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Abstract
Using an ensemble of 10 statistically downscaled global climate model (GCM) simulations, we
project future climate change impacts on the state of Indiana (IN) for two scenarios of greenhouse gas
concentrations (a medium scenario—RCP4.5 and a high scenario—RCP 8.5) for three future time
periods (2020s, 2050s, 2080s). Relative to a 1971–2000 baseline, the projections show substantial
changes in temperature (T) for IN, with a change in the annual ensemble mean T for the 2080s
RCP8.5 scenario of about 5.6 °C (10.1 °F). Such changes also indicate major changes in Textremes.
For southern IN, the number of days with daily maximum T above 35 °C (95 °F) is projected to be
about 100 days per year for the 2080s RCP8.5 scenario, as opposed to an average of 5 days for the
historical baseline climate. Locations in northern IN could experience 50 days per year above 35 °C
(95 °F) for the same conditions. Energy demand for cooling, as measured by cooling degree days
(CDD), is projected to increase nearly fourfold in response to this extreme warming, but heating
demand as measured by heating degree days (HDD) is projected to decline by 30%, which would
result in a net reduction in annual heating/cooling energy demand for consumers. The length of the
growing season is projected to increase by about 30 to 50 days by the 2080s for the RCP8.5 scenario,
and USDA hardiness zones are projected to shift by about one full zone throughout IN. By the
2080s, all GCM simulations for the RCP8.5 scenario show higher annual precipitation (P) over the
Midwest and IN. Projected seasonal changes inP include a 25–30% increase inwinter and spring by
the 2080s for the RCP8.5 scenarios and a 1–7%decline in summer and fallP (although there is a low
model agreement in the latter two seasons). Rising T is projected to cause systematic decreases in the
snow-to-rain ratio from Nov-Mar. Snow is projected to become uncommon in southern IN by the
2080s for the RCP8.5 scenario, and snowfall is substantially reduced in other areas of the state. The
combined effects of these changes in T, P, and snowfall will likely result in increased surface runoff
and flooding during winter and spring.
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1 Introduction

Regional studies of climate change (CC) are instructive because of the expected consistency of
impacts over similar geographical areas. States in the Midwestern region of the USA are a case
in point and they are frequently analyzed together as a homogeneous region (e.g. Winkler et al.
2012; USGCRP 2017; Byun and Hamlet 2018). The Midwestern states, however, exhibit
considerable variability in climate with both latitude and longitude. For example, the western
and northern portions of the Midwest are considerably drier than the eastern and southern
portions of the domain, and there are substantial increases in temperature from north to south.

In addition to better characterizing subregional heterogeneity, there is a need to provide CC
information at scales that support local planning efforts and that facilitate meaningful engagement
with diverse stakeholders whose interests are affected by climate. Urban planners in Minneapolis,
Chicago, Indianapolis, and Cincinnati, for example, face similar kinds of problems related to CC
that are affecting the Midwest as a whole (e.g., increases in extreme heat, humidity, and extreme
precipitation), but the design of sustainable and resilient infrastructure in the four cities requires
detailed CC projections that reflect the distinct baseline conditions for each city and the local
effects of CC. One useful way to subset a region such as the Midwest, therefore, is to focus on
climate change impacts at multiple administrative units, such as states, counties, and cities.

In this study, we provide CC projections at a fine spatial scale for the state of Indiana (IN) in
the USA using statistically downscaled gridded data sets based on the Coupled Model
Intercomparison Project, Phase 5 (CMIP5, Taylor et al. 2012) associated with the Intergov-
ernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5). This detailed
statewide study supports the Indiana Climate Change Impacts Assessment (IN CCIA)
(http://www.purdue.edu/discoverypark/climate/in-ccia/), led by the Purdue Climate Change
Research Center, in partnership with the University of Notre Dame, Indiana University, the
Midwestern Regional Climate Center, and Ball State University.

2 Regional climate change context

For the two most widely used greenhouse gas concentration scenarios, Representative Con-
centration Pathways (RCP) 4.5 and 8.5 (Moss et al. 2008) (representing “medium” and “high”
twenty-first century greenhouse gas concentration trajectories respectively), the Midwestern
United States is projected to experience profound changes in climate by 2100, especially for
(T). Projections for annual mean T over the Midwestern United States from 31 global climate
models (GCMs) for the RCP8.5 scenario show an ensemble mean increase in T of about 6.5 °C
(11.7 °F) by 2100 relative to the historical 1971–2000 baseline (Fig. S1) (Byun and Hamlet
2018). The projected change in the annual ensemble mean T for RCP4.5 over the Midwestern
United States is about 3.3 °C (5.9 °F) by 2100 relative to the 1971–2000 baseline. The upper
tail of the annual mean T distribution, represented by the 97.5th percentile of the 31 GCM
projections for RCP8.5 (i.e., a “worst-case” scenario), is nearly 10 °C (18 °F) warmer than the
historical baseline by 2100. The change in ensemble mean T are for the Midwest is about
1.7 °C (3.1 °F) larger than the projected global average T increase over land reported by the
IPCC (~ 4.8 °C (8.6 °F) by 2100 for RCP 8.5) (IPCC AR5 2013). As is apparent from Fig. S1,
the signal-to-noise ratio for air temperature is very large, so detecting temperature shifts of this
magnitude over time will not be difficult or ambiguous from a statistical perspective (Byun and
Hamlet 2018). For example, by the 2050s, the 2.5th percentile of the GCM simulations is
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already larger than the simulated 97.5th percentile for the mid-twentieth century climate.
Consistent with results at the global scale (IPCC 2013), meaningful differences in annual air
T between a “medium” (RCP 4.5) and “high” (RCP 8.5) emissions scenario are not evident
until after the 2040s, suggesting that our collective ability to change T trajectories over the next
25 years may be minimal, even if concerted efforts are focused on reducing relatively short-
lived greenhouse gasses such as methane or nitrous oxide (Smith and Mizrahi 2013). Changes
in summer T show relatively little spatial variability across the Midwestern United States,
whereas changes in winter T are largest in the northernmost and smallest in the southernmost
parts of the domain (primarily due to snow-albedo and water-vapor feedbacks and differences
in the relative importance of outgoing longwave radiation in winter) (Byun and Hamlet 2018).
As a result, the existing latitudinal gradient in winter-mean T over the Midwest is projected to
become less pronounced over time.

Annual precipitation (P) totals over the Midwest are projected to increase for all models by
the 2080s for RCP 8.5, but the changes are most pronounced in winter (DJF) and spring
(MAM) (Fig. S2). Mean changes in summer (JJA) and fall (SON), by comparison, are
relatively small and the direction of change during these seasons is not consistent across the
different GCM projections (Fig. S2; Byun and Hamlet 2018). In other words, the signal-to-
noise ratio for projected P change is relatively high in winter and spring and relatively low in
summer and fall. Even though these results are downscaled, it is important to note that GCMs,
because of their coarse spatial resolution, currently are not able to explicitly capture changes in
small-scale convective storms. As a result, some caution should be exercised in interpreting
warm-season P statistics over IN, for which a substantial fraction of P is associated with small-
scale convective storms. This also implies that, in assessing changes in summer P, the use of
dynamical downscaling using high-resolution regional climate models is preferred due to the
ability of such models to explicitly simulate convective storms in a physically based manner
(see e.g., Liu et al. 2016; Prein et al. 2018). For similar reasons, we do not attempt to
downscale GCM-simulated wind speed in this study.

We also note that there are some important linkages between changes inP and T, particularly in
summer. It has been commonly found in past studies, for example, that the driest GCM scenarios
in summer tend to also have the largest increases in T (see e.g., Rupp et al. 2013). We show in the
results section below that this is also the case for IN, but that there are additional connections
between strong warming and wetter conditions in the Midwest region.

3 Data and methods

3.1 Statistically downscaled CMIP5 climate projections

A comprehensive assessment of CC impacts in Indiana requires an integrated approach using
several different kinds of observed data sets and downscaling approaches. Historical baselines
for this study are provided by 1/16th degree latitude-longitude (~ 5 × 7 km) gridded meteoro-
logical data sets from 1915 to 2013 prepared over the Great Lakes and Midwestern states
(Byun and Hamlet 2018). These historical data are corrected to account for precipitation gauge
undercatch as a function of precipitation type (i.e., snow, mixed rain and snow, and rain) and
wind speed. Statistical downscaling techniques used here are based on monthly GCM simu-
lations and provide a range of expected results based on an ensemble of 10 GCM projections
selected to capture the range of results from 31 different models (Byun and Hamlet 2018). As
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used here, statistical downscaling facilitates an informed sensitivity analysis of the effects of
changing climate on IN as a function of future greenhouse gas concentration scenarios.

Dynamical downscaling using high-resolution regional-scale climate models can provide
physically based simulations of impacts that may not be adequately captured by statistical
downscaling (e.g., interarrival time of storms, extreme wind, extreme humidity, precipitation
from summer convective storms, and lake-effect snow). Dynamical downscaling, however,
because of its much greater computational requirements, is often is limited to the use of a
single large-scale (global) forcing scenario, and therefore does not evaluate the range of GCM-
derived uncertainty that statistical downscaling can more easily accommodate. In addition,
after applying bias corrections based on observed probability distributions, statistical down-
scaling is particularly apt for evaluating projections of extreme T and P at fine spatial scales
(Schoof and Robeson 2016; Byun and Hamlet 2018). Thus the two downscaling approaches
complement each other by addressing different needs. For the remainder of this paper,
however, we focus solely on results from statistical downscaling.

Climate change projections in this paper are evaluated using a suite of GCM simulations from
the Coupled Model Intercomparison Project, Phase 5 (CMIP5; Taylor et al. 2012). Course-
resolution GCMoutput is downscaled by the Hybrid Delta (HD) statistical downscaling approach
(Hamlet et al. 2013; Tohver et al. 2014; Byun and Hamlet 2018) to 1/16th degree grid resolution
(~ 5 × 7 km). As the name suggests, the HD is a hybrid approach combining monthly shifts in the
T and P probability distributions derived from the well-known Bias Correction and Spatial
Downscaling (BCSD) approach (Wood et al. 2002, 2004) with observed storm characteristics
and accurate daily time series behavior (including extremes) deriving from gridded station
observations. The HD approach produces a long time series of observed variability (1915–2013
in our case), superimposed on systematic changes in monthly probability distributions deriving
from GCM simulations of future climate. Thus the HD future projections have the same sample
size and essentially the same time series behavior as the historical baseline. A specific year, month,
or day from the future time series can be directly compared to its historical counterpart (e.g., water
year 1933 from the historical baseline can be directly compared to its future counterpart, water
year “cc-1933”). These features of the HD make it very useful for calculating long-term climate
statistics and estimating hydrometeorological extremes, because the historical and future products
all have the same large sample size (99 years of daily data) and incorporate realistic storm and
drought characteristics deriving from a long historical record. The strengths of the approach also
imply some limitations, however, since the number of dry and wet days, the size and interarrival
time of storms, and other contingent characteristics are inherited from the historical record and do
not change in the future projections. Tohver et al. (2014), and Byun and Hamlet (2018) provide
additional technical details on the HD approach.

For each greenhouse gas scenario, an ensemble of 10 GCM projections from the CMIP5
archive have been statistically downscaled for the 2020s (2011–2040), 2050s (2041–2070),
and 2080s (2071–2100) using the HD approach over the entire Midwest region (Byun and
Hamlet 2018). Methods used in selecting the 10 representative GCMs from a larger ensemble
of 31 GCMs are reported in more detail by Byun and Hamlet (2018), but we give a brief
overview here to help orient the reader. Using 31 GCMs from the CMIP5 archive, changes in
annual T and P were calculated over the Midwest for the RCP 8.5 emissions scenario for the
2080s. The performance of the models in reproducing observed climate in the Midwest was
also evaluated, and themodels were ranked according to their performance. Three subsets of the
GCM scenarios were then selected based on two separate criteria: (a) model performance (top
half of the performance ranking) and (b) ability of the subset to capture the central tendency and
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range of changes in T and P from the full ensemble. The first subset is a single model
representing the central tendency of the entire 31-member ensemble. The second subset adds
five models from the outer perimeter of the delta Tand P space (total of six ensemble members).
The third subset adds four additional members from an inner circle (total of 10 ensemble
members) to strengthen sampling across the probability distribution (see Fig. 5 from Byun and
Hamlet 2018). Although the subsets are constructed using annual changes in T and P, Fig. S2
shows that the 10-member ensemble also captures the range and central tendency of the full 31-
member ensemble for different seasons reasonably well. For the analyses that we show in this
paper, unless otherwise noted, the full 10-member ensemble is used.

The end products produced by the HD downscaling method are gridded daily data sets at 1/
16th degree resolution that can be masked to produce summary results at a wide range of
spatial scales including state- or county-wide averages, results for specific cities, or detailed
statewide maps. In addition to the summary results produced for this paper, these data have
been provided to several other working groups participating in the INCCIA to support their
analyses, as reported in the other papers that make up this special issue.

3.2 Data processing methods for summary results

The analyses presented in this paper are based on three types of basic data processing
techniques, which are outlined in Table 1. We will use abbreviated descriptions in figure
captions to identify the method used to produce each figure. For example, Fig. 1 is a product

Table 1 Overview of data processing approaches used to generate figures and tables

Overview of approach Examples Notes

Type I Data are analyzed as a time
series for each grid cell,
and the results of the time
series analysis (a single
value for each cell) are
then presented as a spatial
map over some domain
of interest.

Mean, variance, change relative
to some base period, ratios of
snow to P, extreme values,
ensemble mean, etc. extracted
from the time series for each
cell and plotted as a map
(color bar or contour plot).

In this paper, the domain
of interest is mostly IN,
but can be any subset
of this domain.

Type II Data are averaged in space for
some domain of interest
for each time step, and
these single values for each
time step are then plotted
as a line graph with time in
the X axis.

Domain average values of P or
T plotted as an annual time
series to show the effects of
historical variability. Ranges
can be shown by processing
multiple GCMs as a separate
time series and then
statistically analyzing the
ensemble at each time step
(e.g., Fig. S1).

Any time step of interest
can be used, but
typically monthly or
annual values are
plotted.

Type III Data are aggregated and/or
averaged in space and time
to produce a single value
for each space/time data
set. A single value may
also be extracted for each
calendar month, to
produce a composite mean
plot of the seasonal cycle.

Percent change in P for the
Midwest for a group of
GCMs to produce a range
of values (e.g., Fig. S2).
Monthly domain-average
changes in T or P for a
group of GCMs (e.g. Fig. 1).
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produced using Type III data processing, with data averaged in space over the entire domain
(IN), and then presented as a composite mean plot.

4 Results and discussion

This section is divided into three main subsections, the first focusing on T and P impacts, the
second focusing on impacts to growing-season length and U.S. Department of Agriculture
(USDA) hardiness zones, and the third on impacts to heating and cooling degree days.

4.1 Summary of temperature and precipitation changes

4.1.1 Temperature changes

Similar to the rest of the Midwest and Great Lakes region, T-related impacts are expected to be
substantial in Indiana (Fig. 1). By the mid-twenty-first century, T changes are more pronounced
in summer than in winter. March and November show systematically lower amounts of
warming than other months, and by the 2050s the largest temperature changes are in August.
As expected, temperature changes are systematically larger for RCP 8.5 than for RCP 4.5 and
increase with time for each greenhouse gas scenario (see also Fig. S1).

Spatial patterns of warming are somewhat dependent on season, but in general, there is
relatively little spatial variability over IN. Table 2A summarizes the change in T for each time
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Fig. 1 Top panels: Monthly changes in T averaged over IN relative to a 1971–2000 baseline for the 2020s (2011–
2040), 2050s (2041–2070), and 2080s (2071–2100) with ensemble range shown separately for two emissions
scenarios (RCP4.5 and RCP8.5). Bottom panels: Monthly % changes in P relative to a 1971–2000 baseline with
ensemble range for the 2020s, 2050s, 2080s RCP4.5 RCP8.5. [Method: type III, one value per calendar month
averaged in time and space for each GCM scenario, and plotted as a range and central tendency for each month]
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period and emissions scenario. Note that the spatial standard deviation of changes in T is much
smaller than delta T for all seasons.

The annual number of frost days (days with Tmin < 0 °C (32 °F)) in Indiana decreases
steadily during the twenty-first century (Fig. 2), although there are still a relatively large
number of frost days in winter even for the most extreme warming scenario investigated
(2080s RCP8.5). Northern IN, for example, is projected to experience a 45% decrease in the
number of frost days (from 135 per year for the baseline), but still has about 75 frost days per
year on average even for the 2080s RCP8.5 scenario.

The number of days with extreme hot temperatures (Tmax > 35 °C (95 °F)) in Indiana is
projected to increase dramatically with warming (Fig. 3). By the 2080s, the RCP8.5 scenario
shows extreme changes in the frequency of very hot days, especially in southern IN. In
Evansville (in the southwest corner of the state), for example, the ensemble average number
of very hot days increases to about 100 days per year from about 10 for the historical baseline
climate. Table S1 shows the baseline and future projections of the number of extreme hot days
for selected urban areas in Indiana. In northern IN, the ensemble mean number of extreme hot
days increases to about 60 days per year on average for the 2080s RCP8.5 scenario from a
historical baseline of about 3 days per year.

Although these projections point unambiguously to important T impacts in theMidwest and IN,
there are some important caveats to be made. To begin with, an examination of historical trends in
annual average T (Fig. S3) and the number of days with statewide average maximum T above
32.2 °C (90 ° F) (Fig. S4) shows that natural climate variability in the twentieth century (and
particularly the megadroughts of the Dust Bowl years in the 1930s and 1940s) has played an
important role in determining annual average and extreme high T regimes in IN. The extreme
drought conditions during the Dust Bowl years, for example, resulted in approximately 35 days per
year with daily maximum T above 32.2 °C (90 °F). Since 1960, the average number of days above
32.2 °C has decreased to about 15 days per year on average, with no significant trend since 1960
(Fig. S4). One study (Mueller et al. 2016) has argued that increased evaporation due to changes in
crops (increasing leaf area index and evapotransiration) and increasing use of irrigation may have

Table 2 (A) Projected annual and seasonal temperature changes (°C) over Indiana. The first value is the spatially
averaged, ensemble mean temperature change. The value in parentheses is the spatial standard deviation of the
ensemble mean delta T over Indiana. (B) Projected annual and seasonal precipitation changes (%) over Indiana.
The first value is the spatially averaged, ensemble-mean, percent change in P. The value in parentheses is the
spatial standard deviation over Indiana

A
GHG scenarios Future periods Annual (°C) Spring (°C) Summer (°C) Fall (°C) Winter (°C)

RCP4.5 2020s 1.63 (0.10) 1.44 (0.11) 1.68 (0.10) 1.86 (0.10) 1.56 (0.11)
2050s 2.71 (0.10) 2.34 (0.12) 2.83 (0.11) 2.82 (0.10) 2.86 (0.13)
2080s 3.29 (0.11) 2.81 (0.11) 3.70 (0.11) 3.46 (0.12) 3.20 (0.14)

RCP8.5 2020s 1.73 (0.10) 1.36 (0.12) 1.85 (0.10) 1.80 (0.10) 1.89 (0.12)
2050s 3.44 (0.11) 2.85 (0.12) 3.87 (0.12) 3.59 (0.11) 3.44 (0.17)
2080s 5.60 (0.13) 4.54 (0.12) 6.56 (0.13) 6.08 (0.13) 5.22 (0.26)

B
GHG scenarios Future periods Annual (%) Spring (%) Summer (%) Fall (%) Winter (%)

RCP4.5 2020s 1.78 (1.72) 3.75 (1.88) − 1.44 (1.84) − 3.89 (2.91) 8.69 (2.42)
2050s 6.05 (1.67) 12.70 (1.81) − 1.83(1.78) − 2.35 (3.34) 15.67 (2.71)
2080s 5.33 (2.13) 10.15 (2.17) − 3.29 (2.11) − 2.72 (3.08) 17.20 (3.01)

RCP8.5 2020s 2.77 (1.74) 7.35 (1.70) − 3.45 (1.89) − 2.97 (3.29) 10.15 (2.48)
2050s 7.70 (1.74) 15.67 (2.14) − 3.43 (1.89) − 1.76 (3.03) 20.33 (2.76)
2080s 9.97 (2.07) 17.24 (2.52) − 7.60 (2.10) − 1.81 (2.98) 32.06 (2.99)
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played a key role in the observed systematic shift in extreme summer temperatures, but this analysis
excluded the Dust Bowl years and also data prior to 1910. An alternate explanation is simply that T
feedbacks from increasedP have been observed starting in about 1960 after several decades of very
dry conditions. This better explains the available data from 1895 to 1915 shown in Fig. S3, for
example, which show a similar average T regime to the post-1960 data, without the changes in
crops and evaporation identified by Mueller et al. (2016).

Although land use, irrigation, and vegetation changes are not explicitly included in this study,
linkages between drought cycles and T are present in the climate change projections, especially in
summer. Figure S5 shows the relationship between delta T and delta P for the ensemble of 10
summer projections for three time periods and two greenhouse gas concentration scenarios. The
analysis identifies two dominant and opposing relationships between delta T and delta P: one
showing unusually dry conditions associated with warmer conditions, and the other showing
wetter conditions associated with warmer conditions. The first relationship is most pronounced
and consistent across different periods and concentration scenarios. Our hypothesis is that the first
regime is related to increased solar radiation (reduced cloudiness) and systematic increases in the
Bowen ratio (ratio of sensible to latent heat flux) that accompany lowwater availability at the land
surface. The second relationship is likely caused by increased advection of warm and humid air
from the Gulf of Mexico or the Atlantic coast, resulting in relatively warm and wet conditions.
These results show that extreme summer heat in the future could be caused either by unusually dry
summer conditions or by increased warm, moist air being advected into the region. It is clear,
however, that the largest increases in T in summer accompany the driest scenarios, especially for
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Fig. 2 Map of annual number of frost days (Tmin < 0 °C (32 °F)). Seven panels: historical (1915–2013) and
2020s, 2050s, 2080s with RCP4.5 and RCP8.5 [Method: type I, ensemble mean annual number of frost days for
each cell]
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the RCP8.5 2080s. For example, a reduction in summer precipitation on the order of 30% results
in extreme warming of about 10 °C in the projections, whereas scenarios with more modest
reductions in P result in only about 5 °C warming (Fig. S5).

Taken together, analysis of historical trends and future projections in daily maximum T suggest
that extreme heat scenarios in IN could prove to be highly variable in time and may be linked to
relatively uncertain summer P impacts. The relatively weak model agreement on summer P
changes (Byun and Hamlet 2018), for example, suggests that impacts to summer P (and therefore
extreme high temperatures) may vary substantially from decade to decade in response to natural
climate variability, despite overall increases in average T. In an extreme case, a recurrence of
extreme drought conditions like those experienced in the 1930s and 1940s could result in
unprecedented, catastrophic heat impacts when coupled with the strong systematic warming in
the future projections. Although this would appear to be a “worst-case” scenario, such extreme
changes inP and Tcannot be ruled out and could emergewithout warning in just a few years’ time
and then persist for several decades, as occurred during the Dust Bowl years (Fig. S4).

It is worth noting as well, that annual average T show similarly high values during the Dust
Bowl years in the 1930s and 1940s, but also display significant increasing trends through time
after 1960 (Fig. S3). Thus impacts to annual average T and daily maximum T extremes could
prove to be quite different at different times in the future.

In addition to changing summer precipitation, atmospheric chemistry could play a role in
suppressing increases in maximum daily temperatures (e.g., increasing particulate concentra-
tions may increase albedo, resulting in net reductions in solar radiation). High-resolution
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extreme hot days]
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climate model simulations that include atmospheric chemistry are needed to explore these
potential negative feedbacks on extreme high temperatures.

The number of extreme cold days (Tmin < − 15 °C (5 °F)) per year is projected to decrease
with warming (Fig. S6). In the northern part of the domain, for example, the average number
of extreme cold days per year declines from about 15 for baseline conditions to 5 for the 2080s
RCP8.5 scenario. These changes will likely benefit IN via reductions in energy demand,
decreased impacts to the transportation sector, etc.

4.1.2 Precipitation changes

For IN, P is projected to increase substantially in winter and spring for most scenarios
(Fig. 1 bottom panels). Projected changes in summer and fall P, by comparison, show
relatively small decreases and there is not a strong consensus between models for wetter
or drier conditions in these seasons. This seasonal pattern of changing P increases in
intensity through time in the scenarios. Projected annual changes in P are positive for
almost all scenarios, and by the 2080s all GCMs show increases in annual P over the
Midwest (Byun and Hamlet 2018) and IN.

At the macro scale, meaningful patterns of spatial variability for changes in P are not
apparent, except during fall, which shows somewhat drier conditions in southern IN and wetter
conditions in northern IN. Spring also shows a weak pattern of wetter conditions in the north,
but all changes in P over IN are positive in this case. Note, however, that the spatial standard
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deviation of delta P, calculated at the grid cell scale, is often comparable or larger in magnitude
to the change in P itself. Table 2(B) summarizes percent changes in P for each season,
emissions scenario, and time period.

Warming over the state is accompanied by a decreasing fraction of Nov–Mar P falling as
snow (Fig. 4). By the 2080s for RCP8.5, snow is infrequent in southern IN (little snow even in
midwinter), whereas northern IN still receives substantial snowfall from Nov–Mar, albeit
much less snowfall during this period than for the historical baseline conditions.

Figure S7 shows substantial reductions in the number of P events with more than 5 mm of
snow water equivalent (SWE), which is approximately equal to 5 cm (2 in.) of snowfall. This
threshold was chosen because snowfall greater than this amount typically requires plowing to
clear streets, and shoveling or snowblowing to clear sidewalks. This reduction in the number
of days with more than 2 in. of snowfall implies fewer resources would be required for
plowing (municipalities and businesses) and shoveling or snowblowing (individuals).

Although GCMs are not capable of explicitly simulating small-scale convective storms that
are often associated with annual P extremes (see discussion of dynamical downscaling above),
we nonetheless argue that simulations of heavy precipitation from GCMs, when coupled with
quantile-based bias correction approaches, are likely to represent meaningful changes, espe-
cially in cool season when projected precipitation changes are largest and convective storms
are relatively rare. Figure S8 shows increases in the ensemble average number of days per year
with more than 25 mm of P. Some of the fine-scale patterns on the plot are caused by gridding
artifacts (i.e., fewer extreme events are shown between stations due to averaging from multiple
stations; Ensor and Robeson 2008), but the large-scale pattern nonetheless shows substantial
increases of 3 to 4 days per year in the number of days of heavy precipitation. Analysis for a
50 mm P threshold (not shown) yielded qualitatively similar results. Results for selected urban
centers in IN are shown in Table S2.

One caveat associated with this analysis is that the potential for increasing frequency of
convective storms in mid-winter (e.g., on Feb 20, 2018, in IN) is not well captured in GCM
simulations due to problems with spatial resolution. Similarly, changes in lake-effect snow,
which are a function of both lake conditions (e.g., surface T, ice cover) and atmospheric
conditions (e.g., frequency, intensity, and duration of arctic air outbreaks) are not well captured
by GCMs, many of which do not even resolve the Great Lakes (Byun and Hamlet 2018).
Simulations using high-resolution, regional-scale climate models coupled to lake hydrody-
namic models are needed to better address changes in these two important impact pathways
(Sharma et al. 2018).

4.2 Length of the frost-free growing season and USDA hardiness zone maps

The average length of the frost-free growing season increases substantially in the projected
future climate (Fig. S9). By the 2020s, the length of the frost-free growing season increases by
about 10 days overall and there are only minor differences between the RCP4.5 and 8.5
scenarios. By the 2080s, the RCP4.5 scenario shows increases in the growing season of 20 to
30 days whereas the RCP8.5 scenario shows increases of 30 to 50 days.

Changes in ensemble average USDA Plant Hardiness Zones (Fig. S10), which are based on
expected extreme winter low T, show typical increases of about one full zone by the 2080s
over much of IN, e.g., from zone 6a for the baseline climate to zone 7a for the 2080s RCP8.5
scenario. Note that the 7a zone indicated for northern IN for the 2080s RCP8.5 scenario is the
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same hardiness zone as southern IN for the historical climate. Zone 7b, which currently occurs
in northern Alabama, begins to appear in extreme southern Indiana in the 2080s RCP8.5
scenario.

4.3 Impacts to energy demand for space cooling and heating

Figure S11 and S12 show projected changes in cooling degree days (° F) (relative to 75 °F)
and heating degree days (relative to 68 °F) respectively. Cooling degree days increase by
approximately a factor of 4 for the 2080s RCP8.5 scenarios, and heating degree days decline
by about 30% for the same period and concentration scenario. These changes imply a net
decrease in overall energy demand for space heating and cooling, however, due to the
relatively large number of heating degree days in IN, and a typically higher coefficient of
performance (COP) for electrical A/C equipment (COP ~ 2.5) as compared to electrical space
heating (COP ~ 1.0) (see Raymond et al. 2018 and Hamlet et al. 2010 for additional
discussion). Note that for heating degree days, the 2080s RCP8.5 values in northern IN are
comparable to the historical values in southern IN; whereas, for cooling degree days, the 2080s
RCP8.5 projections in northern IN are much higher than the historical values in southern IN.
This difference reflects the fact that the largest T changes are projected during summer.

4.4 Constructing spatial analogs to IN’s projected future climate

Spatial analogs for IN’s projected future climate were constructed by finding the closest match
for the projected future IN climate to the current climate in other parts of the country. These
analogs were based on the gridded 1981–2010 mean T and P values from the PRISM data sets
(Daly et al. 2008). For each PRISM grid-point, winter (DJF), and summer (JJA) means of T
and P were used to find the minimum “distance” of the projected climate to the current climate
using a six-element vector (T and P for each of the 3 months). Stratifying the data by winter
and summer shows the distinct seasonal changes that are likely to occur in IN while allowing
for closer spatial analogs to be found. Figures S13 and S14 show winter and summer analogs
for the 2050s and 2080s, respectively for the two greenhouse gas concentration scenarios. In
winter, IN’s projected future climate approximates the current climate of the mid-Atlantic
states (Fig. S13), whereas in summer IN’s projected future climate approximates the current
climate in areas substantially farther to the south and west (Fig. S14). By the 2080s for the
RCP8.5 scenario, for example, IN’s projected future climate in summer is comparable to the
current climate of southeastern Texas.

5 Conclusions

The state of IN is projected to experience profound changes in climate by 2100. For the 2080s
RCP8.5 climate change scenarios presented here, Indiana’s climate will shift to one that is
similar to the current climate for the mid-Atlantic states in winter and similar to the current
climate of southeastern Texas in summer. Large changes in T are projected for IN, which will
have major impacts on urban environments (Reynolds et al. 2018), human health (Filippelli et
al. in review), energy (Raymond et al. 2018), agriculture (Bowling et al. in preparation), forests
(Phillips et al. in review), and water resources (Cherkauer et al. in preparation). Substantial
changes in traditional winter recreation opportunities are also projected due to systematic loss
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of snow and ice cover in the future (Chin et al. 2018). Changes in extreme high T are most
clearly linked to drought in both the historical record and future projections, which implies that
impacts to extreme high T may be quite variable in time in response to relatively uncertain
changes in summer P in the projections. That is, unusually dry decades in the future may show
extreme heat impacts, whereas less drought-prone decades may be substantially cooler.
Unusually wet conditions in summer are also associated with very warm conditions in the
projections, however, which suggest that warm, moist air advected from the south may be
another important cause of extreme heat and humidity in the projections.

Reductions in energy demand for space heating due to warming, however, will likely be a
benefit to many (see also Raymond et al. 2018), and reductions in snowfall may reduce costs
of snow removal for municipalities, businesses, and individuals. Projected changes in P,
particularly its seasonality, are also substantial, with a projected 25–30% increase in winter
and spring P by the 2080s for the RCP8.5 scenario. By the 2080s all climate models in the
RCP8.5 CMIP5 archive show increases in annual P over IN, but increasing evapotranspiration
with warming could reduce the net effects on soil moisture (Cherkauer et al. in preparation).
Changes in summer convective storms cannot be captured by large-scale climate models like
the ones used in this study, but increasing P intensity from convective storms has already
emerged in the historical record as an important impact pathway for cities and these trends are
projected to continue to increase with future warming (e.g., Prein et al. 2018). We also
hypothesize that convective storms will be increasingly observed in winter as warming
progresses. Coincident increases in P as rain, accompanied by loss of snow cover in winter
and spring, will likely impact water quality and erosion in agricultural areas (Bowling et al. in
preparation) and may lead to elevated soil moisture and increased flooding in winter and spring
in IN rivers (Cherkauer et al. in preparation; Byun et al. 2019). Lake-effect snow is hypoth-
esized to increase in the next several decades due to warmer lake surface temperatures and
longer ice-free conditions, but towards the end of the twenty-first century T may become too
warm, resulting in conversion from lake-effect snow to lake-effect rain, especially in the
shoulder seasons. Regional-scale climate models dynamically coupled to lake hydrodynamic
models are needed to evaluate these impact pathways in a more physically based manner.
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