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Abstract Many areas of the natural and social sciences involve complex systems that
link together multiple sectors. Integrated assessment models (IAMs) are approaches
that integrate knowledge from two or more domains into a single framework, and
these are particularly important for climate change. One of the earliest IAMs for
climate change was the DICE/RICE family of models, first published in Nordhaus
(Science 258:1315–1319, 1992a), with the latest version in Nordhaus (2017, 2018). A
difficulty in assessing IAMs is the inability to use standard statistical tests because of
the lack of a probabilistic structure. In the absence of statistical tests, the present
study examines the extent of revisions of the DICE model over its quarter-century
history. The study finds that the major revisions have come primarily from the
economic aspects of the model, whereas the environmental changes have been much
smaller. Particularly, sharp revisions have occurred for global output, damages, and
the social cost of carbon. These results indicate that the economic projections are the
least precise parts of IAMs and deserve much greater study than has been the case up
to now, especially careful studies of long-run economic growth (to 2100 and beyond).
Additionally, the approach developed here can serve as a useful template for IAMs to
describe their salient characteristics and revisions for the broader community of
analysts.

JEL classification Q5 . Q54 . H4

1 Introduction

Many areas of the natural and social sciences involve complex systems that link together
multiple physical or economic sectors. This is particularly true for climate change, which
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has strong roots in the natural sciences and requires social and policy sciences to solve in
an effective manner. As understanding progresses across the different fronts, it is
increasingly necessary to link together the different areas to develop effective under-
standing and efficient policies. In this role, integrated assessment analysis and models
play a key role. Integrated assessment models (IAMs) can be defined as approaches that
integrate knowledge from two or more domains into a single framework. These are
sometimes theoretical but are increasingly involve computerized dynamic models of
varying levels of complexity.

One of the earliest IAMs for climate change was the DICE/RICE family of models,
developed starting in 1989 and published in Nordhaus (1992b, 1994). The DICE
(Dynamic Integrated model of Climate and the Economy) and RICE (Regional
Integrated model of Climate and the Economy) models have gone through several
revisions since their first development. An intermediate version was Nordhaus (2008).
The latest published version is DICE-2016R2 (Nordhaus 2017, 2018), with a complete
description of the penultimate model in Nordhaus and Sztorc (2013). Since the earliest
versions, the DICE model has been through many iterations, incorporating more
recent economic and scientific findings and updated economic and environmental data.

One of the major shortcomings of IAMs is that their structure makes it extremely
difficult to use standard econometric techniques to assess their reliability—a feature
that is shared with earth systems models and other large simulation models. In the
absence of statistical tests, the present study examines the extent and area of revisions
of the DICE model from its earliest publication in 1992 to its latest version published
in 2017 and 2018. This retrospective gives a flavor for changes in the underlying
economic and earth sciences, data revisions, correction of mistakes, and the pure
passage of time. Also, for those estimates that have included estimated errors in past
studies, it is possible to compare the actual revisions with the estimated errors.

Additionally, the present study provides an example of how modelers might present
the salient characteristics of their models. It might be useful to establish guidelines for
analyses that IAMs should routinely present—such as the retrospective studies and
salient assumptions and outputs presented below—along with a standardized format.

Before presenting the details, I will highlight the results. The major revisions in the
modeling have come from the economic sectors, whereas the environmental changes
have been much smaller. Regarding elementary inputs, future global output was
revised upwards massively over the years. Estimates of 2100 global output have been
revised up by a factor of 3½ since the 1990 period. The second major revision has
been in the damage function, which has been revised upwards by 60%. None of the
other major input variables or functions have had anywhere near those levels of
revisions. (The reasons for the revisions will be discussed below.)

In terms of major output variables, the major revision occurred for the estimate of
the social cost of carbon, SCC. (Note that the calculations of the SCC are always the
marginal damage along the actual emissions and damage path, not the optimized
path.) The estimate of the 2015 SCC increased from $5 to $31 per ton of CO2. As
we will see below, this was the result of compounded revisions in driving variables.
Most of the environmental variables had relatively small revisions and ones that were
within the estimated error bounds. For example, 2100 temperature increase was
originally 3.2 °C and was revised upwards to 4.3 °C in the latest version. Industrial
emissions were revised downward over the years.
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2 Methods and results

2.1 Methods

The approach to determining the impact of revisions was the following. I began with the 1992
GAMS version of the DICE model (BDICE.1.2.3^).1 Fortunately, the 1992 GAMS code was
compatible with the 2017 software, so it could be run to duplicate the 1992 results. In the first
estimates shown here, I will simply compare the estimates or projections in the two models. In
the last section, I will show the sources of the changes.2

It will be useful to review what is assumed in the baseline or uncontrolled runs. These are
basically a Ramsey-Koopmans-Cass optimal growth model with limited carbon fuels and
uninternalized climate damages. The trajectory of environmental and economic variables is
calculated by optimizing the savings rate and the allocation of carbon fuels while excluding
damages from output and utility. The damages are then subtracted after output and emissions
are determined in the uninternalized path.

Note as well that virtually all studies reviewed here are deterministic models. Other
approaches (such as Bstochastic DICE^ referred to later) look at the results with uncertain
parameters. I note that stochastic DICE has some results that are substantially different from
deterministic DICE.

2.2 Results for 2015

It is useful to examine the model projections for 2015. These are historical data in the latest
version (subject of course to revisions) but are projections in the earliest version. The 1992
version used data from the mid-1980, so the projections to 2015 can be seen as 30-year-ahead
forecasts. Table 1 shows the projections and actual values for 2015. The errors were large in
many areas. The first column shows the estimates for 2015 in the 1992 model, while the
second column shows the estimate for 2015 from the 2017 model, which are actual data. The
third numerical column shows the change from 1992 to 2017, which is the forecast error in the
1992 model.

Output and population were underestimated substantially. Emissions and other forcings
were overestimated because the rate of decarbonization was underestimated, and in the case of
forcings, concentrations of CFCs were vastly overestimated in the baseline estimates. CO2

concentrations were correctly projected, while temperature was overestimated (as with most
earth system models). The largest error was the social cost of carbon (SCC), which was hugely
underestimated because the different factors compounded. An interesting note is that the SCC

1 The B1^ indicates that it is a one-region model; the B2^ indicates that it is the second major version; and the B3^
indicates that it uses the third-round estimate of the data. Documentation for this version is contained in Nordhaus
(1992b).
2 It will be instructive to indicate that the task of converting models is not always trivial. The earlier model was in
1989 US dollars at market exchange rates, while the latest model was in 2010 US international dollars. If we look
at the US price index for GDP, the ratio of 2010 to 1989 prices is 1.57. However, this is not representative of the
world because of the changing composition of output and growth rates of different countries. If we take the ratio
of real to nominal GDP for the IMF data for market exchange rates, the ratio is 1.52 for 1985 (the last year with
actual data for the 1992 model). The IMF’s calculation of the global price-level change from 1989 to 2010 is 2.02
for the PPP concept and 1.70 for the MER concept. We have taken a reflator of 2.0 to represent the PPP concept.
This adjustment is only important for the first step in the process (v6). For the second step, which adjusts to 2015
levels of output, the reflator becomes irrelevant.
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was not calculated in the early version of the model and was first introduced in the 2008
version, so estimates of the SCC for early versions are retrospective estimates.

2.3 Projections for 21003

Table 1 provides a guide to the errors that arise in IAMs like the DICE model, and it also
shows how model histories can track errors when models have a sufficiently long history.
Table 2 shows the estimated total revisions between 1992 and 2017 for major variables.

The first three columns are similar to those in Table 1. The last two columns show estimated
uncertainties (measured as standard deviations) from two studies of uncertainty (Nordhaus
2008, 2018). The first estimate used the 2008 DICE model and made estimates of uncertainty
for several variables. These are shown in the uncertainty column labeled B2008.^ The second
study calculated the standard deviation of the variables using the DICE-2016R2 model and is
shown as B2017.^

The pattern of revisions for 2100 shown in Table 2 is similar to the pattern of errors in
Table 1 for 2015. The most striking revision in the driving variables is a massive upward
revision in world GDP. A major part of this revision is moving from market exchange rates
(common until about 2000) to purchasing power parity exchange rates (which should be but is
not universal today). A second change is the feature that early versions of the DICE model as
well as other energy-economy models were based on estimates that had a strong stagnationist
bias, with sharply falling productivity growth after 2025 (see Nordhaus and Yohe 1983,
Table 2.7). Factors driving emissions and forcings, by contrast, were revised downward
sharply.

If we look at the bottom group of variables in Table 2, we see an interesting pattern.
Emissions, concentrations, and forcings were underestimated, but by a relatively small frac-
tion. However, economic variables such as output, damages, and the SCC were massively
underestimated. This finding, which the economic variables were the major sources of

3 We have used the label B2100^ in this study. Strictly speaking, the year was 2105 in the DICE model.

Table 1 Major variables estimated for 2015

DICE-1992 DICE-2016R Change 1992 to 2016
2015 2015 %

Major driving variables
Economic
Population (billions) 6868 7403 8
Per capita GDP (2010$) 11,293 14,183 26
Consumption per capita (2020$) 9195 10,501 14

Geophysical
Other forcings (W/m2) 0.89 0.50 − 44
CO2/output ratio (tCO2/000 2010$) 0.607 0.350 − 42

Outcome variables
Industrial emissions (GTCO2 per year) 42.3 35.7 − 15
Output (trillions 2010$) 77.6 105.0 35
Atmospheric concentration C (ppm) 399 400 0
Atmospheric concentrations (GtC) 849 851 0
Atmospheric temperature (°C) 1.16 0.85 − 27
Total forcings (W/m2) 3.04 2.46 − 19
Social cost of carbon ($/tCO2 2010$) 4.54 30.98 582
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uncertainty, is one of the most striking results of the current retrospective. A further set of
comparisons is presented in a section on model comparisons below.

2.4 Uncertainty estimates

Additionally, it is useful to determine whether estimates of the forecast errors were helpful in
understanding the potential forecast errors. Systematic studies of forecast errors using Monte-
Carlo-type techniques were undertaken for the 2008 model and the 2016R2 model. The latter
set is more comprehensive but they have the drawback of being retrospective error estimates.

Table 3 shows the Berror forecast ratio,^ which is the ratio of the change in forecasts
between 1992 and 2017 relative to the estimated forecast uncertainty (measured as the standard
deviation from the Monte-Carlo estimates). Conceptually, these are similar to t-ratios although
they do not have a formal probabilistic structure.

Here is amore precise description. Designate xi(T, t) as the observation or projection of variable
xi for a future period Twhen estimated at date t. Using this notation, consider the final prediction
error at the end of the period, 2100. The prediction error in 2100 that is made by the 1992model is
xi(2100, 2100) - xi(2100, 1992)]. We can decompose this as follows: is xi(2100, 2100) − xi(2100,
1992)] = [xi(2100, 2100) − xi(2100, 2017)] + [xi(2100, 2017) − xi(2100, 1992)]. The first term
cannot be determined until 2100, but the second term can be determined in 2017.

Table 3 shows the second of the two terms, the term that can be determined today. Because
this calculation omits the first term, this implies that the ultimate forecast error may well be
larger than the second term, so the ratio shown in Table 3 is likely to be an underestimate of the
ultimate error forecast ratio.

Table 2 Major variables estimated for 2100

DICE-1992 DICE-2016R Change 1992 to 2016 Estimated
error (standard
deviation)

2100 2100 % 2007 2016

Major driving variables
Economic
Interest rate (% per year) 3.4% 3.5% 2.8 NA 0.9%
Population (billions) 9812 11,126 13 NA 2421
Savings rate 0.17 0.24 43 NA NA
Per capita GDP (2010$) 22,272 73,367 229 NA 49,165
Damage parameter (% at 3 °C) 1.3% 2.1% 62 NA 1.1%
Consumption per capita (2020$) 18,536 55,825 201 NA NA

Geophysical
Other Forcings (W/m2) 1.42 1.00 − 30 NA NA
CO2/output ratio (tCO2/000 2010$) 0.113 0.094 − 16 NA 0.03

Outcome variables
Industrial emissions (GTCO2 per year) 78.7 70.8 − 10 50.40 52.60
Output (trillions 2010$) 218.5 816.3 274 206.0 581.0
Atmospheric concentration C (ppm) 670 854 27 162 234
Atmospheric concentrations (GtC) 1428 1820 27 334 498
Atmospheric Temperature (°C) 3.20 4.29 34 1.00 0.89
Climate damages (% output) 1.5% 4.3% 191 NA 0.028
Total forcings (W/m2) 6.65 7.00 5 NA NA
Social cost of carbon ($/tCO2 2010$) 11.79 265.73 2154 NA NA

NA not available
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Examining the error ratios in Table 3, we see that most of the error ratios are less than 1.
The largest error ratios are in the order of 1 and occur for temperature, per capita output,
output, damages, and the SCC. These estimates indicate that while the projection errors are in
some cases very large, large errors are expected because of the magnitude of the parametric
uncertainty and the structure of the DICE model. In other words, given the large uncertainty
about output growth, it is not surprising that there is a corresponding large uncertainty about

Table 3 Forecast error ratios for different projections

Variables Ratio: (difference 2016–1992)/
estimated error

Major driving variables
Economic
Interest rate (% per year) 0.11
Population (billions) 0.54
Savings rate
Per capita GDP (2010$) 1.04
Damage parameter (% at 3 °C) 0.77
Consumption per capita (2020$)

Geophysical
Other Forcings (W/m2)
CO2/output ratio (tCO2/000 2010$) − 0.70

Outcome variables
2100
Industrial emissions (GTCO2 per year) − 0.15
Output (trillions 2010$) 1.03
Atmospheric concentration C (ppm) 0.79
Atmospheric concentrations (GtC) 0.79
Atmospheric temperature (°C) 1.22
Climate damages (% output) 1.02
Total forcings (W/m2)

2015
Social cost of carbon, 2015 ($/tCO2 2010$) 0.93

The forecast error ratio is the ratio of the forecast error to the estimated standard deviation of the variable. See text
for a discussion

Table 4 Major steps to move from 1992 to 2017 DICE model to test for impact of revisions

v1: Takes the 1992 version to recreate the 1992 results (1989 $).
v5: Adjusts for inflation with price increase of factor of 2 for all economic variables (1989$ to 2010$).
v6: Adds the calculation of the real interest rate from 2016R2 calculation.
v7: Updates GDP and capital to match 2015 levels.
v9: Adjusts emissions and concentrations to match 2015 levels and match through 2100.
v10: Updates damage function parameter to 2016R2 model.
v11: Increases TFP growth to 2016R2 model.
v12: Adjusts sigma growth (the rate of growth of the CO2/GDP ratio) and other TFP parameters to 2016R2

model.
v13: Adjusts utility function.
v14: Adjusts climate model to 2016R2 model.
v18: Final adjustment of carbon cycle to match 2016R2.
V20: Final adjust of climate model and other forcings; match equilibrium and transient temperature sensitivity

from 2016R2 model.
v21: Adjusts for abatement in 2016R2 model.
v22: Is the current model (DICE-2016R2).

Source: From GAMS program. This list shows the Bversions^ of the model used to move from DICE-1992 to
DICE-2016R. It omits versions that were trivial or to check adjustments for accuracy
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emissions growth; the same is true of the SCC. We, therefore, should not be surprised that
output and SCC estimates have been substantially revised in the last quarter-century, and we
should anticipate major revisions in the future.

3 Decomposition of the changes

A next question is the source of the changes for the projections of different variables with
respect to revisions in the model structure and the economic and environmental data. The
approach is straightforward in principle but complicated in practice. It involves starting with
the earliest version of 1992 and then introducing model and data differences between 1992 and
2017 models one step at a time. We then evaluate the impact on different variables at each step.
We can thereby determine the size of the revisions for the important variables along with the
sources of the revisions. There is, of course, some ambiguity in this approach to the extent that
there are interdependencies among revisions. However, most of the step-by-step changes come
in a natural order, so the results are likely to be insensitive to ordering.

Table 4 shows the adjustments made step by step. We label the changes as being
different Bversions^ marked by vj. Some of the steps or versions are trivial or make
checks and will not be included in the discussion below. It is important to note that the
sequence is a logical progression and not a temporal set of steps. Some of the earliest
steps (such as the change to 2010$) came at the end, while there were several changes in
the carbon cycle modeling in the intervening years.

It will be useful to show two important examples. Table 5 shows the decomposition for the
social cost of carbon for 2015. This, it will be recalled, has the largest single revision. The
change comes from multiple variables. The largest contributor is the revision in the treatment
of the carbon cycle, while the others are primarily economic variables such as the damage
function and the utility function.4 Except emissions intensity, all the revisions were upwards.

Table 6 shows a similar calculation for 2100 temperature increase. The total change here is
much smaller, with the largest contributor being the carbon cycle. Most of the other changes
were modest and were both positive and negative. (The line BDICE-2016R2^ refers to all other
contributing factors that were not individually estimated.)

Tables 7 and 8 show the complete set of revision results for the outcomes in years 2015 and
2100. The first column is the replication of the results for DICE-1992. The second column (v6)
updates the price level to that in the current study and is the version used for the endpoint
comparisons in the prior sections.

The changes for selected variables and non-trivial changes are displayed in Figs. 1 and 2.
Figure 1 shows the decomposition of the changes for variables in 2015, while Fig. 2 shows for
variables in 2100.

In examining the revisions shown in Tables 7 and 8, the sources of the changes differ by
variable. Here are some of the highlights. In this discussion, I will ignore the first line in the table,
which is simple price-level change. In each of these decompositions, I examine what changes in
model design or data led to the major changes in the output variable from 1992 to 2017.

4 The change in the utility function involved both a change in the rate of time preference and a change in the
elasticity of the marginal utility of consumption. These affect the real return and the impact of changes in
productivity growth on different variables.
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& If we look at the change in 2015 global output due to model changes, it is not surprising
that most of the change came from the adjustment of the level of 2015 output. Other net
changes for 2015 output were minor.

& The major environmental variables for 2100 were relatively stable. Emissions and con-
centrations wobbled around with revisions, but there were only minor net changes. These
were stable in part because the mechanisms that drive these processes were relatively well
understood in the 1990s and partially because there are no ambiguities in how to measure
the variables.

& The huge increase in projected 2100 global output was partially because of the upward
revision in the base 2015 output, but primarily because of a major change in projected
productivity growth. For output, there are both measurement and technological issues. It is
clear that the mechanism underlying productivity growth is non-stationary, which makes
forecasting particularly difficult.

Table 5 Decomposition of changes in social cost of carbon, 2015

Change in social cost of carbon, 2015

From To Changed variable Change due to
this variables (%)

v14 v18 Carbon cycle 66
v9 v10 Damage function 59
v12 v13 Utility function 47
v6 v7 Initial output 36
v10 v11 Productivity growth 15
v21 v22 DICE-2016R 13
v13 v14 Climate model 8
v18 v20 Climate parameters 2
v20 v21 Abatement function 0
v7 v9 Initial emissions and concentrations − 1
v11 v12 CO2/GDP ratio and trend − 9

The list shows the major sources of the revision of estimates of the social cost of carbon from 1992 to 2017 in order

Table 6 Decomposition of changes in global temperature 2100

Change in global temperature, 2100

From To Changed variable Change due to
this variables (%)

v14 v18 Carbon cycle 22
v21 v22 DICE-2016R 11
v10 v11 Productivity growth 8
v13 v14 Climate model 4
v6 v7 Initial output 4
v12 v13 Utility function 1
v20 v21 Abatement function 0
v9 v10 Damage function 0
v18 v20 Climate parameters − 3
v11 v12 CO2/GDP ratio and trend − 4
v7 v9 Initial emissions and concentrations − 10

The list shows the major sources of the revision of projections of global temperature from 1992 to 2017 in order
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& Most changes in economic variables are driven by upward revisions in the measures of
output and TFP (productivity) growth, as discussed above.

4 External validation of DICE model

One of the major concerns with DICE and other IAMs is the difficulty of statistical estimation
and validation of the models. This has been a long-standing problem with IAMs as well as
other large-scale models, such as earth-systems models and ecological models. I address this
by examining potential statistical approaches and model comparisons.

4.1 Statistical approaches

One potential approach to validation is to use time-series methods to estimate IAMs and to test
their forecast errors. This is the gold standard, for example, in economic models of business
cycles and consumption behavior.

The statistical approach has not proven useful in IAMs and similar models. Because the
models make projections into the deep future, it is not feasible to find a reliable approach to
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Fig. 1 Changes in estimates for variables in 2015. The figure shows the level of the variable for each version.
For example, moving from 1989 $ to 2010 $ did not affect emissions but doubled output in nominal dollars.
Three changes included in Tables 7, 8, and 9 are omitted as they had virtually no impact on any of the graphed
variables. Interpretation of legend on horizontal axis: 1965$ DICE-1992 model (in 1989 $). 2010$ DICE-1992
model (reflated to 2010$). Q, K Adjustment for estimated output, capital in 2015. E, M Adjustment for estimated
emissions and concentrations in 2015. DamF Change to 2017 damage function. TFP Change to level and growth
of TFP (productivity) in 2017 model. Sigma Change to level and growth of global CO2/output ratio in 2017
model. Ufn Change to 2017 utility function. CCyc Change to 2017 carbon cycle and parameters. D2016R2 Rest
of changes to full DICE-2016R2 model
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estimating the relationships from appropriate historical or cross-sectional data. Moreover,
some elements, such as damages, have no useful historical observations because the future
climate is projected to be far from the past. Additionally, some of the elements, such as the
optimization structure, have no obvious empirical counterparts. Economy-climate models have
a similar structure as earth systems models, which also have been unable to draw upon
standard statistical techniques for estimation and validation.

Econometricians have explored the issues of statistical estimation of calibrated models. Most
of the work applies to dynamics stochastic general equilibrium models. For a general treatment,
see Hansen and Heckman (1996) or Fukač and Pagan (2010). There have been virtually no
successful examples of the use of statistical calibration techniques for IAMs. One exception to
this issue is research of Dale Jorgenson and colleagues in their IGEMmodel. In their case, they
have been able to estimate one part of the IGEMmodel (the demand structure) but not the other
modules (see Goettle et al. 2007). Several studies have estimated the uncertainties
associated with IAMs, such as Gillingham et al. (2018) as an example. However, these studies

800

820

840

860

880

900
Atmospheric concentra�on C, 2100 (ppm)

0

20

40

60

80

100

120
Industrial Emissions, 2100 (GTCO2/yr)

0%

1%

2%

3%

4%

5%
Damages/output (%), 2105

0

50

100

150

200

250

300
Social cost of carbon, 2105 ($/tCO2)

0
100
200
300
400
500
600
700
800
900

1,000
Global output, 2100 (trillions, 2010$)

0

1

2

3

4

5
Atmospheric Temperature (°C ), 2100 

Fig. 2 Changes in estimates for variables in 2100. The figure shows the level of the variable for each version.
For example, moving from 1989 $ to 2010 $ had no effect on emissions but doubled output. For the meaning of
legend on the horizontal axis, see Fig. 1

634 Climatic Change (2018) 148:623–640



are designed to provide forecast errors of the projections and do not attempt to estimate the
structure of the underlying model. The bottom line here is that, to date, researchers have not
developed approaches to applying classical statistical time-series techniques to estimation and
testing of IAMs.

4.2 Model comparisons as validation

An alternative approach is to examine the results of alternative models as a way of validating
models. In contrast to statistical approaches, there is a long history of model comparisons for
IAMs. One of the first, if not the first, model comparison of energy models was undertaken in
the late 1970s during the National Academy of Sciences’ CONAES (Committee on nuclear
and alternative energy systems) project (National Research Council 1979). This project grew
into the current Energy Modeling Forum at Stanford University, which has undertaken 34
projects, including several comparing energy models and IAMs.

I have examined the results of the DICE-2016 model and compared that with other models
that have been compiled in model-comparison studies. Table 9 shows the trajectories of four
important environmental variables (emissions, concentrations, forcings, and temperature) over
the long period for six different sets of projections. The first two lines, from around 1990, are

Table 9 Comparison DICE and IPCC projections, in the early 1990s and mid-2010s

Models or model comparison 1980 2000 2015 2050 2100

CO2 emissions (GtCO2)
IPCC 1990 22.0 26.0 36.7 55.0 89.8
DICE-1992 24.6 36.9 46.7 67.6 89.1
DICE-2016 35.8 58.2 70.9
MUP 36.2 62.0 90.0
SSP baseline 40.3 60.4 73.3
IPCC 8.5 64.2 95.3
CO2 concentrations (ppm)
IPCC 1990 340 375 412 535 825
DICE-1992 334 368 404 513 700
DICE-2016 399 552 826
MUP 405 537 836
SSP baseline 431 568 800
IPCC 8.5 400 530 940
Total radiative forcing (W/m2) (a)
IPCC 1990 2.00 3.10 4.20 6.60 9.90
DICE-1992 1.66 2.49 3.12 4.78 6.86
DICE-2016 2.46 4.39 6.82
MUP 2.34 4.39 7.28
SSP baseline 2.39 4.23 6.77
IPCC 8.5 1.50 1.30 2.50 4.80 8.00
Global temperature (°C) (b)
IPCC 1990 0.25 0.45 0.85 1.95 3.50
DICE-1992 0.17 0.54 0.85 1.70 2.75
DICE-2016 0.21 0.38 0.85 2.13 4.10
MUP 0.85 1.91 3.78
SSP baseline 0.85 1.93 3.67
IPCC 8.5 0.85 2.05 4.55

Source: compare ipcc dice-v4a.xlsx; page ipcc. Each row shows the projection from the model or study for the
variable for different years. For a description of models, see text
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the first IPCC Assessment and the first DICE model. The third line is the latest DICE model.
The next three are three alternative recent projections.

More precisely, the first line of Table 9 was from the IPCC reports of approximately the
same time as the first DICE model (IPCC 1990, 2014). The first IPCC report had a Bbusiness
as usual^ scenario that is comparable to the DICE model baseline. The fifth report (IPCC
2014) used alternative approaches. One approach was representative concentration pathways,
for which the RCP 8.5 is the closest to a business-as-usual case. Another was the shared
socioeconomic pathways (SSPs), which used different models. The estimate in Table 9 for the
SSPs uses the average of the baseline calculations for the five SSPs. A final comparison in
Table 9 is the five-model average from the MUP study from Gillingham et al. (2018), which
was harmonized with the DICE model. Here are the major results looking at Table 9:

& Looking at 1990–92 projections for 2015, they are reasonably close to the mark. Actual
CO2 concentrations in 2015 were 401 ppm, which is very close to the DICE-1992 estimate
and lower than the IPCC estimate. The projected increase in global temperature was
reasonably accurate, being 0.01 °C high for the IPCC and 0.06 °C high for DICE-1992.

& Two major errors stand out in the early studies. One projection error was 2015 CO2

emissions, which were substantially overestimated in the 1990–92 period. The other was a
large overestimate of total radiative forcings because of the huge overestimate of the
contribution of CFCs in the early estimates, before the Montreal Protocol had proven
effective.

& We see that emissions projections for 2100 have been largely downwards in later projec-
tions. This reflects primarily an underestimate of decarbonization in early studies. Tem-
perature increase has been generally upward, reflecting an upward revision of the
equilibrium temperature sensitivity from the earliest studies. The major downward revision
in forcings from the 1990 IPCC study has been due to the phaseout of CFCs.

Table 10 shows another set of calculations, focusing on projections for 2100. This has only
the most recent model calculations and is motivated to determine whether the most recent
DICE model is consistent with the projections of other IAMs. This table provides estimates
from the deterministic DICE-2016, estimates from a stochastic version of DICE-2016 with five
uncertain parameters (from Nordhaus 2018), the MUP study just discussed, the AMPERE
survey of models described in Kriegler et al. (2015), the SSP baselines described in Table 9,
and the Energy Modeling Forum project # 27 summarized in Blanford et al. (2014), which was
yet another multi-model comparison.

Table 10 Model comparisons for integrated assessment models

Model or comparison CO2 concentrations, 2100 (ppm) Temperature increase, 2100 (°C)

Central value Dispersion Central value Dispersion

DICE-2016 826 4.1
DICE-2016 (stochastic) 927 [578, 1561] 4.2 [2.7–5.9]
MUP 836 [800–906] 3.8 [3.7–4.3]
Ampere 816 [774–1033] 4.4 [4.1–5.3]
SSP 800 [606–1089] 3.7 [3.0–5.1]
EMF 27 4.0 [3.7–4.3]

Source: compare ipcc dice-v4a.xlsx, page modelcomp
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Table 10 shows two outcome variables for 2100 (concentrations and temperature) and two
measures (mean and a measure of variability). The measure of variability is an Bensemble^
variability, which is the range of the models, and a Monte-Carlo (5, 95) percentile range for the
DICE-stochastic estimates. It should be noted that the other models are of different vintages
(from 2010 to 2015), so the comparisons are not perfect.

It is useful to explain the different measures of variability in Table 10. The bracketed results
for BDICE stochastic^ are the 5th and 95th percentile of a Monte-Carlo simulation. For all
others, the measure is the Bensemble range.^ The ensemble measure of dispersion looks at the
differences among the mean forecasts or models. Ensemble dispersion is the approach often
taken by the IPCC and others in the absence of statistical measures. For example, the bracketed
range of 2100 CO2 concentrations for the five SSP baseline scenarios is [606–1089] =
483 ppm. We can compare ensemble dispersion with standard statistical measures. If a variable
is normally distributed, then the expected value of the ensemble range is 2.3 SD (standard
deviations) for five observations and 3.1 SD for ten observations. The measure of variability
for stochastic DICE (5–95 percentile) is 3.3 SD. This calculation suggests that the dispersion
estimates in Table 10 are between 4 and 7 standard deviations of the variable.

Here are the major points contained in Table 10:

& For levels of CO2 concentrations, the baseline DICE-2016 is in the middle of the results of
other IAMs. However, the mean estimated concentrations for stochastic DICE-2016 are
considerably higher than other estimates because of the thick tail of output due to high
uncertainty of output growth. This result is extensively discussed in Nordhaus (2018).

& For the dispersion of CO2 concentrations, stochastic DICE has much higher dispersion. The
reason is that all other estimates use ensemble variation as a measure of dispersion, and this
appears to be biased downward: Gillingham et al. (2018) showed that structural estimates
(such as used for stochastic DICE) have much higher dispersion than ensemble estimates.

& For the level of temperature increase, DICE-2016 is again in the middle of the pack, with
two of the other estimates above and two below. There is a relatively small 2100
temperature divergence between baseline DICE-2016 and stochastic DICE-2016. The
small difference arises because of the non-linearity of the temperature-concentration
function and the inertia of temperature behind concentrations.

& For the dispersion of temperature increase, stochastic DICE-2016 again shows a higher
range than the ensemble variation. The range for stochastic DICE is 3.2 °C (for the 5–95
percentile range) while the ensemble ranges are from 0.6 to 2.1 °C.

Tables 9 and 10 suggest that the deterministic version of DICE-2016 shows no major
differences from the center of gravity of other IAMs for major environmental variables
(emissions, concentrations, forcings, and temperature). This pattern indicates modeling con-
vergence as of the 2015–2017 period, with most of the major models having a similar
trajectory. The major difference will appear in the uncertainty of the trajectories, for which
there has been relatively little focus up to now.

5 Conclusions

This study analyzes the changes in the DICE model of the economics of climate change over
the last quarter century. Over that period, the central analytical structure of the model has
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remained the same, while most of the components have been revised in small or large ways,
and there have been major revisions and improvements in most of the underlying data.

Before summarizing the results, it may be useful to reflect on the usefulness of the methods
developed in this study for the broader IAM community. As of today, there are dozens of
IAMs around the world. It is extremely challenging for other modelers as well as for
consumers of IAM studies to understand the history and characteristics of different IAMs.
The present study might serve as a model for the IAM community to identify the salient
characteristics of each IAM as well as to provide a diagnostic tool, particularly for long-lived
IAMs, for examining its history and revisions.

For example, the kinds of statistics shown in Tables 1 and 2 should be routinely available
for each IAM (modified and augmented appropriately). While such outputs are often uncov-
ered in model comparisons, a better approach would be to have the salient model character-
istics regularly provided in a standardized format. Additionally, a retrospective analysis of
model changes over its history can help other modelers and the broader community understand
how much models have changed and the sources of changes. While the present study is only a
demonstration of what is possible, regular information on salient model characteristics and
occasional retrospective analyses should be best practice for integrated assessment models.

Concerning substance, the major message of the study is simple. The projections of most
environmental variables (such as emissions, concentrations, and temperature change) have
seen relatively small revisions (with the emphasis here on relatively). However, there have
been massive changes in the projections of the economic variables, including those that were
forecast in 1992 and have now been realized in 2017. The stability of the environmental
variables largely reflects the fact that these processes were relatively well-understood by the
early 1990s, and, therefore, modeling of these components within IAMs could be based on a
solid scientific foundation.

By contrast, the dominant underlying change in the results of this IAM has been in the
economic sectors, particularly in the measurement or prospect of current and future global
output per capita. A useful example is the revision in global output for 2015. The level of 2015
output (in 2010$) was revised upwards by 35% over the period. Most of this was conceptual,
involving the change from market exchange rates to purchasing power parity. The major
revision in the 2100 outlook for output was a change from the stagnationist view of global
growth in the 1980s and 1990s to a view of continued rapid growth today. This change can be
seen by comparing the survey in Nordhaus and Yohe (1983) with that of Christensen et al.
(2018). As a result of these two changes, projected 2100 output per capita was revised upward
by a factor of 3½ over the period. This major upward revision drove all economic variables,
including damages and the social cost of capital.

A further major revision has been in the damage function. There was no established
aggregate damage function in the early 1990s, and this module of the DICE model was
cobbled together based on very rudimentary primary information.

Another large change has been in the estimated rate of decarbonization, where the revisions
have been to lower emissions per unit output over the period. This was largely due to the
upward revision in the growth of output (which was not well measured) compared to a stable
estimate of emissions (which was relatively well measured).

Perhaps, the most dramatic revision has been the social cost of carbon (SCC). The SCC for
2015 has been revised upwards from $5 to $31 per ton of CO2 over the last quarter-century.
This is the result of several different model changes as shown in Table 5. While this large a
change is unsettling, it must be recognized that there is a large estimated error in the SCC. The
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estimated (5%, 95%) uncertainty band for the SCC in the 2016R2 model is $6 and $93 per ton
of CO2. This wide band reflects the compounding uncertainties of the temperature sensitivity,
output growth, damage function, and other factors. Moreover, it must be recognized that
analyses of the social cost of carbon were not widespread until after 2000. Finally, estimates of
the SCC are both highly variable across model and specification and have increased substan-
tially over the last quarter-century. If we take early estimates of the SCC from two other well-
known models (PAGE and FUND), these were close to estimates in the DICE-1992 model.

A final result concerns the estimated uncertainty of the estimates. Because of their non-
statistical structure, it is difficult to estimate the uncertainties associated with future forecasts of
IAMs. While a complete comparison is not available, the actual errors to date (measured as
forecast revisions) are reasonably within the estimated error bands. This suggests that studies
of the uncertainties of IAM projections are an important companion to standard projections as
a way of signaling the reliability of different projections (a recent multi-model study of
uncertainty is in Gillingham et al. 2018). However, the standard approach of using ensemble
uncertainty (uncertainty across models) as an estimate of forecast uncertainty is likely to be
unreliable and may underestimate actual uncertainty dramatically.

Both earlier studies and the results of this retrospective indicate that the economic compo-
nents and projections are the least precise and the most deserving of future study. This applies
especially to studies of long-run economic growth (to 2100 and beyond). Aside from climate-
change policies, uncertainties and revisions about economic growth are likely to be the major
factors behind changing prospects for climate change in the years to come.
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