The total importance of streamflow and
temperature were highly variable among species, ranging from a total permutation importance
of 0–62% and 0–28%, respectively. Average total permutation importance was 26% for the
hydrologic metrics and 11% for temperature metrics. Surrounding land cover was marginally
important in determining suitable habitat, with permutation importance scores greater than
15% for four species (Fig. 1).

Minimum and maximum annual water temperatures are projected to increase based on
SWAT estimates under the MINwarm, MEDwarm, and MAXwarm climate projections from 2060
to 2079, while the average annual CV in temperature is expected to decrease slightly (Fig. S1).
Future projections of streamflow discharge are expected to be highest under the MEDwarm

scenario and increase marginally across the MINwarm and MAXwarm scenarios relative to
contemporary conditions (Fig. S1). Streamflow is also projected to become less variable as
evidenced by the decrease in range and mean of average annual CV (Fig. S1).

Amounts and distributions of suitable habitat were predicted to be differentially altered
based on the future climate projections, both within and among species (Figs. 2 and 3a;
Supplementary Figs. 3–11). C. coosae, F. validus, and P. acutus exhibited changes
(increase or decrease) in future distributions of at least 50% in one or more future climate
scenarios. F. erichsonianus, F. validus, and P. versutus were the only species which were
predicted to respond in a consistent manner across all future warming scenarios (i.e.,
experienced only expansions or contractions in suitable habitat across the three climate
projections). All other species were predicted to experience both expansions and

Fig. 1 Contribution of variables [permutation importance (percentage)] in Maxent models for each species
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reductions in suitable habitat depending on the future warming scenario utilized (Fig. 3a).
Future projections of suitable habitat overlapped the contemporary distributions by 85% or
greater under all three warming scenarios for three of ten species (C. halli, C. obstipus, and

Fig. 2 Distribution of suitable habitat for C. striatus under (a) contemporary climate conditions and future
climate projections (b) MINwarm, (c) MEDwarm, and (d) MAXwarm. Points represent species collection localities of
C. striatus. b–d “Overlap” represents areas predicted to be suitable under contemporary and projected to remain
suitable under the warming scenario. “Newly suitable” represents areas that were projected to be suitable in the
warming scenario but were not predicted to be suitable in contemporary conditions. “Formerly suitable”
corresponds to areas which were predicted as suitable under contemporary climate conditions but not projected
to be suitable in the future warming scenario
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P. versutus). This indicates that the distributions of suitable habitat for most species are
projected to shift under future climates away from areas estimated as suitable under
contemporary conditions (Fig. 3b). Some species were projected to exhibit dramatic shifts
in these distributions, including F. validus, which was projected to have less than 50% of
its contemporary distribution remaining under at least one future climate projection (Fig.
3b; Supplementary Figs. 3–11).

Fig. 3 Crayfish distributional responses to future climate projections. a Percent change in amount of suitable
habitat predicted under future climate projections. Positive percent changes represent expansions in the distribu-
tion of suitable habitat and negative changes represent contractions. b Percentage of total original habitat
predicted to be suitable under contemporary conditions that is expected to remain suitable for each species under
future climate projections. Black, gray and white bars represent the MAXwarm, MEDwarm, and MINwarm future
scenarios, respectively
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4 Discussion

The southeastern United States contains some of the highest levels of temperate freshwater
biodiversity in the world (Knouft and Page 2011; Taylor 2002). Human transformation of the
landscape and ongoing changes in climate have already altered the hydrologic characteristics
and water quality of watersheds in this region (Estes et al. 2015; Neupane et al. 2019), with
these changes likely contributing to the imperilment of freshwater biodiversity (Freeman et al.
2017; UK: Cambridge Univ. Press et al. 2008; Warren et al. 2000). Projected changes in
climate are expected to further exacerbate these habitat impacts, including continued alteration
of flow regimes and increasing water temperatures (Neupane et al. 2019; van Vliet et al. 2013).
While climate-induced changes in flow and water temperature are expected to continue to alter
species distributions and diversity (e.g., Knouft and Ficklin 2017; Wenger et al. 2011), the
combined influence of changes in flow and water temperature on freshwater species distribu-
tions in the context of other aspects of the physical environment is not well understood.

Species and region-specific ecological and physiological data are generally lacking for most
crayfish species (Moore et al. 2013), as a result, the correlative SDM approach integrating
museum collection data with environmental data provides the most tractable opportunity to
characterize factors regulating crayfish distributions and diversity. The applicability of SDMs
is dependent on the ability of the models to discern habitat suitability (Newbold 2010). To
develop accurate assessments of habitat suitability, models must incorporate a robust array of
environmental predictor variables based on knowledge of the ecology of the study species
(Araujo and Guisan 2006; Austin 2002). As such, we were largely able to estimate the
contemporary distribution of suitable habitat for crayfish species using an array of physical
and hydrologic variables.While geology generally appeared to be the best predictor of species
distributions, variables related to streamflow, land cover, and topography also contributed
significantly to model performance. However, water temperature does not appear to be
particularly influential in regulating the distribution of these species within the Mobile Basin.

Environmental factors not influenced by climate play a critical role in governing the
contemporary and future distributions of suitable habitat for crayfish species in the Mobile
Basin. For example, geology is the most important predictor of habitat suitability for eight of
the ten species in this study. This is likely due to crayfishes’ usually strong association with
varying benthic substrate/rock size (Stites et al. 2017; Taylor and Schuster 2004; Westhoff and
Rabeni 2013). Slope was also important in characterizing suitable habitat for two species
(P. acutus and P. spiculifer), which exhibited a negative relationship between habitat suitability
and slope. This is in accordance with previous observations of habitat use in P. acutus (Taylor
and Schuster 2004) and the observed preference of lower gradient habitats in Alabama
populations of P. spiculifer (Schuster and Taylor, unpublished data). In addition, both slope
and geology were found to be important predictors of crayfish occupancy in the Black River
drainage of Arkansas and Missouri by Magoulick et al. (2017). Landcover was also included
as a predictor in SDMs for several species and likely reflects a variety of processes (e.g.,
sedmentation regulation, nutrient runoff). Significant landcover changes have been ongoing in
the southeastern United States during the past century, both as conversion to agriculture and
urban areas as well as reforestation (Sleeter et al. 2012; Zhao et al. 2013), and these changes
will undoubtedly continue. The impact of these changes on in-stream habitat will likely be
significant in the coming decades, particularly if precipitation events become more intense
(IPCC 2013). Unfortunately, high-resolution landcover change projections are not available for
incorporation into our SWAT models, but this issue certainly deserves further attention.
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Generally, our results suggest that when species’ distributions are primarily governed by
environmental factors that are not mediated by climate, projected changes in climate do not
appear to greatly alter estimates of future distributions of suitable habitat compared to
contemporary distributions.

The lack of species-specific physiological data for crayfishes in this study hinders our
ability to comment on the limited influence of temperature on habitat suitability. While
hydrology was generally not the most important predictor of suitable habitat, variables related
to streamflow did explain a significant amount of variation in species distributions. In
particular, maximum annual streamflow appeared to be more important than streamflow
variability or minimum annual streamflow, with maximum streamflow generally exhibiting
negative relationships with suitability. This result may suggest that non-burrowing crayfishes
are limited in their distributions by their ability to remain adhered to the substrate rather than
other hydrologic pressures (e.g., low streamflows, seasonal streamflow variability), although
more work is needed on this topic. Given that future climate models often project increasing
probability of high precipitation events (IPCC 2013), and that our Medwarm and Minwarm
scenarios demonstrate higher maximum annual streamflows, crayfishes may experience great-
er range contractions due to increases in high flow events. Furthermore, high flow events may
also increase in severity as the amount of impervious surface increases during urbanization.
Further studies should be aimed at examining the feedbacks between the impacts of climate
and land use change on streamflow regimes and how these changes may impact freshwater
species distributions.

Future climate projections predict differing flow regimes and water temperatures across the
Mobile Basin compared to contemporary conditions. These climate projections resulted in
differences among predictions in the amount and distribution of suitable habitat for Mobile
Basin crayfishes. Furthermore, directional responses to climate change scenarios were not
consistent within species, with the distributions of suitable habitat for most species expected to
contract or expand dependent upon the warming scenario used for projections. This finding is
noteworthy given most studies demonstrating changes in the distributions of species under
climate change are unidirectional relative to increased intensity of climate change (e.g., Bond
et al. 2014). However, the variable responses of species among climate scenarios present a
challenge for predicting how freshwater species dependent on streamflow will respond in the
future. Additionally, projected changes in species distributions did not appear to follow a trend
of northward retreat or expansion as predicted for many aquatic species as climate changes
(reviewed in Knouft and Ficklin 2017), likely due to the limited influence of water temperature
in the SDMs.

While Maxent models (and species distribution models in general) allow for determination
of which environmental factors are associated with the distribution of taxa at various spatial
scales, they do not provide a mechanistic understanding of why such conditions are important
(Kearney and Porter 2009). Given the various impacts that geology can have on in-stream
habitat structure and water quality (Meybeck and Helmer 1989), future research should focus
on which specific factors regarding geology appear to be critical in governing suitable habitat
for these species. For example, the varying porosity and sand content of particular geologic
types may be of primary importance to benthic organisms. More experimental work is also
needed to determine how increased maximum annual streamflow can render habitat unsuitable
for some crayfishes and not others (e.g., Perry et al. 2013). Furthermore, the distribution of
suitable habitat is only based on abiotic conditions and does not account for biotic interactions
(Elith and Leathwick 2009), which may explain locations within the estimated area of suitable
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habitat where a species does not occur (Dormann 2007). Reaches within the basin that
constitute suitable habitat may also not be occupied due to inabilities of the species to disperse
to these areas (Hein et al. 2011; Huntley et al. 2010); however, the connectedness of the stream
network and the wide distribution of some species within the basin suggests this may not be a
major constraint.

SDMs developed here suggest that the primary factors impacting distributions of crayfishes,
such as geology and topography, are those which are not significantly impacted by human
activities. In spite of this, crayfish are known to be experiencing significant population declines
in North America (Taylor et al. 2007). While our models suggest that streamflow regimes are
important in regulating habitat suitability for these species, this alone does not explain crayfish
declines. Other factors that are potentially influencing these declines may include hydrologic
modification of rivers by damming and the introduction of invasive species. While these
factors are difficult to include in species distribution modeling, future research could benefit
from the inclusion of these factors when forecasting changes in the distribution of crayfishes.

While investigation of the potential impacts of climate change on freshwater biodiversity
has received considerable attention (Knouft and Ficklin 2017), a limited focus on species in
relatively warmer regions has restricted our understanding of the influence of temperature on
these taxa. Results from this study suggest that changes in water temperature may not be as
important as changes in flow regimes and the conservation of physical habitat for freshwater
species persistence in warmer regions in the coming century. This study also demonstrates the
importance of selecting a range of relevant environmental variables when developing SDMs to
project to potential impacts of climate change on freshwater taxa.

Funding information This work was supported by funding from the Environmental Protection Agency’s
(EPAs) Science to Achieve Results (STARs) Consequences of Global Change for Water Quality program
(R834195), U.S. National Science Foundation (DEB-0844644), and U.S. Army Corps of Engineers Cooperative
Ecosystem Studies Units (W912Hz-15-2-0030).

References

Abbaspour KC, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist J, Srinivasan R (2007) Modelling
hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J Hydrol 333:413–430

Al-Chokhachy R, Wenger SJ, Isaak DJ, Kershner JL (2013) Characterizing the thermal suitability of instream
habitat for salmonids: a cautionary example from the Rocky Mountains. Trans Am Fish Soc 142:793–801

Allan JD, Flecker AS (1993) Biodiversity conservation in running waters. Bioscience 43:32–43
Araujo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–

1688
Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment—part

1: model development. J Am Water Resour Assoc 34:73–89
Austin M (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical

modelling. Ecol Model 157:101–118
Bain MB, Finn JT, Booke HE (1988) Streamflow regulation and fish community structure. Ecology 69:382–392
Beitinger TL, Bennett WA, McCauley RW (2000) Temperature tolerances of North American freshwater fishes

exposed to dynamic changes in temperature. Environ Biol Fish 58:237–275
Bennett JM, Calosi P, Clusella-Trullas S, Martínez B, Sunday J, Algar AC, Araújo MB, Hawkins BA, Keith S,

Kühn I, Rahbek C (2018) GlobTherm, a global database on thermal tolerances for aquatic and terrestrial
organisms. Sci Data 5:180022

Bond NR, Thomson JR, Reich P (2014) Incorporating climate change in conservation planning for freshwater
fishes. Divers Distrib 20:931–942

Bunn SE, Arthington AH (2002) Basic principles and ecological consequences of altered flow regimes for
aquatic biodiversity. Environ Manag 30:492–507

Climatic Change (2019) 154:107–123 119



Capinha C, Larson ER, Tricarico E, Olden JD, Gherardi F (2013) Effects of climate change, invasive species, and
disease on the distribution of native European crayfishes. Conserv Biol 27:731–740

Chien HC, Yeh PJF, Knouft JH (2013) Modeling the potential impacts of climate change on streamflow in
agricultural watersheds of the Midwestern United States. J Hydrol 491:73–88

Comte L, Buisson L, Daufresne M, Grenouillet G (2013) Climate-induced changes in the distribution of
freshwater fish: observed and predicted trends. Freshw Biol 58:625–639

Crandall KA, De Grave S (2017) An updated classification of the freshwater crayfishes (Decapoda: Astacidea) of
the world, with a complete species list. J Crustac Biol 37:615–653

Creed RP Jr, Reed JM (2004) Ecosystem engineering by crayfish in a headwater stream community. J N Am
Benthol Soc 23:224–236

Dormann CF (2007) Promising the future? Global change projections of species distributions. Basic Appl Ecol 8:
387–397

Dyer JJ, Brewer SK, Worthington TA, Bergey EA (2013) The influence of coarse-scale environmental features
on current and predicted future distributions of narrow-range endemic crayfish populations. Freshw Biol 58:
1071–1088

Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and
time. Annu Rev Ecol Evol Syst 40:677

Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR,
Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton J,
Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS,
Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data.
Ecography 29:129–151

Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for
ecologists. Divers Distrib 17:43–57

Estes MG, Al-Hamdan MZ, Ellis JT, Judd C, Woodruff D, Thom RM, Quattrochi D, Watson B, Rodriguez H,
Johnson H, Herder T (2015) A modeling system to assess land cover land use change effects on SAV habitat
in the Mobile Bay estuary. J Am Water Resour Assoc 51:513–536

Ficke AD, Myrick CA, Hansen LJ (2007) Potential impacts of global climate change on freshwater fisheries. Rev
Fish Biol Fisher 17:581–613

Ficklin DL, Luo YZ, Stewart IT, Maurer EP (2012) Development and application of a hydroclimatological
stream temperature model within the soil and water assessment tool. Water Resour Res 48:16

Ficklin DL, Barnhart BL, Knouft JH, Stewart IT, Maurer EP, Letsinger SL, Whittaker GW (2014) Climate
change and stream temperature projections in the Columbia River basin: habitat implications of spatial
variation in hydrologic drivers. Hydrol Earth Syst Sci 18:4897–4912

France R (1992) The North American latitudinal gradient in species richness and geographical range of
freshwater crayfish and amphipods. Am Nat 139:342–354

Freeman MC, Hagler MM, Bumpers PM,Wheeler K, Wenger SJ, Freeman BJ (2017) Long-termmonitoring data
provide evidence of declining species richness in a river valued for biodiversity conservation. J Fish Wildl
Manag 8:418–435

Frissell CA, Liss WJ, Warren CE, Hurley MD (1986) A hierarchical framework for stream habitat classification:
viewing streams in a watershed context. Environ Manag 10:199–214

Fry JA, Xian G, Jin S, Dewitz JA, Homer CG, Limin Y, Barnes CA, Herold ND, Wickham JD (2011)
Completion of the 2006 national land cover database for the conterminous United States. Photogramm
Eng Remote Sens 77:858–864

Geiger W, Alcorlo P, Baltanas A, Montes C (2005) Impact of an introduced crustacean on the trophic webs of
Mediterranean wetlands. Biol Invasions 7:49–73

Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett
8:993–1009

Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186
Hardeman WD, Miller RA, Swingle GD (1966) Geologic map of Tennessee, State Geologic Map, scale 1:250,

000. Tennessee Division of Geology. https://ngmdb.usgs.gov/Prodesc/proddesc_91768.htm. Accessed 2 Feb
2017

Hein CL, Ohlund G, Englund G (2011) Dispersal through stream networks: modelling climate-driven range
expansions of fishes. Divers Distrib 17:641–651

Heino J, Virkkala R, Toivonen H (2009) Climate change and freshwater biodiversity: detected patterns, future
trends and adaptations in northern regions. Biol Rev 84:39–54

Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics
on performance of different species distribution modeling methods. Ecography 29(5):773–785

Hobbs HH (1981) The crayfishes of Georgia. Smithson Contr Zool 318:1–549

120 Climatic Change (2019) 154:107–123

https://ngmdb.usgs.gov/Prodesc/proddesc_91768.htm


Hossain MA, Lahoz-Monfort JJ, Burgman MA, Böhm M, Kujala H, Bland LM (2018) Assessing the vulner-
ability of freshwater crayfish to climate change. Divers Distrib 24:1830–1843

Huang J, Frimpong EA (2016) Limited transferability of stream-fish distribution models among river catchments:
reasons and implications. Freshw Biol 61:729–744

Huntley B, Barnard P, Altwegg R, Chambers L, Coetzee BWT, Gibson L, Hockey PAR, Hole DG, Midgley GF,
Underhill LG, Willis SG (2010) Beyond bioclimatic envelopes: dynamic species' range and abundance
modelling in the context of climatic change. Ecography 33:621–626

IPCC (Intergov. Panel Clim. Change) (2013) Climate change 2013: the physical science basis. Working Group I
Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge

Johnson L, Gage S (1997) Landscape approaches to the analysis of aquatic ecosystems. Freshw Biol 37:113–132
JoyMK, Death RG (2004) Predictive modelling and spatial mapping of freshwater fish and decapod assemblages

using GIS and neural networks. Freshw Biol 49:1036–1052
Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict

species’ ranges. Ecol Lett 12:334–350
Kharouba HM, Kerr JT (2010) Just passing through: global change and the conservation of biodiversity in

protected areas. Biol Conserv 143:1094–1101
Knouft JH, Chu ML (2015) Using watershed-scale hydrological models to predict the impacts of increasing

urbanization on freshwater fish assemblages. Ecohydrology 8:273–285
Knouft JH, Ficklin DL (2017) The potential impacts of climate change on biodiversity in flowing freshwater

systems. in Futuyma DJ (ed.). Annu Rev Ecol Evol Syst 48:111–133
Knouft JH, Page LM (2011) Climate, elevation, stream channel diversity, and geographic clines in species

richness of north American freshwater fishes. J Biogeogr 38:2259–2269
Lawton, D.E., Moye, F.J., Murray, J.B., O’Connor, B.J., Penley, H.M., Sandrock, G.S., … Wilson, J.D. (1976)

Geologic map of Georgia. Georgia Department of Natural Resources, Geologic and Water Resources
Division, Georgia Geological Survey http://ngmdb.usgs.gov/Prodesc/proddesc_16532.htm Accessed 2
February 2017

Loiselle BA, Howell CA, Graham CH, Goerck JM, Brooks T, Smith KG, Williams PH (2003) Avoiding pitfalls
of using species distribution models in conservation planning. Conserv Biol 17:1591–1600

Lydeard C, Mayden RL (1995) A diverse and endangered aquatic ecosystem of the southeast United States.
Conserv Biol 9:800–805

Magoulick DD, DiStefano RJ, Imhoff EM, Nolen MS, Wagner BK (2017) Landscape- and local-scale habitat
influences on occupancy and detection probabilities of stream-dwelling crayfish: implications for conserva-
tion. Hydrobiologia. https://doi.org/10.1007/s10750-017-3215-2

Margules CR, Austin M, Mollison D, Smith F (1994) Biological models for monitoring species decline: the
construction and use of data bases. Philos T Roy Soc B 344:69–75

Markovic D, Freyhof J, Wolter C (2012) Where are all the fish: potential of geographical maps to project current
and future distribution patterns of freshwater species. PLoS One 7(7):1–15

Maurer EP, Hidalgo HG, Das T, Dettinger MD, Cayan DR (2010) The utility of daily large-scale climate data in
the assessment of climate change impacts on daily streamflow in California. Hydrol Earth Syst Sci 14:1125–
1138

Maurer EP, Brekke L, Pruitt T, Thrasher B, Long J, Duffy P, Dettinger M, Cayan D, Arnold J (2014) An
enhanced archive facilitating climate impacts and adaptation analysis. Bull Am Meteorol Soc 95:1011–1019

MeybeckM, Helmer R (1989) The quality of rivers: from pristine stage to global pollution. Glob Planet Chang 1:
283–309

Momot WT (1995) Redefining the role of crayfish in aquatic ecosystems. Rev Fish Sci 3:33–63
Moore, W.H. (1969) Geologic map of Mississippi. Mississippi Geological Survey http://ngmdb.usgs.

gov/Prodesc/proddesc_16555.htm Accessed 2 February 2017
Moore MJ, DiStefano RJ, Larsen ER (2013) An assessment of life-history studies for USA and Canadian

crayfishes: identifying biases and knowledge gaps to improve conservation and management. BioOne 32:
1276–1287

Morehouse RL, PapeşM, Tobler M (2013) Predicting and mapping the potential distribution of the Painted devil
crayfish, Cambarus ludovicianus Faxon (Decapoda: Cambaridae). Southwest Nat 58:435–439

Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of
principles. J Hydrol 10:282–290

NED (2000) National Elevation Data 30 meter. National Cartography and Geospatial Center, US Geological
Survey https://nationalmap.gov/elevation.html. Accessed 14 October 2016

Neitsch SL, Arnold JG, Kiniry JR, Srinivasan R, Williams JR (2005a) Soil and water assessment tool input/
output file documentation: Verison 2005. Blackland Research Center, Texas Agricultural Experiment
Sataion, Temple

Climatic Change (2019) 154:107–123 121

http://ngmdb.usgs.gov/Prodesc/proddesc_16532.htm
https://doi.org/10.1007/s10750-017-3215-2
http://ngmdb.usgs.gov/Prodesc/proddesc_16555.htm
http://ngmdb.usgs.gov/Prodesc/proddesc_16555.htm
https://nationalmap.gov/elevation.html


Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2005b) Soil and water assessment tool theoretical documen-
tation: Verison 2005. Blackland Research Center, Texas Agricultural Experiment Sataion, Temple

Neupane RP, Ficklin DL, Knouft JH, Ehsani N, Cibin R (2019) Hydrologic responses to projected climate
change in ecologically diverse watersheds of the Gulf Coast, United States. Int J Climatol 39(4):2227–2243

Newbold T (2010) Applications and limitations of museum data for conservation and ecology, with particular
attention to species distribution models. Prog Phys Geogr 34:3–22

Nolen MS, Magoulick DD, DiStefano RJ, Imhoff EM, Wagner BK (2014) Predicting probability of occurrence
and factors affecting distribution and abundance of three Ozark endemic crayfish species at multiple spatial
scales. Freshw Biol 59:2374–2389

Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems.
Nature 421:37–42

Pearson RG (2010) Species’ distribution modeling for conservation educators and practitioners. In: Center for
Biodiversity and Conservation, American Museum of Natural History, New York pp 54–89

Perry WL, Jacks AM, Fiorenza D, Young M, Kuhnke R, Jacquemin SJ (2013) Effects of water velocity on the
size and shape of rusty crayfish, Orconectes rusticus. Freshw Sci 32:1398–1409

Phillips SJ (2005) A brief tutorial on Maxent. AT&T Research, Florham Park
Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehen-

sive evaluation. Ecography 31:161–175
Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions.

Ecol Model 190:231–259
Poff NL, Allan JD (1995) Functional-organization of stream fish assemblages in relation to hydrological

variability. Ecology 76:606–627
Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC (1997) The

natural flow regime. BioScience 47:769–784
Rahel FJ, Olden JD (2008) Assessing the effects of climate change on aquatic invasive species. Conserv Biol 22:

521–533
Reynolds J, Souty-Grosset C, Richardson A (2013) Ecological roles of crayfish in freshwater and terrestrial

habitats. Freshwater Crayfish 19:197–218
Richman NI, Boehm M, Adams SB, Alvarez F, Bergey EA, Bunn JJS, Burnham Q, Cordeiro J, Coughran J,

Crandall KA, Dawkins KL, DiStefano RJ, Doran NE, Edsman L, Eversole AG, Fureder L, Furse JM,
Gherardi F, Hamr P, Holdich DM, Horwitz P, Johnston K, Jones CM, Jones JPG, Jones RL, Jones TG,
Kawai T, Lawler S, Lopez-Mejia M, Miller RM, Pedraza-Lara C, Reynolds JD, Richardson AMM, Schultz
MB, Schuster GA, Sibley PJ, Souty-Grosset C, Taylor CA, Thoma RF, Walls J, Walsh TS, Collen B (2015)
Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea). Philos Trans R
Soc B 370:11

Searcy CA, Shaffer HB (2016) Do ecological niche models accurately identify climatic determinants of species
ranges? Am Nat 187:423–435

Sleeter BM, Sohl TL, Bouchard MA, Reker RR, Soulard CE, Acevedo W, Griffith GE, Sleeter RR, Auch RF,
Sayler KL, Prisley S, Zhu Z (2012) Scenarios of land use and land cover change in the conterminous United
States: utilizing the special report on emission scenarios at ecoregional scales. Glob Environ Change-Hum
Policy Dimens 22:896–914

Statzner B, Fievet E, Champagne JY, Morel R, Herouin E (2000) Crayfish as geomorphic agents and ecosystem
engineers: biological behavior affects sand and gravel erosion in experimental streams. Limnol Oceanogr 45:
1030–1040

Statzner B, Peltret O, Tomanova S (2003) Crayfish as geomorphic agents and ecosystem engineers: effect of a
biomass gradient on baseflow and flood-induced transport of gravel and sand in experimental streams.
Freshw Biol 48:147–163

Stites AJ, Taylor CA, Dreslik MJ, Gordon TE (2017) Using randomized sampling methods to determine
distributions and habitat use of Barbicambarus simmonsi, a rare, narrowly endemic crayfish. Am Midl
Nat 177:250–262

Sutherland WJ, Freckleton RP, Godfray HCJ, Beissinger SR, Benton T, Cameron DD, Carmel Y, Coomes DA,
Coulson T, Emmerson MC (2013) Identification of 100 fundamental ecological questions. J Ecol 101:58–67

Szabo, M.W., Osborne, E.W., Copeland Jr., C.W., & Neathery, T.L. (1988) Geologic map of Alabama.
Geological Survey of Alabama http://ngmdb.usgs.gov/Prodesc/proddesc_55859.htm Accessed 2 February
2017

Taylor CA (2002) Taxonomy and conservation of native crayfish stocks. In: Holdich DM (ed) Biology of
freshwater crayfish. Blackwell Science, Oxford, pp 236–257

Taylor CA, Schuster GA (2004) The crayfishes of Kentucky. Illinois Natural History Survey, United States

122 Climatic Change (2019) 154:107–123

http://ngmdb.usgs.gov/Prodesc/proddesc_55859.htm


Taylor CA, Schuster GA, Cooper JE, DiStefano RJ, Eversole AG, Hamr P, Hobbs HH, Robison HW, Skelton
CE, Thoma RE (2007) Feature: endangered species—a reassessment of the conservation status of crayfishes
of the United States and Canada after 10+years of increased awareness. Fisheries 32:372–389

Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull AmMeteorol
Soc 93:485–498

UK: Cambridge Univ. Press, Jelks HL, Walsh SJ, Burkhead NM, Contreras-Balderas S, Diaz-Pardo E,
Hendrickson DA, Lyons J, Mandrak NE, McCormick F, Nelson JS, Platania SP, Porter BA, Renaud CB,
Schmitter-Soto JJ, Taylor EB, Warren ML (2008) Conservation status of imperiled North American
freshwater and diadromous fishes. Fisheries 33:372–407

van Vliet MTH, Franssen WHP, Yearsley JR, Ludwig F, Haddeland I, Lettenmaier DP, Kabat P (2013) Global
river discharge and water temperature under climate change. Glob Environ Change-Human Policy Dimens
23:450–464

Walther G-R, Berger S, Sykes MT (2005) An ecological ‘footprint’of climate change. Philos Trans R Soc B 272:
1427–1432

Warren ML, Burr BM, Walsh SJ, Bart HL, Cashner RC, Etnier DA, Freeman BJ, Kuhajda BR, Mayden RL,
Robison HW, Ross ST, Starnes WC (2000) Diversity, distribution, and conservation status of the native
freshwater fishes of the southern United States. Fisheries 25:7–31

Wenger SJ, Isaak DJ, Luce CH, Neville HM, Fausch KD, Dunham JB, Dauwalter DC, Young MK, Elsner MM,
Rieman BE, Hamlet AF, Williams JE (2011) Flow regime, temperature, and biotic interactions drive
differential declines of trout species under climate change. Proc Natl Acad Sci U S A 108:14175–14180

Westhoff J, Rabeni CF (2013) Resource selection and space use of a native and an invasive crayfish: evidence for
competitive exclusion? Freshwater Sci 32:1383–1397

Westhoff J, Rosenberger A (2016) A global review of freshwater crayfish temperature tolerance, preference, and
optimal growth. Rev Fish Biol Fish 26:329–349

Westhoff J, Rabeni C, Sowa S (2011) The distributions of one invasive and two native crayfishes in relation to
coarse-scale natural and anthropogenic factors. Freshw Biol 56:2415–2431

Zhang YQ, You QL, Chen CC, Ge J (2016) Impacts of climate change on streamflows under RCP scenarios: a
case study in Xin River Basin, China. Atmos Res 178:521–534

Zhao S, Liu S, Sohl T, Young C, Werner J (2013) Land use and carbon dynamics in the southeastern United
States from 1992 to 2050. Environ Res Lett 8:044022

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Affiliations

Kevin P. Krause1 & Huicheng Chien2 & Darren L. Ficklin3 & Damon M. Hall4 & Guenter A.
Schuster5 & Todd M. Swannack6

& Chris A. Taylor7 & Jason H. Knouft1

1 Department of Biology, Saint Louis University, 1008 S. Spring Avenue, St. Louis, MO 63110, USA
2 Department of Geography, SUNY New Paltz, 1 Hawk Drive, SFB 106, New Paltz, NY 12561, USA
3 Department of Geography, Indiana University, 701 E. Kirkwood Avenue, Bloomington, IN 47405, USA
4 Department of Bioengineering, University of Missouri, 103 Anheuser-Busch Natural Resources Building,

Columbia, MO 65211, USA
5 Department of Biological Sciences, Eastern Kentucky University, 521 Lancaster Road, Richmond, KY

40475, USA
6 Engineer Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Road,

Vicksburg, MS 39180, USA
7 Illinois Natural History Survey, University of Illinois at Urbana-Champaign, 607 E. Peabody Drive,

Champaign, IL 61820, USA

Climatic Change (2019) 154:107–123 123


	Streamflow...
	Abstract
	Introduction
	Methods
	Study area
	SWAT hydrologic modeling
	Environmental predictor variables
	Crayfish distribution data
	Species distribution modeling
	Model and data analysis

	Results
	Discussion
	References


