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Abstract
The paper aims to explore the biasness in the RegCM climate model outputs for diverse agro-
climatic zones of Uttar Pradesh, India, with emphasis on wheat (Rabi growing season) and rice
(Kharif growing season) yields with and without bias correction using quantile mapping
approach for the baseline period of 1971–2000. The result shows that RCM highly
underestimated the maximum and minimum temperature. There exists a bias towards lower
precipitation in annual and Kharif and higher in Rabi along with strikingly low intense warm
(maximum temperature > 45 °C and 40 °C) and high cold events (maximum temperature <
20 °C and minimum temperature < 5 °C) in the RCM simulation and biased towards low
extreme rainfall > 50 mm/day. Bias correction through quantile mapping approach, however,
showed excellent agreement for annual and seasonal maximum and minimum temperature and
satisfactory for extreme temperatures but drastically failed to correct rainfall. The study also
quantified the biasness in the simulated potential, irrigated, and rainfed wheat and rice yield
using DSSAT (Decision Support System for Agro-technology Transfer) crop model by
employing observed, RCM baseline, and RCM baseline bias-corrected weather data. The
grain yields of RCM-simulated wheat and rice were high while the bias-corrected yield has
shown good agreement with corresponding observed yield. Future research must account for
the development of more reliable RCM models and explicitly bias correction method in
specific to complement future analysis.
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1 Introduction

During recent decades, scientific community and policy makers are recognizing the changing
climate and its impacts on world food security in general and its regional impacts considering
projected increase of global mean surface temperature by 0.3 °C (minimum of RCP2.6) to
4.8 °C (maximum of RCP 8.5) for 2081–2100 (Kumar et al. 2013, IPCC 2013). Climate
projections developed for South Asia region show that India might witness an increase in mean
annual temperature by 2–3 °C in midterm (2045–2065) and by 3–5 °C in long-term (2081–
2100) future (IPCC 2013). The increase in temperature is expected to be more in northern
India with overall projected increase in mean annual precipitation with a shift in rainfall pattern
(Jain and Kumar 2012; Auffhammer et al. 2012; Akhter et al. 2017; Basha et al. 2017). A trend
analysis for Uttar Pradesh shows a significant increase in annual mean and minimum temper-
ature by 0–1.5% and 1.5–3% for the period of 107 years (1901–2007) decreases in rainfall by
0–8% in east UP and 16 to 24% in west UP though insignificant for the period of 141 years
(1871–2011) (Mondal et al. 2015).

The impact of climate change on different sectors is a topic of extensive research but there
is a plausible evidence of climatic impacts on agriculture that is heterogeneous and ambiguous
(Arumugam et al. 2015). Climate change may negatively affect wheat and rice yield in some
major wheat and rice-producing regions of the world (Challinor et al. 2010; Auffhammer et al.
2012; Jain and Kumar 2012; Licker et al. 2013; Yang et al. 2017). Globally observed, wheat
yield showed decline of 0.6 ton/ha/dec to 0.40 ton/ha/dec in 2000s while rice observed a little
increase of 0.5 ton/ha/dec to 0.6 ton/ha/decade in 2000s (Lobell and Gourdji 2012). In a study,
Birthal et al. (2014) projected that with significant change in temperature and rainfall up to
2100 for Indian region, a reduction by 15% in rice yield and by 22% in wheat yield may be
observed. Recent evidences indicate less frequent but more intense monsoon rainfall in India
during the latter half of the twentieth century, thus increasing the risk of drought and flood
damage to the country’s wet season (Kharif) rice crop with expected 40% runoff of the total
rainfall (Goswami et al. 2006; Mall et al. 2006; Dash et al. 2009; Auffhammer et al. 2012; Jain
and Kumar 2012; IPCC 2013; Singh et al. 2017).

To quantify the impact of climate change on crop productivity, crop growth simulation
models with input from several GCM and RCM are being used in large scale (Mall and Gupta
2000; Aggarwal and Mall 2002; Mall and Srivastava 2002; Challinor et al. 2010; Shinde and
Modak 2013; Chattaraj et al. 2014; Tao et al. 2014; Yadav et al. 2015; Zacharias 2015; Singh
et al. 2017; Dar et al. 2017, Mall et al. 2017). A study by Gourdji et al. (2013) using CMIP5
multi-climate model (RCP8.5 emission scenario) projected substantial vulnerability for wheat
in South Asia for 2050s. A study by Pathak et al. (2003) using CERES crop model for the
Indo-Gangetic Region reported a decrease in wheat (8.3 to 7.5 Mg ha−1) and rice yield (10.9 to
10.3 Mg ha−1) with 1.7 MJ m2 per day reduction in solar radiation. Similarly, an increase in
minimum temperature by 1.78 °C showed a decline in rice (10.9 to 10.0 Mg ha−1) and wheat
yield (8.3 to 8.1 Mg ha−1). A future projection for Uttar Pradesh using InfoCrop model and
input from PRECIS shows a decline by 4 to 7% in irrigated and rainfed rice yield by 2020 to
2080 (Kumar et al. 2013) and 25 to 30% for wheat yield by 2050 to 2080 (Kumar and
Aggarwal 2014). Similarly, Dasgupta et al. 2013 using PRECIS reported reduction in grain
production by 5% for UP.

But climate output employed to run the crop simulation model is often associated with the
bias. Bias correction is a frequently used method employed to match RCM data to observed data
before using it as an input to climate impact model (Qian et al. 2016). Evidences show that
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phenomena like summer convective precipitation are not convincingly taken care by RCMs at
10-km resolution and beyond (Kendon et al. 2014; Meredith et al. 2015). This is because, RCM
many a times fails to perfectly represent orography, land surface feedbacks (Maraun 2016), and
inherit systematic model errors due to inadequate conceptualization, parameterization, and spatial
averaging within grid cells (Qian et al. 2016). Due to this, uncertainty in model simulation is high
(Jacob et al. 2014). Thus, the impact assessment model demands bias correction/bias adjustment
of the input climate data (Maraun 2016).

Uttar Pradesh being the largest producer of wheat and rice in India on account of its largest
share of wheat area (34%, 1st in India, 9.7 mha) and production (35% 1st in India, 30.3 MT),
and rice area (13%, 3rd in India, 5.95 mha) and production (13%, 3rd in India, 14.0 MT) (DES
2016). There is still substantial scope to increase both area and productivity of wheat-rice crops
in Uttar Pradesh to meet the 2050 India’s demand if proper crop management is executed to
cope the climate risk by using reliable climate predictions. The present study aims to assess the
performance of RegCM4 for agro-climatic zones of Uttar Pradesh by quantifying the bias
associated with it before and after bias correction using quantile mapping approach in
comparison with the observed data (1971–2000) with particular emphasis on wheat (Rabi)
and rice (Kharif) growing season. The detailed objectives of the study are as follows:
Comparison of simulated baseline, bias-corrected baseline, and observed (i) maximum and
minimum temperature, rainfall, rainy days, rainfall intensity; (ii) extreme maximum tempera-
ture days > 45 °C, > 40 °C, < 20 °C and extreme minimum temperature days < 5 °C and
rainfall extreme > 50 mm/day; and (iii) comparison of potential, irrigated, and rainfed wheat
and rice yield simulated through CERES-wheat and CERES-rice.

2 Materials and methods

2.1 Study area and data

The State of Uttar Pradesh (UP) has distinguished itself as an Bagricultural State^ located
between 23° 50′–30° 45′ N latitude and 77° 04′–84° 38′ E. Detailed information about the
study site is presented in Fig. 1 (IWMP, 2009). Daily gridded climate data (1971–2000) for
temperature (1° latitude × 1° longitude) and rainfall (0.25° latitude × 0.25° longitude) was
obtained from the India Meteorological Department, and solar radiation (1° latitude × 1°
longitude) was obtained from NASA-POWER (NASA/POWER; power.larc.nasa.gov).
Baseline RCM climate data (1971–2000) were obtained from CCCR-IITM for RegCM4.0
(LMDZ) developed by the National Center for Atmospheric Research (NCAR) in ICTP
Italy in 2010 (Giorgi et al. 2012) with a 50-km horizontal resolution. Due to difference in
horizontal resolution of variables, temperature data were re-gridded to IMD rainfall scale
using bilinear interpolation method and RCM rainfall was re-gridded to IMD rainfall scale
using kriging interpolation method. For the Indian subcontinent, RegCM4 performs to its
finest. RegCM4 has the ability to replicate present day climate features over the study region
(Gao and Giorigi 2017)

2.2 Crop simulation

The calibrated and validated CERES-wheat and CERES-rice crop models by Mall et al. (2016)
and Singh et al. (2017) for different agro-climatic zones have been used in simulating the crop
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yield in the study. It simulates crop yield, growth, and development based on some crop
characteristics (Hoogenboom et al. 1994). The observed, RCM, and RCM bias-corrected
climate output was used to simulate the wheat and rice potential, irrigated, and rainfed yield
through DSSAT4.5 crop model. The crop yield was simulated for wheat and rice at three levels
of management:

(1) Potential yield is simulated considering no water and nitrogen stress on crop growth.
(2) Irrigated wheat yield was simulated using application of 120 kg N/ha in three split doses

of 60 kg/ha, 30 kg/ha, and 30 kg/ha at 0, 20, and 60 days after sowing and 5 irrigations,
whereas for rice, three split doses of nitrogen of 35 kg/ha, 60 kg/ha, and 60 kg/ha at 0, 25,
and 45 days after sowing with irrigation when required.

(3) Rainfed productivity was simulated assuming no irrigation and 30 kg/ha basal nitrogen
application for wheat and rice

2.3 Estimation of biasness and bias correction

The bias estimation of RCM climate output was done by comparing its mean and standard
deviation for annual and seasonal phase with observed climate. The goodness-of-fit statistics
was used to calculate the difference between observed and simulated yields using the
following equations:

Percent of deviation (D%)

D% ¼ Si− Oi

Oi

� �
� 100% ð1Þ

Si and Oi define simulated and observed yield (t/ha). D% close to zero refers to very good
agreement between simulated and observed yield (Araya et al. 2015).

Fig. 1 Detailed description of Uttar Pradesh (source: DES 2016, Mall et al. 2017)
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Index of agreement (I)

I ¼ 1−
∑n

i¼1 Si −Oið Þ2
∑n

i¼1 Si − Smj j þ Oi −Omj jð Þ2 ð2Þ

Sm and Om refers to means of simulated and observed yield respectively. I vary from negative
infinity to 1. I close to zero shows better agreement between the observed and simulated yield
(Willmot 1982).

Root mean squared error (RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Si −Oið Þ2
n

s
ð3Þ

RMSE is a statistical error in the model. RMSE close to zero indicate good performance of the
model.

The quantile mapping approach used in the study for removing biasness of the RCM data is
done by fitting a cumulative probability distribution (CDF) Fobs (xobs) to the observed values
and fitting another distribution Fgrid-c (xgrid-c) under the current climate to the RCM data in a
grid and by mapping the grid value to the probability distribution of the observations to derive
the Bbias-corrected^ grid data xgrid-c-corrected for the current climate as below (Qian et al.
2016).

Zmodel−present−corrected ¼ F−1obs Fmodel−present Zmodel−present
� �� �

:

3 Result and discussion:

The RCM highly underestimates the annual, Rabi, and Kharif maximum temperature and very
slightly the minimum temperature throughout the agro-climatic regions. The RCM baseline
showed a mean underestimation of 5.5 ± 1.6 °C for maximum temperature annually, where out
of nine zones, seven zones underestimated the temperature ≥ 5 °C (Fig. 2). The underestimation
in Rabi maximum temperature was even higher with mean underestimation of 6.8 ± 1.6 °C
(highest of 9.6 ± 0.1 °C in NEZ), where out of nine zones, eight zones underestimated the
temperature ≥ 5 °C. The mean underestimation in Kharif maximum temperature was 3.4 ±
1.5 °C and only single zone underestimated the temperature ≥ 5 °C. On the other hand,
minimum temperature showed very slight underestimation annually and seasonally. The mean
underestimation for annual, Rabi, and Kharif minimum temperature is 0.2 ± 1.8 °C, 1 ± 0.9 °C,
and 0.8 ± 1.2 °C respectively. Bias correction has shown excellent agreement with the observed
temperature, and except Rabi minimum temperature (mean underestimation of 1.6 ± 0.5 °C), the
difference for annual and seasonal maximum and minimum temperature was close to zero. A
similar study carried by Zacharias et al. (2015) using PRECIS for the Indo-Gangetic plain
reported similar findings where they found underestimation in annual (0.24–2.36 °C), Kharif
(0.32–4.92 °C), and Rabi maximum (0.11–3.24 °C) and Rabi minimum (0.27–3.21 °C) tem-
perature and very slight overestimation in annual (0.02 °C to 0.5 °C) and Kharif minimum
(0.27 °C to 0.93 °C) temperature. Importantly, their study reported more underestimation during
Kharif than Rabi just opposite to our findings. Yet, another study by Maity et al. (2017) using
RegCM4 reported underestimation in mean surface temperature for monsoon period (Kharif
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period) that corroborates with our study. A striking point worth mentioning here is that the RCM
shows a substantial decline in maximum temperature and slight decline in minimum tempera-
ture comparative to the observed climate data. This suggests a decrease in diurnal temperature
difference and night warming. Indian wheat has shown susceptibility to increasing night
temperature especially post anthesis reducing the overall production (Rao et al. 2015). Similarly,
night warming in rice was found to arouse the night respiration rate but decrease the
photosynthesis rate; consequently, a significant reduction in aboveground biomass
accumulation was recorded with additional reduction in seed setting and grain filling
particularly of inferior kernels (Dong et al. 2014). This trend is supposedly incorporated in
the future projection as well. Further detailed data inspection brings out changed climatic
averages for RCM in comparison to the observed (Fig. 2).

Rainfall showed a large heterogeneity in precipitation distribution (Fig. 3). The RCM have
shown a high dry bias in annual (223 mm except NEZ, CPZ, and EPZ) and Kharif (378 mm)
rainfall on the other hand it has shown a high wet bias in Rabi rainfall (139 mm) (Fig. 3). Bias
correction satisfactorily complemented annual rainfall but no improvement has been found for
Rabi and Kharif season (Fig. 3). A study by Dash et al. (2013) and Pattnayak et al. (2013) has
found an overestimation of rainfall simulated by RegCM where major portion of northeast
India have shown a wet bias opposite to what have been found in our study. But Singh and Oh
(2007) using RegCM found reduced precipitation over northeast India that coincides with our
findings. In a study by Maity et al. (2017) covering a similar study area reported dry bias
associated with RegCM4 for Indian summer monsoon. Contrary to precipitation, the RCM
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Fig. 2 Comparison between observed, RCM (RegCM4.0), and RCM bias-corrected (RCMBC) annual and
seasonal temperature for the period 1971–2000. The boxes mark the 25% and 75% quartiles while the whiskers
give the minimum and maximum values. 1, 2, 3—observed, RCM, RCMBC annual maximum temperature; 4, 5,
6—observed, RCM, RCMBC annual minimum temperature; 7, 8, 9—observed, RCM, RCMBC Kharif maxi-
mum temperature; 10, 11, 12—observed, RCM, RCMBC Kharif minimum temperature; 13, 14, 15—observed,
RCM, RCMBC Rabi maximum temperature; 16, 17, 18—Rabi minimum temperature respectively
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overestimated the annual (31 ± 20 days, except BTZ), Kharif (16 ± 9 days, except BTZ), and
Rabi (9 ± 5 days) rainy days while bias correction fairly corrected the days up to certain
magnitude (Fig. 4). Bias correction may not efficiently change the relative day-to-day varia-
tions of RCM data and require advance investigation to deal with current bias-correction
methodologies to deal with this issue. The collective effect of rainfall amount and rainy days is
described in terms of rainfall intensity (RI). High rainfall intensity has negative consequences
for crops through nutrient loss and hydrology and brings challenges and opportunities to make
resilient management strategies (Dourte et al. 2015). The simulated RI shows high underes-
timation, whereas the bias corrected shows concordance with the observed for most agro-
climatic zones. The model performance for rainfall intensity was evaluated by Taylor Dia-
grams (Taylor 2001) (Fig. 5). Among nine zones, RI only in SWZ is showing a significant
correlation with observed (0.38 at 95%) (Fig. 4). However, the simulated bias-corrected RCM
rainfall intensity over MWZ, BKZ, CPZ, WPZ, BTZ, and EPZ performed well and has a
significant correlation coefficient (CC) at 95% level of significance lying in the range of 0.36–
0.48 (Fig. 5).

Averaged across the nine zones, difference in extreme temperature and rainfall days in
RCM output relative to those of the baseline climate is shown in Table 1. A large underesti-
mation was observed for maximum temperature > 45 °C (zero for all zones) and > 40 °C up to
146 days in VZ. Contrary, a large overestimation was observed for maximum temperature <
20 °C up to 4072 days in NEZ and minimum temperature < 5 °C up to 803 days in SWZ in the
RCM (Table 1). The bias correction tool however gave a very reliable output with a huge
difference from RCM simulation and far less difference from observed. Dash et al. (2013),
however, found an overestimation in warm days and warm nights comparative to observed
values. In case of rainfall extreme, rainfall > 50 mm/day showed underestimation up to
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Fig. 3 Comparison between observed, RCM (RegCM4.0), and RCM bias-corrected (RCMBC) annual and
seasonal rainfall. The boxes mark the 25% and 75% quartiles while the whiskers give the minimum and
maximum values. S- simulated, O- observed, A- annual, K- Kharif, R- Rabi, R- rainfall
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170 days in BTZ but an overestimation up to 70 days in EPZ (Table 1). The extreme rainfall on
a single day creates a situation of flood and destroys the crop. Also, they are not useful to
crops, as the water absorption rate for crops is low and they require a sustained water
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Fig. 4 Comparison between observed, RCM (RegCM4.0), and RCM bias-corrected (RCMBC) annual and
seasonal rainy days. The boxes mark the 25% and 75% quartiles while the whiskers give the minimum and
maximum values. S- simulated, O- observed, A- annual, K- Kharif, R- Rabi, RD- rainy days

Fig. 5 Taylor diagram of rainfall intensity over nine agro-climatic zones of Uttar Pradesh for 1971–2000. The
green dot represents observed IMD data, blue dot represents the RegCM4 data, and red dot represents RegCM4
bias corrected (regressed rainfall intensity)

510 Climatic Change (2018) 149:503–515



availability for good soil moisture and self-absorption. A similar study by Dash et al. (2013)
using RegCM and Zacharias et al. (2015) using PRECIS showed overestimation in extreme
weather conditions on all—India basis.

To quantify the impacts of RegCMmodel bias in baseline simulations on crop performance,
rice (Kharif season) and wheat (Rabi season) yields before and after bias correction were
simulated using the observed weather, RCM baseline, and RCM bias-corrected baseline
weather representing different agro-climatic zones of UP in DSSAT crop model. The RCM-
simulated wheat yield shows an overestimation for all zones except BTZ that ranges from 1.5
to 26% for potential, 4.4 to 30.1% in irrigated, and 4 to 34.2% in rainfed. Contrary, after bias
correction, most zones showed negative deviation in wheat yield with observed that goes
maximum to 20% except in MWZ (Table 2). However, rainfed wheat yield showed large
spatial heterogeneity (Table 2). The positive deviation of the model wheat yield in comparison
to the observed yield is might be because of the underestimation of Rabi maximum and
minimum temperature and high simulated Rabi rainfall. The temperature mainly impacts first
spikelet initiation to anthesis and much sensitive for grain yield (Abrol and Ingran 1996).
Increasing temperature from 21/16 °C to 30/25 °C leads to low grain length (1.49 to 1.51 mg/
grain/day) and grain weight (Abrol and Ingran 1996). Consistent high temperature from mid-
February to April may reduce viable florets and grain filling duration. A study by Gourdji et al.
(2012) explores that during the grain-filling stage that is considered the hottest part of the
season, wheat yields displayed most sensitivity to warming in this phase. Rice, however,
showed spatial heterogeneity in irrigated and rainfed. The deviation in rice yield varies from
0.13 to 29% in potential, − 9.7 to 16.6% in irrigated, and − 18.2 to 30.3% in rainfed. The main
reason behind this is an underestimation in the Kharif rainfall by the RCM. Bias correction
performed very unsatisfactorily for rainfed by comparative performance of potential and
irrigated (Table 2). The unsatisfactory performance of bias-corrected rainfed rice yield is
probably due to more number of days with temperature greater than 40 °C and the underes-
timation in Kharif rainfall over most of the zones. High temperature exposure in rice at
anthesis prevents anther dehiscence and pollen shedding that results reduced pollination and
low grain numbers (Zheng and Mackill 1982). Thus, future yield loss will be seen in areas

Table 1 Total number of extreme temperature and rainfall days in different categories for observed, RCM-
simulated, and bias-corrected RCM-simulated climate data for the period 1971–2000

Maximum temperature Minimum
temperature

Rainfall

S. No. > 45 °C > 40 °C < 20 °C < 5 °C > 50 but
< 100 mm/day

Obs. Sim. BC Obs. Sim. BC Obs. Sim. BC Obs. Sim. BC Obs. Sim. BC

SWZ 87 0 75 1272 110 1082 467 2913 521 219 803 313 99 12 66
VZ 137 0 89 1541 146 1111 167 2456 138 102 242 125 92 10 47
MWZ 20 0 2 683 12 586 562 3247 623 151 727 215 107 43 68
NEZ 0 0 0 29 2 343 330 4072 300 31 347 52 162 124 199
BKZ 130 0 54 1623 37 1372 199 3124 238 506 734 591 99 5 86
CPZ 15 0 48 983 39 840 236 3124 258 330 414 407 87 14 43
WPZ 29 0 0 494 116 524 905 3083 985 495 654 407 72 13 32
BTZ 0 0 0 25 91 4 1877 3324 1944 885 991 1132 145 11 104
EPZ 36 0 25 1623 37 770 199 3124 178 506 37 591 120 17 94
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where conventional agricultural practices are performed with further increase in seasonal and
extreme temperatures.

4 Conclusion

The study attempts to bring forth the positive and negative aspects of RegCM in simulating
regional characteristics of climate parameters and its impact on yield estimation. Climate
models are often biased representations of observed time series necessitating correction
process (Teutschbein and Seibert 2012). Keeping that, the study employs bias correction
approach to correct the RCM output and identify the difference between the RCM and bias-
corrected RCM. The estimated wheat and rice yield was compared with those simulated with
direct RCM output. The study finds that the bias-corrected RCM variables better fitted with
fitted observed values than the uncorrected RCM climate variables with more constricted
variability bounds. In entirety, a single RCM shows constrain in simulating all the aspects of
Indian climate. Therefore, exploring the capacity of existing models would be beneficial. The
bias correction approach though did excellent in estimating temperature but has limited ability
in estimating extremes and rainfall. With the colder weather in the RCM, the baseline was
found to positively affect the simulated wheat crop yields. However, as the extreme temper-
ature period does not coincide with the rice period, the RCM output has less impact on rice
yield. Estimation of yield after bias correction shows minimum deviation relative to observed.
Soil characteristics, weather, topography, and region-specific uncertainties in the RCM output
will display false climate change impacts. Better understanding of ambiguous and indetermi-
nate degree and direction of biasness in the RCM will be essential in making countermeasures
as a part of policy making when dealing with future impacts of climate change to progress
adaptation measures within the framework of regional strategies.
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