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Abstract
For the long-term management of coastal flood risks, investment and policy strategies need to
be developed in light of the full range of uncertainties associated with mean sea-level rise
(SLR). This, however, remains a challenge due to deep uncertainties involved in SLR
assessments, many ways of representing uncertainties and a lack of common terminology
for referring to these. To contribute to addressing these limitations, this paper first develops a
typology of representations of SLR uncertainty by categorising these at three levels: (i) SLR
scenarios versus SLR predictions, (ii) the type of variable that is used to represent SLR
uncertainty, and (iii) partial versus complete uncertainty representations. Next, it is analysed
how mean SLR uncertainty is represented and how representations are converted within the
following three strands of literature: SLR assessments, impact assessments and decision
analyses. We find that SLR assessments mostly produce partial or complete precise probabi-
listic scenarios. The likely ranges in the report of the Intergovernmental Panel on Climate
Change are a noteworthy example of partial imprecise probabilistic scenarios. SLR impact
assessments and decision analyses mostly use deterministic scenarios. In conversions of
uncertainty representations, a range of arbitrary assumptions are made, for example on
functional forms of probability distributions and relevant confidence levels. The loss of quality
and the loss of information can be reduced by disregarding deterministic and complete precise
probabilistic predictions for decisions with time horizons of several decades or centuries and
by constructing imprecise probabilistic predictions and using these in approaches for robust
decision-making.
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1 Introduction

For the long-term management of local coastal flood risks, investment and policy strategies
need to be developed in light of the full range of uncertainties associated with future mean sea-
level rise (SLR). This is not an easy task due to deep uncertainties (Kwakkel et al. 2010)
involved in the assessment of future local sea-level changes. For example, it is ambiguous how
to define or produce SLR upper bounds for decision-making (Pfeffer et al. 2008; Lowe et al.
2009; Hinkel et al. 2015), mean SLR ranges diverge between process-based and semi-
empirical SLR assessment methods (Church et al. 2013a) and different assumptions on ice-
sheet processes can be made that have a major impact on projected ice-sheet contributions and
total SLR in the second half of this century and beyond (Kopp et al. 2014; DeConto and
Pollard 2016; Kopp et al. 2017). In the presence of such deep uncertainties, choices have to be
made on which uncertainties to represent and how (Bakker et al. 2017a). SLR uncertainty can
for example be summarised by likely ranges (Church et al. 2013a) or by probabilistic scenarios
that also provide information on plausible but less likely SLR futures (Kopp et al. 2014;
Jackson and Jevrejeva 2016; Nauels et al. 2017; Le Bars et al. 2017).

In the face of deep uncertainties and multiple ways of representing uncertainty, the
challenge for impact assessment and decision analysis lies in retaining decision-relevant
information about the full range of potential SLR, while converting this information to fit
decisions and context in which these are taken. This involves two challenges. First, SLR
information needs to be converted between different uncertainty representations on its way
from production to its use in impact assessments and decision analyses. In every conversion,
additional assumptions are made that are possibly not grounded in SLR physics, or informa-
tion is lost. This could alter decisions.

Second, terminology on uncertainty representations and assumptions behind these are
ambiguous in the literature, which has been a source of confusion and misinterpretation of
SLR information. For example, the upper bound of the global mean SLR that likely ranges
under the highest greenhouse gas concentration scenario in the Intergovernmental Panel on
Climate Change (IPCC) report (Church et al. 2013a) has been misinterpreted as a worst-case
upper bound (Church et al. 2013b). Another example is found in Bakker et al. (2017a), who
discussed that the likely ranges of IPCC AR5 have been interpreted in different ways, for
example as likely = 66% or likely = 90%, across SLR assessments without an explicit refer-
ence to these interpretations.

The array of uncertainty representations applied and the associated interpretation problems
has triggered a renewed debate about which method or methods to use for representing mean
SLR uncertainty. For example, Cooke (2015) argues that subjective probabilities are the only
relevant way to represent and quantify climate change uncertainty. In contrast, Bakker et al.
(2017b) and Le Cozannet et al. (2017) argue that probabilistic SLR scenarios need to reflect
deep uncertainties or imprecision in SLR assessments, and Hinkel et al. (2015) argue that
tailored high-end SLR information at different time scales is needed for different decisions and
contexts. This debate is also complicated by the absence of a shared terminology to refer to
uncertainty representations, which we consider to be a prerequisite to ensure a shared
understanding of SLR information, co-produce useful SLR information and select appropriate
impact assessment and decision analysis methods. Whereas the many methods for representing
uncertainty have generally been extensively studied in theoretical research (Dubois et al. 2000;
Walley 2000) and in related research fields, such as hydrology and structural engineering
(Krzysztofowicz 2001; Gao et al. 2010), their applications have not been systematically
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studied in the SLR literature. To our knowledge, a concise categorisation of uncertainty
representations is currently unavailable in this literature.

This paper aims to contribute to addressing these limitations by developing a typology of
uncertainty representations (Section 2) and by analysing the use of uncertainty representations
of mean SLR across SLR assessments, impact assessments and decision analyses
(Section 3). Section 4 illustrates sequences of uncertainty representation conversions
and assumptions made. Directions for a more consistent treatment of SLR uncertainty across
studies are discussed.

2 Typology of uncertainty representations

This section introduces a typology of uncertainty representations of mean SLR (Section 2.1)
and illustrates the resulting categories of uncertainty representations (Section 2.2).

2.1 Typology development

Uncertainty representations of mean SLR were categorised by answering the following three
questions:

Level 1. Do pathways of future mean sea levels depend on a plausible storyline of, for
example, greenhouse gas emissions or concentrations?
YES: SLR scenario, NO: SLR prediction

Level 2. What kind of variable is used to represent mean SLR uncertainty?
(i) DETERMINISTIC VARIABLE: deterministic representation, (ii) INTERVAL
VARIABLE: interval representation, (iii) FUZZY or FUZZY RANDOM
VARIABLE: imprecise probabilistic representation, (iv) RANDOM VARIABLE:
precise probabilistic representation

Level 3. Is SLR uncertainty fully quantified within the scenario or prediction?
YES: complete representation, NO: partial representation

The top level of the typology distinguishes between SLR scenarios and SLR predictions. In
this research, an SLR scenario is defined as a quantitative description of pathways of
future mean sea levels that depend on a plausible storyline. A SLR prediction, in
contrast, is defined as a quantitative description of unconditional pathways of future
mean sea levels in this research. A plausible storyline is a narrative of, for example,
greenhouse gas emissions (Nicholls and Tol 2006) or greenhouse gas concentrations
(Riahi et al. 2011). These rely on assumptions about future socioeconomic, political,
technological or other developments that are Bdeeply^ uncertain. Deep uncertainty implies that
multiple scenarios can be enumerated, but without specification of their likelihood and without
the ability to rank or order the scenarios on their likelihood or plausibility (Kwakkel et al. 2010).

The second level of the typology distinguishes between variable types that are commonly
used to represent uncertainty: deterministic variables, interval variables, fuzzy or fuzzy random
variables and random variables (Krzysztofowicz 2001; Gao et al. 2010). Any variable type can
be used in both scenarios and predictions. For example, a prediction using a deterministic
variable will be called a Bdeterministic prediction^ or a prediction using a random variable a
Bprecise probabilistic prediction^.
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The third level of the typology distinguishes between complete and partial SLR uncertainty
representations. The former provides a full quantification of the uncertainty within a scenario
or prediction, whereas the latter does not. In this research, an uncertainty representation that
does not quantify uncertainty below some lower percentile strictly greater than 0% or beyond
some higher percentile smaller than 100% is categorised as partial. This distinction was only
applied to precise probabilistic and imprecise probabilistic scenarios or predictions, because
deterministic and interval scenarios and predictions are complete by definition. Interval
predictions can be imprecise: for example, info-gap theory represents uncertainty by nested
uncertainty sets (Ben-Haim 2006). This case was excluded from the analysis: we are aware of
only one SLR application (Hall and Harvey 2009).

2.2 Illustration of the typology

The typology results in 12 categories of uncertainty representations. In what follows, each of
these categories is introduced by an example shown in Fig. 1. All examples use the likely SLR
ranges of the latest IPCC report under RCP 2.6 and RCP 8.5 (Church et al. 2013a). The likely
ranges were converted into other uncertainty representations by making arbitrary assumptions,
which are further investigated in Section 4.

Deterministic SLR scenarios specify one SLR value at a moment in time for two or more
greenhouse gas or other scenarios. Figure 1a displays a numerical example. In this example,
SLR will be 0.44 m by 2100 under RCP 2.6, and 0.74 m by 2100 under RCP 8.5. No
uncertainty is considered within the scenarios. A deterministic prediction suppresses uncer-
tainty and specifies a single SLR value at a moment in time. For example, Fig. 1b displays the
deterministic prediction BSLR will be 0.57 m by 2100^.

Interval SLR scenarios represent SLR uncertainty within a greenhouse gas scenario by an
interval variable: an interval of SLR with a given lower and a given upper bound. The SLR
values of an interval are not associated with any probability.1 Figure 1c displays two interval
scenarios: Bglobal mean SLR will lie between 0.28 m and 0.61 m by 2100 under RCP 2.6^ and
Bglobal mean SLR will lie between 0.52 m and 0.98 m under RCP 8.5^. An interval prediction
specifies a single SLR interval. Figure 1d displays the interval prediction Bglobal mean SLR
will lie between 0.28 m and 0.98 m by 2100^.

Complete precise probabilistic SLR scenarios represent uncertainty within a greenhouse gas
scenario by a single and fully specified probability distribution. Figure 1e provides an example
of two complete precise probabilistic scenarios: conditional global mean SLR probability
distributions under RCP 2.6 and RCP 8.5. A complete precise probabilistic prediction provides
a full specification of an unconditional probability distribution. Figure 1f displays a complete
precise probabilistic prediction that assumes that global mean SLR is normally distributed.

Partial precise probabilistic SLR scenarios represent uncertainty within a greenhouse gas
scenario by a probability range or point estimates of interest. A probability range includes
probabilistic information on the likelihood that SLR does not fall within this range. Figure 1g
displays an example of two partial precise probabilistic scenarios that together provide two 5–
95% probability ranges. Figure 1h displays a partial precise probabilistic prediction by an
unconditional median estimate and a 5–95% probability range.

1 An interval projection becomes a complete precise probabilistic projection if a uniform or other probability
distribution function is defined. Non-probabilistic decision analyses, for example minimax analysis, do not use
probabilistic information.
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Complete imprecise probabilistic SLR scenarios represent uncertainty within a greenhouse
gas scenario by imprecise probabilities, i.e. a set of fully specified probability distributions
(Dubois et al. 2000). Figure 1i displays an example of two complete imprecise probabilistic
scenarios. The interpretation is as follows: an ill-known cumulative distribution function
(CDF) is contained in a conditional probability box (P-box). Under RCP 2.6, this is the dashed
trapezoid. Figure 1j displays a complete imprecise probabilistic prediction: an unconditional P-
box. It was obtained by taking the uppermost CDF under RCP 2.6, and the lowest CDF under
RCP 8.5.

Partial imprecise probabilistic scenarios are a mixture of imprecise probabilistic and partial
probabilistic scenarios. Within a greenhouse gas scenario, SLR uncertainty is represented by
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Fig. 1 a–l Uncertainty representations of global mean sea-level rise (GMSLR) by 2100. The left panels display
GMSLR scenarios, and the right panels display GMSLR predictions
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partial probabilistic information on a set of probability distributions. Figure 1k shows two
examples of partial imprecise probabilistic scenarios: partially specified P-boxes for RCPs 2.6
and 8.5. Figure 1l displays a corresponding partial imprecise probabilistic prediction if it is
assumed that RCP 2.6 is the best-case scenario, and RCP 8.5 is the worst-case scenario.

3 Uncertainty representations of sea-level rise in the literature

Uncertainty representations of mean SLR of 147 papers were categorised across the following
three types of studies: SLR assessments (N1 = 29), impact assessments of SLR (N2 = 77) and
SLR decision analyses (N3 = 41). Details on the sample selection procedures are provided in
Supplementary Information 1, and the sample coding of these papers is provided in
Supplementary Information 2.

We distinguish between SLR impact assessments and SLR decision analyses based on their
respective aims (Hinkel and Bisaro 2015). The former aims to assess impacts of SLR, such as
the increase in the number of people at risk of flooding or the change in monetary damage
potential. Potential and residual impact assessments are distinguished. The latter include
additional coastal adaptation alternatives as compared to a benchmark, e.g. no adaptation or
continuation of an existing flood risk policy.

A decision analysis, in contrast, aims to quantify decision trade-offs to provide insights in
the preferred choice between adaptation alternatives. For example, a decision analysis can be
performed to identify one optimal alternative from a set of alternatives with one or more
decision criterions. Please note that there are many decision analysis methods, and the sample
of decision analysis papers in Supplementary Information 2 contains a limited number of
examples of some of these methods. Moreover, the distinction between a local residual impact
assessment and a decision analysis is arbitrary if the primary goals of study are to both assess
local impacts descriptively and to identify a preferred adaptation alternative.

3.1 Scientific sea-level rise assessments

Table 1 shows examples of SLR uncertainty representations that are used in SLR assessments.
Partial precise probabilistic scenarios are the most common uncertainty representation in the
SLR assessment literature. For example, Schaeffer et al. (2012) use a semi-empirical modelling
(SEM) approach to investigate mean SLR under temperature target scenarios. Uncertainty is
represented by median SLR estimates and 90% probability ranges. Horton et al. (2014) use an
expert elicitation (EE) method and report medians, first and third quartiles and Blikely^ (17–
83%) and Bvery likely^ (5–95%) SLR ranges for two RCPs. DeConto and Pollard (2016) use a
process-based modelling (PBM) approach and summarise the simulation results by ensemble
means and probability ranges of one standard deviation for RCP scenarios.

Complete precise probabilistic scenarios have been increasingly used for representing mean
SLR uncertainty in recent years. These sets of scenarios largely diverge across studies and
strongly depend on ice-sheet assumptions. For example, Kopp et al. (2014) use a PBM approach
that is combined with the EE study on ice-sheet contributions of Bamber and Aspinall (2013).
Local probability distributions of SLR are estimated by sampling from the probability distribu-
tions of the contributions of the sea-level components for the RCP 2.6, 4.5 and 8.5 scenarios.
Grinsted et al. (2015) estimate regional SLR probability distributions for Northern Europe under
RCP 8.5. Le Bars et al. (2017) investigate the effect of temperature-dependent Antarctic ice-sheet
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contributions, and estimate a probabilistic SLR scenario under RCP 8.5 that is compared to the
SLR scenarios of IPCC (Church et al. 2013a) and DeConto and Pollard (2016).

A small minority of SLR assessments uses interval predictions, deterministic scenarios or
complete precise probabilistic predictions for representing mean SLR uncertainty for time
horizons up to 2100 or beyond. For example, Rahmstorf (2007) converts temperature scenarios
from IPCC AR3 ranges into a single interval. This interval is then used as an input to a SLR
equation. The output is an SLR interval prediction, i.e. one SLR interval for 2100. Miller et al.
(2013) construct four deterministic relative SLR scenarios for 2030, 2050 and 2100 for the
mid-Atlantic US region. These include deterministic scenarios of regional oceanographic
effects and deterministic scenarios of local subsidence. An example of a complete precise
probabilistic prediction of a sea-level component for 2100 is the unconditional PDF of the
Greenland and Antarctic ice-sheet contributions in Bamber and Aspinall (2013). Note that it
has been derived from partial probabilistic expert judgements obtained from Cooke’s expert
elicitation method.

Not surprisingly, no deterministic SLR predictions were identified, and to the best of our
knowledge, these do not exist. Only few studies use complete or partial imprecise probabilistic
scenarios or predictions for representing mean SLR uncertainty. Le Cozannet et al. (2017)
construct complete possibilistic2 or imprecise probabilistic scenarios, and Abdallah et al.
(2014) a complete imprecise probabilistic prediction. The likely ranges of global mean SLR
in the IPCC AR5 report (Church et al. 2013a) provide a noteworthy example of partial
imprecise probabilistic scenarios. AR5 estimates that global mean sea level is likely to rise
by 0.26–0.55 m from 1986–2005 to 2081–2100 under RCP2.6 and 0.45–0.82 m under
RCP8.5. Likely is defined as 66–100% probability in the calibrated uncertainty language of
IPCC. Church et al. (2013b), however, state that this interpretation implies a Broughly a one-
third probability that mean SLR by 2100 may lie outside the Blikely^ range^, which arguably
is a different set of partial imprecise probabilistic scenarios.

3.2 Sea-level rise impact assessments

In contrast to SLR assessments, most assessments of SLR impacts represent mean SLR
uncertainty by a set of deterministic scenarios. SLR impacts are typically assessed with
deterministic scenarios for time horizons beyond 2050. This observation appears to be largely
independent of the type of assessment: local or global assessments, potential or residual impact
and monetised or non-monetised impacts. Table 2 illustrates this.

Local impact assessments apply various local SLR scenarios. For example, Hall et al. (2005)
apply national scenarios to analyse potential flood risk increases in England and Wales. Local
impact assessments also apply deterministic scenarios of global SLR scenarios. For example,
Cooper et al. (2013) apply Bbest^ (0.75 m) and Bworst case^ (1.90 m) SLR scenarios of Vermeer
and Rahmstorf (2009) to analyse potential area and monetary losses for the case ofMaui, Hawaii.
Ward et al. (2011) represent SLR uncertainty by taking the minimum and maximum values of the
likely global SLR ranges of the IPCC AR4 scenarios, 0.18 and 0.59 m, to analyse the potential
damage exposure increase for Jakarta. Impact studies at supranational spatial scales usually apply

2 Imprecise probability theories include possibility and necessity measures, plausibility and belief functions and
various other mathematical models (Walley 2000). Le Cozannet et al. (2017) convert partial probabilistic
projections for RCP 8.5 into possibilistic projections (Bprobability-possibility transformation^). These are then
converted into imprecise probabilities (Bpossibility-probability transformation^).
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a set of deterministic SLR scenarios from a set of climate models, for example to estimate residual
SLR impacts in Europe (Bosello et al. 2012) or global adaptation costs (Hinkel et al. 2014).

In some cases, deterministic scenarios are pragmatically specified for modelling or other
reasons. For example, Cooper et al. (2008) pragmatically specify 0.61 m (2 ft) and 1.22 m
(4 ft) SLR (2100) to analyse the potential SLR impacts on the coastal region of New Jersey,
USA. Yoo et al. (2011) pragmatically specify 0.5 m, 1 m, 2 m and 3 m SLR to analyse
potential impacts of SLR on the city of Busan, South Korea.

Deterministic predictions are also frequently applied in SLR impact assessments. For
example, Hanson et al. (2011) apply 0.5 m global mean SLR by 2070 to analyse population
and asset values exposed to coastal flooding in coastal cities around the world. Najjar et al.
(2000) apply 0.61 m (2 ft) SLR by 2095 for a potential impact assessment for the mid-Atlantic
coastal region. Neumann et al. (2015) apply 0.21 m SLR by 2060 to assess the increase in
global exposure due to SLR. Kont et al. (2003) apply 1 m of SLR by 2100 to assess potential
SLR impacts for Estonia.

Some impact assessments use probabilistic uncertainty representations, such as complete
precise probabilistic predictions or complete precise probabilistic scenarios. The latter are
applied in Diaz (2016) and Lin and Shullman (2017). An example of an application of a
complete precise probabilistic prediction of global mean SLR is found in Purvis et al. (2008).
An unconditional SLR probability distribution is obtained by fitting a triangular probability
distribution to the lower and upper bounds of earlier IPCC scenarios.

3.3 Sea-level rise decision analyses

Table 3 shows examples of SLR uncertainty representations that are used in decision
analyses. SLR decision analyses appraise coastal risk management and adaptation
investments or policies in the face of relative sea-level change. The mean SLR
uncertainty representations that are frequently applied in these decision analyses are
similar to the ones applied in SLR impact assessments and are again different from the
ones that are frequently applied in SLR assessments. Time horizons of decision
analyses diverge and depend on the characteristics of the adaptation alternatives.
However, decision analyses are in many cases either about or include structural flood
protection alternatives, and these alternatives typically require time horizons of several
decades or longer.

A majority of SLR decision analyses represent mean SLR uncertainty by deterministic
scenarios. The SLR scenarios applied thereby diverge across studies. For example, Kirshen
et al. (2008) apply 0.6 and 1.0 m (2100) to study damage and costs of adaptation alternatives in
Metro Boston, whereas King et al. (2016) apply 1.0 m, 1.4 m and 2.0 m local mean SLR
(2100) in a cost-effectiveness approach (CEA) to support flood risk management in California.
One explanation for such differences is provided by the variation in high-end scenarios that are
specified to represent a SLR worst-case upper bound for flood risk management purposes. For
example, Koks et al. (2014) consider next to a moderate scenario, a worst-case scenario of
2.0 m of local SLR by 2100 for the analysis of coastal flood risk and adaptation alternatives in
Belgium. Lonsdale et al. (2008) apply deterministic SLR scenarios up to 5 m to analyse
adaptation responses in the Thames Estuary under a surprise scenario of a rapid collapse of the
West Antarctic ice sheet.

Deterministic SLR predictions are also frequently applied in decision analyses, and some
decision analysis methods tend to use these if the aim is to find an alternative that performs
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Bbest^ across states of the world. An example is found in Raaijmakers et al. (2008), in which a
spatial multi-criteria analysis (MCA) approach is developed. MCAs generally need single-
valued effect scores for each decision criterion to determine a single ordering of alternatives.
The case study application uses a deterministic SLR prediction for 2051 to achieve this.

Some decision analysis methods may need some modifications to allow for other uncer-
tainty representations. For example, Eijgenraam et al. (2017) apply deterministic SLR scenar-
ios in a cost-benefit analysis (CBA) of dike investments and flood protection standards. In
related work, a Monte Carlo simulation was performed of uncertain variables to investigate the
robustness of the results of the CBA (Kind 2014). The latter uses a correlation between
damages and optimal protection for computational reasons. Robust decision-support methods
do not necessarily use different uncertainty representations as CBA, but may help to select a
preferred alternative across SLR scenarios. For example, Brekelmans et al. (2012) apply
deterministic SLR scenarios in regret analyses.

SLR interval scenarios and interval predictions are rarely applied in decision analyses. An
example is found in Klijn et al. (2012), which uses a 0.15–0.35 m SLR interval prediction for
the year 2050. Various robust decision-support methods can apply SLR interval predictions,
but this is not commonplace. The same holds for partial and complete imprecise probabilistic
SLR scenarios and predictions, although this might change in the future due to recent
development of methods that can use these. We mention Buchanan et al. (2016) and
Dawson et al. (2018) as examples.

SLR decision analyses that apply complete precise probabilistic scenarios or predictions
can be divided in applications without and with investment flexibility. An example of the first
is found in Wong et al. (2017): probabilistic SLR scenarios are applied in a CBA. The latter are
typically found in classical real options approaches (ROAs). For example, Abadie et al. (2017)
apply complete precise probabilistic scenarios for RCPs, and Woodward et al. (2014) apply a
complete precise probabilistic prediction. Two types of these representations can be distin-
guished. The first type considers a probability distribution of SLR for a year in the future and
assumes a gradual change of mean sea levels between two decision moments. The second type
considers mean sea level to randomly change over time by assuming a stochastic process.
Woodward et al. (2014) provides an example of the first, whereas Abadie et al. (2017) provides
an example of the latter.

4 Conversions between uncertainty representations

The literature reviewed shows that diverse conversions between uncertainty representations are
applied in the chain from producing SLR information to using this information for coastal
decision-making. These conversions deserve attention as they may introduce additional
assumptions or lead to a loss of information, both of which may misguide the use of SLR
information in decision-making. We illustrate this by investigating chains of uncertainty
representations and assumptions made for five cases.

The first case is the one of IPCC AR5, which represents uncertainty in the form of partial
imprecise probabilistic scenarios (i.e. the likely ranges). To convert a set of SLR simulations
from different climate models into these ranges, two conversions between uncertainty repre-
sentations and a number of assumptions were made. First, a functional form was assumed and
a confidence level was selected to generate partial probabilistic scenarios from SLR simula-
tions. Specifically, the CMIP5 model spread was treated as a normal distribution, and a 90%
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probability range was generated for each RCP scenario (Church et al. 2013c). Next, these
ranges were converted into partial imprecise probabilistic scenarios by interpreting them as
likely (66–100%) ranges. These, in turn, were interpreted again as partial precise probabilistic
scenarios by other assessment studies (Bakker et al. 2017a).

The second case is the construction of a complete precise probabilistic prediction from
IPCC AR4 likely ranges illustrated by Hunter et al. (2013). The chain of uncertainty repre-
sentations starts from the 5–95% model-based ranges of IPCC AR4. These ranges are
converted into complete precise probabilistic scenarios by assuming a SLR probability
distribution function: a normal and a raised cosine distribution are applied. Next, the
probabilistic SLR scenario under the A1FI emission scenario is selected to determine the
vertical distance that an asset needs to be raised to keep the flood probability the same as today.
Hunter et al. (2013) use this scenario Bbecause this is the one that the world is broadly
following at present^. Following our definition, this corresponds to an uncertainty represen-
tation by a complete precise probabilistic prediction.

The third case is the construction of an interval prediction from IPCC AR5 likely ranges as
illustrated by Bierkandt et al. (2015). The authors take the upper bound of the IPCC AR5 likely
range for RCP 8.5, 1-m global mean SLR by 2100, and apply it to assess potential impacts of
SLR on US power plants. This involves two key assumptions. The first assumption made is
that the SLR upper bound under RCP 8.5 is an expected upper bound. This interpretation
corresponds to the conversion of a partial imprecise probabilistic scenario of IPCC into an
interval scenario. Note that it is obtained if it is assumed that likely = 100%. The second
assumption made is that the RCP 8.5 scenario is the greenhouse gas concentration scenario
Bexpected to occur without effective mitigation policies^ (Bierkandt et al. 2015). This as-
sumption converts the interval scenarios into an interval prediction.

The fourth case consists in combining SLR information from multiple studies into deter-
ministic scenarios. Antonioli et al. (2017) construct and apply deterministic SLR scenarios by
combining two SLR scenarios with different uncertainty representations: the likely ranges of
IPCC AR5 (Church et al. 2013a) and the interval prediction of Rahmstorf (2007). The latter
representation was investigated in Section 3.1. First, the SLR scenario under RCP 8.5 is
converted into an interval scenario, and the SLR range of Rahmstorf (2007) is added as a
second interval scenario. Next, these two interval scenarios are converted into four determin-
istic scenarios by selecting the minimum and the maximum values of the interval scenarios.
Note, however, that the conversion between interval and deterministic representations does not
have to make such an ad hoc selection. Instead, it may also provide a discrete approximation of
an interval. Hallegatte et al. (2011), for example, approximate an SLR interval prediction of
zero to 1.25 m by steps of 0.25 m.

The fifth case consists in combining SLR information from multiple studies into a complete
imprecise probabilistic prediction. To achieve this, a fuzzy interval of SLR has to be con-
structed first, which can then be converted into an imprecise probabilistic prediction. A fuzzy
interval specifies an interval with fuzzy bounds rather than crisp, i.e. single-number, upper and
lower bounds. A fuzzy interval consists of a kernel or core, which is the crisp set that contains
elements that have membership one, and the bounded support, which contains elements that
have nonzero membership (Dubois et al. 2000). An illustration of fuzzy intervals and their
conversion into a complete imprecise probabilistic prediction is provided in Supplementary
Information 1.

Abdallah et al. (2014) obtain the core of a fuzzy interval of SLR by converting the SLR
scenarios of AR4 into an interval prediction, which is combined with the SEM study of
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Rahmstorf (2007). Specifically, the authors construct an SLR interval with a lower bound of
the AR4 model-based range under the SRES B1 scenario and define an upper bound that
exceeds the likely range under the SRES A1FI scenario by 0.2 m. The intersection of this
interval and the one of Rahmstorf (2007) is used as the core of the fuzzy interval. To derive the
support of the fuzzy interval, a lower bound of zero is assumed and the study of Pfeffer et al.
(2008) is used to define an upper bound. Lastly, three different functional forms of the
membership function are considered, and each of these fuzzy intervals is converted into a
complete imprecise probabilistic prediction.

5 Ways forward

SLR uncertainty representations in the decision-making literature are driven by the choice and
information requirements of decision-support methods. From this perspective, the reviewed
literature shows a tendency to use deterministic scenarios, deterministic predictions and
complete precise probabilistic predictions. This is probably due to the fact that this kind of
SLR information can be directly used in Bpredict-then-act^ approaches to decision-making
(Weaver et al. 2013), such as CBA or ROA (Watkiss et al. 2015). Deterministic predictions do
not communicate how sensitive SLR impacts or decision outcomes are to SLR uncertainty, and
this information may be essential to inform coastal adaptation decision-making. Therefore, one
has to be cautious with the use of deterministic SLR predictions and decision-support methods
that may use these to inform decisions across states of the world, such as multi-criteria
analysis. Section 3 also pointed out that some other decision-support methods, such as classical
ROA methods,3 use complete precise probabilistic predictions by design. ROA methods
analyse future decisions, and this increases the length of the time horizon as compared to
one-shot decisions that are taken now. Complete precise probabilistic scenarios across RCPs
may not differ much up to 2030 or 2040 or further at some locations (Kopp et al. 2014; Le
Cozannet et al. 2015). However, long-term decision analyses that apply complete precise
probabilistic SLR predictions well beyond such time horizons ignore the theoretical difficulties
to assign probabilities to greenhouse gas emissions (Wong et al. 2014).

In recent years, some global and local impact assessments (Diaz 2016; Lin and Shullman
2017) have applied complete precise probabilistic scenarios of Kopp et al. (2014). However,
long-term potential flood impacts can be dramatically higher under other ice-sheet assump-
tions, for example Kopp et al. (2017). The usefulness of one set of complete precise
probabilistic scenarios for long-term adaptation decision-making needs to be critically
questioned given their consequences for estimated impacts, and if used, the choice of scenarios
has to be made with the local decisions and context, such as economic and technical lifetimes,
fixed and variable costs, societal intolerance to uncertainty and policy objectives, in mind.

A promising way forward is offered by complete or partial imprecise probabilistic SLR
scenarios and complete or partial imprecise probabilistic predictions, and their use in ap-
proaches for robust decision-making (see example 5 in Section 4). Both of these uncertainty
representations can be derived in a straightforward manner from the complete and partial
precise probabilistic scenarios offered by the SLR assessment literature. Imprecise

3 Classical ROA methods analyse the value of investment flexibility in stochastic settings (Dixit and Pindyck
1994). Recent methods have started to explore imprecise probabilistic concepts, such as probability thresholds
(Lempert et al. 2012) or multiple SLR priors (Dawson et al. 2018).
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probabilistic scenarios can combine the scenarios from multiple studies without losing infor-
mation, which is one core requirement for decision-making given the ambiguity between
expert opinions and studies. For example, one could combine the AR5 scenarios with recent
probabilistic SLR scenarios. These have fatter tails than earlier ones, because new but
uncertain physical processes in ice-sheet dynamics are considered (Kopp et al. 2014;
DeConto and Pollard 2016; Kopp et al. 2017; Le Bars et al. 2017). Imprecise probabilistic
scenarios can be further converted into an imprecise probabilistic prediction by combining
these across greenhouse gas scenarios. This requires to assume a worst-case and a best-case
scenario. While this is a difficult assumption to make, it is made implicitly by using RCP2.6 as
the best case and RCP8.5 as the worst case.

Imprecise probabilistic predictions can be used for robust decision-making in at least two
ways. First, robust decision-support methods can be considered that apply either complete or
partial imprecise probabilistic predictions. To date, few SLR decision analyses have done so
(Section 3.3). Second, a complete or partial imprecise probabilistic prediction can be used to
formulate an interval prediction that is in line with the decisions and context at hand. For
example, an imprecise probabilistic prediction leaves the choice of the decision-relevant
percentiles and the worst case considered to decision-makers. A risk-averse decision-maker
could e.g. choose a 95th or 99th percentile of a worst-case probability distribution from a
complete imprecise probabilistic prediction. Such interval predictions can then be used in
robust decision-support methods that can apply these, for example Brobust optimisation^ (Ben-
Tal et al. 2009) or minimax or regret analyses (Giuliani and Castelletti 2016). Many other
approaches have been advocated to support robust decision-making on climate change adap-
tation alternatives (Hall et al. 2012; Kwakkel et al. 2016). Yet, SLR applications of various
approaches for robust decision-making have remained relatively scarce.

This paper has not systematically investigated the interplay between the choice of SLR
uncertainty representations and the choice of impact assessment or decision analysis methods
in a given decision context (e.g. Heal and Millner 2014). This constitutes an important area of
future research, specifically because recent literature has emphasised that efforts to produce
SLR information should start from the perspective of the users and decisions they are facing
(Kunreuther et al. 2013; Hinkel et al. 2015; Weaver et al. 2017; Helgeson 2018). This includes
the choice of uncertainty characterisations appropriate for a given decision context and
decision-support methods relevant for that context, as well as for the production and presen-
tation of SLR information in scientific assessments. The presented typology could be applied
for such in-depth analyses.

This paper has restricted attention to representing mean SLR uncertainty due to climate
change. However, these methods are also applicable to other sea-level uncertainties, for
example to land subsidence or changes in extreme sea levels.

6 Conclusions

Uncertainty representations are essential to be able to represent uncertain information in
geophysical studies about future mean sea-level rise (SLR), in assessments of impacts of
SLR and in analyses of long-term adaptation decisions. However, coastal decision-making
may be misguided if an uncertainty representation of SLR is selected that does not match with
the full range of SLR information that is available or that does not match with the decisions
and context in which these are taken. Specifically, two issues arise.
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First, while SLR assessments tend to use partial or complete precise probabilistic scenarios,
the majority of SLR impact assessments and decision analyses represent mean SLR uncer-
tainty by deterministic scenarios. In converting from the former to the latter, information that
may be essential for decision-making is lost and arbitrary additional assumptions that may
misguide decision-making are made.

Second, there is ambiguity about uncertainty representations within the SLR assessment
literature. On the one hand, complete precise probabilistic SLR scenarios are produced that can
be directly applied or easily converted into formats suitable for decision-making. On the other
hand, it is questioned whether precise probabilities can be quantified both within and beyond
likely ranges, amongst others due to deep uncertainty in ice-sheet responses. The partial
probabilistic scenarios attained when not quantifying the tails, however, cannot be applied in a
decision analysis without additional assumptions on for example lower and upper SLR bounds.

Both of these issues can be addressed by using common uncertainty representations across the
SLR assessment, impact assessment and decision analysis literature. This would avoid losing
information or making arbitrary assumptions in converting between types of studies. Specifically,
our analysis suggests to (i) disregard deterministic and complete precise probabilistic predictions
for long-term adaptation decisions and (ii) construct imprecise probabilistic predictions and use
these in approaches for robust decision-making. Furthermore, the application of our framework
for referring to uncertainty representations can contribute to resolving confusion or misinterpre-
tation about SLR information, for example about the meaning of likely ranges.
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