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Abstract Recent studies have found that increasing intra-seasonal precipitation variability
will lead to substantial reductions in rice production in India by 2050, independently of the
effect of rising temperatures. However, these projections do not account for the possibility of
adaptations, of which the expansion of irrigation is the primary candidate. Using historical
data on irrigation, rice yields, and precipitation, I show that irrigated locations experience
much lower damages from increasing precipitation variability, suggesting that the expansion
of irrigation could protect Indian agriculture from this future threat. However, accounting
for physical water availability shows that under current irrigation practices, sustainable use
of irrigation water can mitigate less than a tenth of the climate change impact. Moreover,
if India continues to deplete its groundwater resources, the impacts of increased variability
are likely to increase by half.

Keywords Agriculture · Climate change · Rainfall variability · Adaptation · Irrigation ·
Water Resources

1 Introduction

The importance of accounting for adaptation, and its limits, in projections of the impacts of
climate change is widely recognized (Tol et al. 1998; Smit et al. 2000; Howden et al. 2007;
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Intergovernmental Panel on Climate Change 2014), but quantifying these limits empiri-
cally remains a challenge. In this paper, I use data on crop yields, precipitation, irrigation,
and estimates of groundwater resources to demonstrate the extent to which the depletion
of groundwater resources restricts the scope for irrigation to adapt Indian agriculture to
increased precipitation variability.

Climate change is expected to shift precipitation patterns in ways that will threaten agri-
culture worldwide, especially in the semi-arid tropics. Precipitation is projected in decline
in some areas and increase in others, but is likely to become more variable, within seasons,
in most locations (Tebaldi et al. 2006; Meehl et al. 2000; Allan and Soden 2008; Min et al.
2011; Goswami et al. 2006; Meehl et al. 2005; Rajah et al. 2014; Krishnamurthy and Shukla
2000; Shukla 2003; Krishna Kumar et al. 2011; Trenberth et al. 2005; Hennessy et al. 1997).
Relatively few studies have quantified the impacts on increasing intra-seasonal variabil-
ity on crop yields, but both modeling (Wolf et al. 1996; Mearns et al. 1996, 1997; Olesen
et al. 2000; Richter and Semenov 2005; Semenov and Porter 1995; Patil et al. 2012) and
recent statistical analyses of historical rainfall and crop yields (Auffhammer et al. 2012; Fish-
man 2016) have found these impacts to be negative and large. However, these projections do not
account for all possible adaptations, ofwhich the expansion of irrigation is a primary candidate.

Irrigation has been used to buffer crop yields from precipitation shortages for millen-
nia, since irrigation water can substitute for rainfall deficiencies in terms of both quantity
and timing. The expansion of irrigated area is therefore often considered to be a promising
adaptation strategy to climate variability and change (Rosenzweig and Parry 1994; Mendel-
sohn and Dinar 1999, 2003; Howden et al. 2007; Parry 2007) but the scope for irrigation as
an adaptation strategy is constrained by physical water availability. This constraint is likely
to become increasingly binding as renewable water supply is becoming exhausted and non-
renewable resources, primarily groundwater aquifers, are becoming depleted (Konikow and
Kendy 2005; Wada et al. 2010; Famiglietti 2014; Zaveri et al. 2016).

Numerous studies have used climate and crop modeling to simulate the future direct
impacts of climate change on crop yields (Intergovernmental Panel on Climate Change
2014). Several studies have also evaluated the direct impacts of climate change on water
availability for irrigation (Vörösmarty et al. 2000; Arnell 2004; Fischer et al. 2007; Konz-
mann et al. 2013; Haddeland et al. 2014) and the resulting impacts on agriculture (Elliott
et al. 2014). However, as far as I am aware, the extent to which the depletion of water
resources might limit the scope for adapting to climate change has not been quantified to
date, especially on the basis of observed relationships between rainfall, crop yields and irri-
gation. This impact can be thought of as the interaction of the direct agricultural impact
of climate change and of anthropogenic water resource depletion. Here, I perform such an
analysis for the case of rice production in India.

Globally, rice is one of the three most important sources of energy for human consump-
tion (Lobell et al. 2011). In India, it delivers about half of all calories obtained from cereals,1

and occupies more than half the cultivated area in the rainy season.2 Since India produces
about a fifth of the world’s rice crop, substantial losses in local yield will directly bear on
global food grain prices.

1Food and Agriculture Organization, http://faostat3.fao.org/
2Source: Agricultural Statistics at a Glance, Directorate of Economics and Statistics, Dept. of Agriculture,
Govt. of India.

http://faostat3.fao.org/
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The high variability and uneven temporal distribution of rainfall in India, both within
and across years, has made irrigation essential for agricultural productivity and food secu-
rity, and its expansion has been one of the central pillars of India’s agricultural development
policy for decades. India is now the world’s third largest dam builder, with over 4000
large dams, and the world’s largest consumer of groundwater, with over ten million wells.
Groundwater is estimated to support 70% of agricultural production and more than 50%
of the Indian population (World Bank 1998; Shah 2008). India is probably also the coun-
try most vulnerable to the threat of groundwater depletion. Over-extraction of groundwater
(in excess of natural recharge) is widespread (Rodell et al. 2009; World Bank 1998; Liv-
ingston 2009; Shah 2008; Fishman et al. 2011) and the rates of water table declines across
the country are alarming(Aeschbach-Hertig and Gleeson 2012; Rodell et al. 2009; Tiwari
et al. 2009; Livingston 2009).

My approach is based on a recent statistical analysis of historical rice yields and pre-
cipitation in almost 500 locations across India in the period 1970–2003, that estimates the
impact of rainfall variability on rice yields (Fishman 2016). Statistical analyses are widely
used, alongside those based on crop models, to project climate change impacts (Lobell and
Burke 2010). Both approaches have their strengths and weaknesses. One particular advan-
tage of statistical models, which is especially important in developing countries, is that they
base their estimates on observed crop production achieved by farmers that often employ
sub-optimal cultivation practices that can be quite different than those used in controlled
agronomic conditions or assumed in crop models (Mondiale 2008).

Numerous such statistical analyses of historical crop-weather relationships have esti-
mated the impact of rising temperatures on crop yields, in India and elsewhere (Schlenker
and Lobell 2010; Schlenker and Roberts 2009; Deschenes and Greenstone 2007; Fisher
et al. 2012; Welch et al. 2010; Peng et al. 2004; Nelson et al. 2009; Guiteras 2008; Krishna
Kumar et al. 2004; Dinar 1998; Rosenzweig et al. 2013). However, reference (Fishman
2016) has for the first time used this approach to show that increasing rainfall variability
(measured by the number of rainy days in the season) also has large negative impacts on
crop yields. Applying the estimates to a climate change projection showed that by 2050,
increasing variability will more than offset the beneficial impacts of increased precipitation
totals, and result in a net 10% decline in rice yields. These impacts are independent of and
additional to the well-documented effects of rising temperatures.

Here, I build on this analysis and assess the degree to which irrigation reduces the impact
of precipitation variability on crop yields. Basing this assessment on empirical estimates
derived from observed yields is important, because farmers are likely to be applying irriga-
tion water in sub-optimal ways due to various hydrological and economic constraints, and
may adjust to the availability of irrigation in additional ways (Taraz 2017).

I then apply these estimates to a number of stylized integrated climate-groundwater sce-
narios that combine projections of precipitation variability to 2050 with several possible
trajectories for India’s irrigation expansion and its groundwater aquifers. These highly styl-
ized simulations are not meant to provide an accurate and comprehensive projection that
accounts for all factors impacting rice production in India in mid-century. Rather, they are
meant to illustrate the interplay between the impacts of climate change and the ongoing
depletion of India’s water resources. In particular, they provide novel quantification of the
extent to which groundwater availability limits the future prospects of adaptation to climate
change. The effects of these two independent threats to Indian agriculture have until now
been mostly subject to separate analyses.
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2 Methods

Data sources I use the same weather and agriculture data sets employed in reference
(Fishman 2016) and repeat its description here. Daily gridded (1◦ × 1◦) precipitation and
temperature data (Rajeevan et al. 2005; Srivastava et al. 2009) for the period 1970–2004 are
modified to represent 2001 Indian district boundaries through weighted spatial averaging
(Devineni et al. 2013). Additional modifications are made to account for district splits dur-
ing the period (Kumar and Somanathan 2009). Daily mean temperatures during the rainy
season (June–September) are used to calculate the growing season degree days, a measure
of heat often used in phenological studies (Schlenker et al. 2006). Daily precipitation data is
used to calculate total seasonal rainfall and several other indicators of intra-seasonal rainfall
variability, including the number of days with rainfall in excess of 0.1 mm (see the results
section). Rainy season rice yields, cropped areas and gross (annually totaled) irrigated areas,
at the district level, are obtained from the Indian Harvest Data set of the Center for the
Monitoring of the Indian Economy (CMIE). In total, 6,432 annual weather and agricultural
observations in 485 districts (covering 18 indian states) are available. Table S1 reports the
mean and standard deviation of the main variables used in the analysis.

Weather-yield analysis The impacts of climatic variability on rice yields are estimated
using a multivariate log-linear regression model that controls for growing season heat expo-
sure, measured by degree days (Schlenker et al. 2006); total seasonal rainfall; and the
number of rainy days (May 2004) as a measure of intra-seasonal variability (Summary
statistics for these variables are reported in Table S1).

log Ysdt = v · Wsdt + fs(t) + pd + εsdt (1)

where Ysdt is the crop yield in district d, state s and year t ; Wsdt is a vector of weather
variables including total Monsoon rainfall, seasonal degree days, and the number of rainy
days. The three coefficients contained in the vector v represent the impact of deviations in
these three weather indicators on rice yields. The model follows standard practices in the
literature and includes unobserved, time-invariant factors, pd , that are specific to each dis-
trict such as soil types, water resources availability and other geographical or time invariant
socio-economic characteristics; and state-specific quadratic time trends fs(t) to reflect the
substantial variation in agricultural technological progress across Indian states. By including
these controls, the estimation is based on random deviations of weather from its long-
term mean within each district, and thus facilitates causal inference. Additional details are
provided in reference (Fishman 2016).

Heterogenous impacts by irrigation cover The CMIE dataset does not report irrigated
and unirrigated yields separately, making it impossible to directly estimate whether irrigated
yields are less sensitive to weather patterns. However, the dataset does report the seasonal
rice cropped area GA and gross (annually totalled) rice cropped irrigated area GIA (where
water was applied at least once during the growing season). I use the fraction of gross area
irrigated FIAsdt = GIAsdt /GAsdt as a measure of irrigation cover in each state, district
and year.

To estimate the degree to which the impacts of weather deviations on rice yields differ
between irrigated and non-irrigated areas, I estimate a regression model, similar to Eq. 1,
that also includes interaction terms between irrigation cover and the weather variables:

log Ysdt = (v0 + FIAsdt × δ) · Wsdt + fs(t) + πd + εsdt (2)
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In this model, the three coefficients contained in the vector v0 represent the impact of
deviations of the three weather indicators on rice yields in completely non-irrigated districts
(where irrigation cover equals zero). The three coefficients in the vector δ represent the
change in the sensitivity of crop yields to the three weather variables, as irrigation cover
increases (continuously) from 0 (no irrigation) to 1 (fully irrigated).

One possible concern in interpreting estimates of regression (2) lies with the possibil-
ity of un-observed variables that might be correlated with irrigation cover and are the ones
responsible for reducing the impacts of rainfall variability. In such a case, a causal inter-
pretation of the results that implies that increasing irrigation cover will reduce the future
impacts of rainfall variability can be misleading. While I am unable to fully address these
concerns, I can separate the effects of irrigation from those of any unobservable confounder
operating at the state level by estimating a model:

log Ysdt = (v0 + FIAsdt × δ + μsIs + νsIs × t) · Wdt

+fs(t) + πd + εsdt (3)

which also controls for interactions between all weather variables and state-specific linear
time trends (obtained as products of 18 state level binary indicators Is with state specific
constants and time trends). This range of 36 controls will capture all potential confounders
whose variation is well captured at the state level, or by state dependent linear time trends.
These would include time-invariant attributes such as institutional or geographical state
attributes, and variables that change linearly over time, even if the rate of change differs
across states. The resulting estimate of the coefficient δ is therefore based only on variation
in irrigation cover that occurs within states and is also orthogonal to arbitrary state level
linear trends in time.

I further estimate an additional variant of the interaction model

log Ysdt = (v0 + FIAsdt × δ + μs,DIs,D) · Wdt

+fs(t) + πd + εsdt (4)

in which the 54 binary indicators Is,D (18 states times 3 decades) represent more flexible
interactions of the weather variables with arbitrary state decade combinations and therefore
capture all slow moving (decadal) processes occurring at the state level.

Additional robustness tests are discussed and reported in the Results section, below.

Climate change simulations To perform simple climate change impact simulations, I
multiply projected changes in total precipitation and the number of rainy days �W from
an illustrative climate change scenario for South Asia by the estimated coefficients relating
rice yields to changes in these weather variables.3 The climate change scenario used in this
projection is taken from reference (Fishman 2016) and includes a 100 mm increase in total
precipitation (inspired by the IPCC’s A1B, South Asia, 2080–2099 median projection of a
10% increase in precipitation) and a decrease of 15 rainy days by 2050 cited by IPCC AR4
(Solomon 2007; Krishna Kumar et al. 2003).

In each district, changes in rice yields are calculated on the basis of the sensitivity of
(log) rice yields to weather fluctuations in that district, vd , which is in turn determined by

3My analysis is focused on the effects of precipitation and I therefore omit the impacts of temperature
increases from the analysis. To first order, the impacts of the shifts in the three weather indicators are linearly
separable, so that the impact of temperature increases, which have been investigated in other studies, are, to
first order, independent of and additional to those at the focus of the analysis.
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the irrigation cover FIAd in that district, according to the estimated coefficients of Eq. 2,
i.e.,:

vd = vo + δFIAd (5)
where FIAd is the irrigation cover in district d in the irrigation scenario in question (see
below), and vo and δ are the estimated obtained from regression (2).

Calculated yields yd in each district are then multiplied by mean rice cropped areas
Ad in each district (1980–2000), which is assumed to remain unchanged, and aggregated
production losses �P are aggregated across India:

1 + �P

P
=

∑
d Adyd exp(vd�W)

∑
d Adyd

(6)

Groundwater scenarios To incorporate the effect of irrigation expansion into a cli-
mate change impact projection, and illustrate the interaction between climate change and
water resource availability, I couple the above climate change scenario with five stylized
irrigation-groundwater scenarios that capture different possible trajectories of groundwater
irrigation in India. Each scenario projects the future irrigation cover in each district FIAd

on the basis of current irrigation cover (leftmost map in the top panel of Fig. 2) and differ-
ent stylized assumptions. These values are then plugged into Eq. 5 to produce a simulation
of future rice yields.

Five irrigation scenarios are considered. In the benchmark scenario, irrigation cover is
maintained at current levels (1980–2000 means). In this scenario, FIAd is given by its
current value FIAC

d (displayed in the left most map in the top panel of Fig. 2). In the full
irrigation scenario, it is assumed that FIAd = 1 everywhere.

To calculate the fraction of area irrigated in the sustainable expansion scenario, I use
data on the fraction of overall irrigated area that is irrigated by groundwater GWd

4 and
Xd , the stage of groundwater development, provided by the Indian government (Central
Ground Water Board 2004), and defined as the ratio of extraction to renewable natural
recharge (Fig. S1). In districts where this parameter exceeds 100%, extraction already
exceeds recharge and is therefore un-sustainable. Note that this data is only available at the
aggregate level across all crops, so I assume the rice specific figures are similar to the aggre-
gate ones. In making the projection, I assume that the area served by surface irrigation does
not change, and allow the area served by groundwater to adjust to sustainable levels:5

FIAS
d = FIAC

d × (GWd/Xd + (1 − GWd)) (7)

In the mild depletion scenario, the area irrigated by groundwater it is assumed to reduce
to zero in districts where it is currently unsustainable. In the severe depletion scenario, it is
assumed to reduce to zero everywhere. In all scenarios, cropped areas and areas irrigated by
other (surface) sources are assumed to remain unchanged

3 Results and discussion

The effect of intra-seasonal precipitation variability on rice yields Estimates of
regression (1) (essentially identical to those in (Fishman 2016)) are reported in Column 1 of

4Source: Agricultural Statistics at a Glance, Directorate of Economics and Statistics, Dept. of Agriculture,
Govt. of India.
5I force the resulting irrigation cover remain below 1
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Table 1, with coefficients presented in terms of 0.01 logarithmic units, so that they can be
approximately interpreted as the number of percentage points by which rice yield are esti-
mated to change per unit increase in the respective weather variable. The estimates reveal
the large effect of intra-seasonal variability. They imply that each additional rainy day, keep-
ing heat exposure and total precipitation fixed (which amount to a more even intra-seasonal
distribution), increases rice yields by an estimated 0.78% (p < 0.01). In comparison, an
additional 10 mm of total precipitation, roughly the amount of precipitation in an average
rainy day, increases yields by 0.11% (while keeping the number of rainy days fixed). Heat
has a negative effect: each additional degree-day reduces yields, on average, by 0.11%.

Difference in effects in irrigated and non-irrigated areas The impacts estimated
above represent an India-wide average. However, significant heterogeneity exists in cul-
tivation practices across the country, particularly with respect to irrigation cover. Across
the entire sample, the mean irrigated fraction of the area cultivated with rice is 55% but it
exhibits a substantial degree of spatial variation (rightmost map in the top panel of Fig. 2).
To estimate the degree to which irrigation is associated with a lower sensitivity of rice yields
to weather fluctuations, I estimate regressions that includes interactions between all three
weather variables and irrigation cover (share of rice cultivated land which is irrigated).

Column 2 of Table 1 reports estimates of the basic interaction model, Eq. 2. The results
can be interpreted to mean that in the absence of irrigation, an additional rainy day increases
yields by 1.36% (p < 0.01), but as irrigation cover increases, this impact eventually
decreases by 0.96 percentage points (p < 0.01). They are represented by the light blue line
in Fig. 1, which depicts the change in the estimated impact of an additional rainy day on
rice yields (vertical axis) as irrigation cover continuously increases from 0 to 100% (hori-
zontal axis). In the bottom two rows of the Table 1 report the point estimate and P value of
the impact of rainy days on rice yields in completely irrigated districts, which I define as
the sum of the coefficients v0 + δ.

Columns 3–8 of the same table report estimates of a range of alternative specifications
and robustness checks that aim to improve the interpretation of the results. These estimates
are also summarized in Fig. 1

Columns 3 and 4 report results of robustness tests (Eqs. 3 and 4) that address concerns
about a biased interpretation of the effect of irrigation by including flexible controls for
interactions between weather deviations and unobservable factors varying at the state and
time level, as described in the methods section. The estimated coefficients of interest remain
remarkably similar in magnitude and statistical significance to those obtained using the
basic interaction model. Note that unlike the estimates reported in column 2, in the case of
columns 3 and 4, one may not interpret the coefficient of the un-interacted weather terms
as capturing the effect of these weather fluctuations in completely un-irrigated districts,
because of the presence of interaction terms between weather variables and state specific
intercepts in the regressions.

A second potential concern with model (2) is that irrigation cover is itself endoge-
nous (responsive) to weather anomalies in a particular district and year, leading to biased
estimates. To partially address this concern, I also estimate a model in which I use the
time-invariant long-term average of irrigation cover in each district in place of its contem-
poraneous level, i.e., I use FIAsd = GIAsdt /GAsdt . The results, reported in column 5 of
Table 1, remain extremely similar. In column 6 I add interactions between weather variables
and state specific fixed effects to the same model, so that the estimates are based only on
variation between districts in the same state, for the same reasons discussed above.
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Fig. 1 Graphical representation of the estimated effect of irrigation cover (the share of area cultivated with
rice which is irrigated) on the sensitivity of rice yields to increases in the number of rainy days. Each line
traces the effect of each additional rainy day on (Log) rice yields as irrigation cover increases from 0 (left
end, no irrigation) to 1 (right end, full irrigation), as estimated by a separate regression model. The slope
of each line is the estimated coefficient of the interaction term in Eq. 2, i.e. the parameter δ, whereas the
intercept represents the un-interacted term, i.e., the parameter v0, which captures the effect of rainy days
in completely un-irrigated districts. Lines in blue shades represent estimates from models which use time-
varying irrigation data (columns 2, 3, 4 in Table 1). The intercept for these lines is taken from column 2 of
Table 1 (the intercepts estimated in columns 3 and 4 of Table 1 cannot be interpreted in the same way because
these regressions include interactions of weather with state fixed effects). Lines in orange shades represent
estimates from models which use time-invariant irrigation data (columns 5,6 in Table 1). The intercept for
these lines is taken from column 5 of Table 1. The green line represents an estimate from a regression that
limits the sample to locations where a single rice crop is cultivated per year (column 8 in Table 1, see text).
The intercept in for this line is also taken from column 8. Standard errors are not shown for clarity (they
are reported in Table 1), but all intercepts and slopes are statistically significant at the 5% level. The various
regression models are explained in greater detail in the main text (methods section)

In columns 7 and 8 I repeat the estimation reported in Columns 5 and 6 in a sub-sample
of the data in which rice is only cultivated in the rainy season. My main motivation for doing
so lies in the concern that the definition of irrigation cover may be skewed in such locations,
because it divides the gross irrigated area, i.e. the annual irrigated area, by the rainy season
cropped area. If rice is cultivated outside the rainy season, this measure could be misleading.
However, I find that the results remain similar to those obtained with the full sample.

I also subject the results to a number of variations of the specification of the basic weather
model, that consist of inclusion of year fixed effects, a quadratic expression in total pre-
cipitation, and replacing degree days as my measure of heat exposure by a flexible model
relying on the number of days in various temperature ranges. The main results remain robust
to these alternative specifications (see the SOI and Table S2 for more details).

It is interesting to note that I only find robust and statistically significant evidence that
irrigation cover reduces the impacts of changes in the intra-seasonal variability of precip-
itation, and not the impacts of changes in total precipitation. Previous statistical estimates
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Table 1 (Log) Rice yields

(1) (2) (3) (4) (5) (6) (7) (8)

Precipitation 0.11*** 0.18*** 0.22 0.33 0.15*** 0.17 0.15*** 0.25***

(10 mm) (0.03) (0.06) (0.18) (0.21) (0.05) (0.11) (0.04) (0.06)

Degree days − 0.11*** − 0.09*** − 0.05 − 0.06 − 0.10*** − 0.06 − 0.12*** − 0.08**

(Monsoon) (0.03) (0.03) (0.04) (0.05) (0.03) (0.05) (0.03) (0.03)

Rainy days 0.78*** 1.36*** 1.19** 0.59 1.35*** 1.26*** 0.88*** 1.40***

(0.14) (0.28) (0.51) (0.50) (0.23) (0.28) (0.17) (0.23)

Precipitation X −0.08 0.06 0.05 −0.11 0.00 −0.28***

Irrigation (0.08) (0.10) (0.10) (0.08) (0.10) (0.09)

Degree days X − 0.04* − 0.02 − 0.02 − 0.01 − 0.01 − 0.08*

Irrigation (0.02) (0.02) (0.02) (0.04) (0.04) (0.04)

Rainy days X − 0.96*** − 0.80*** − 0.66*** − 1.01*** − 1.10*** − 1.09***

Irrigation (0.27) (0.25) (0.22) (0.24) (0.25) (0.26)

Observations 6432 4124 4124 4124 6046 6046 4285 4285

Adjusted R2 0.752 0.754 0.781 0.798 0.757 0.775 0.743 0.750

Rainy days 0.40 0.34 0.31

(full irrigation)

P value 0.01 0.01 0.08

Dependent variable: the logarithm of rice yield in units of 0.01. Each column represent a separate regression
model. Standard errors are displayed in parentheses and are robust to heteroskedacticity and arbitrary corre-
lation within the same state in a given year. Stars indicate statistical significance: * p ≤ 0.1, ∗ ∗ p ≤ 0.05,
∗ ∗ ∗p ≤ 0.01. All models include district fixed effects and state specific quadratic time trends. Column 1
reports estimates of the basic model, Eq. 1. Column 2 reports estimates from a model which includes inter-
action of all weather variables with the contemporaneous extent of irrigation cover, Eq. 2. Column 3 reports
parallel estimates from a model which also includes interactions of all weather variables with state specific
intercepts and linear time trends, as in Eq. 3. Column 4 reports parallel estimates except that the model
includes fixed effects foe at combination of state and decade, as in Eq. 4. Column 5 reports estimates obtained
from a model like that reported in column 2, except that the long-term mean of irrigation cover in each district
is used instead of the contemporaneous extent of irrigation cover. Column 6 reports parallel estimates, except
that the model also includes interactions of all weather variables with state specific fixed effects. Columns 7
and 8 report similar estimates to those reported in columns 5 and 6 except that the sample is restricted to dis-
tricts in which rice is only grown in the rainy season. The two bottom rows of the table report, for columns 2,
6 and 8, the point estimate and the P value of the impact of rainy days on yields in fully irrigated locations,
defined as the sum of the coefficients of the un-interacted effect of rainy days (which captures the effect in
entirely un-irrigated locations) and the interaction of rainy days with irrigation cover

of Indian agricultural data did find evidence that irrigation reduces the impacts of total pre-
cipitation on agricultural production (Duflo and Pande 2007; Taraz 2017), but they did not
control for intra-seasonal variability. When I only include total precipitation in the regres-
sions, I find similar results to these studies, but once I control for intra-seasonal variability,
the interaction estimates between total precipitation and irrigation cover become smaller,
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statistically insignificant and less robust. This disparity can be understood to reflect the par-
ticular effectiveness of irrigation in compensating for intra-seasonal variability in rainfall,
more than for shortages in the overall amount of rainfall, since irrigation itself relies on
water resources whose recharge also often depends on total rainfall amounts. Similarly, I do
not find evidence that irrigation reduces the negative impacts of heat exposure. This, too, is
broadly consistent with simple phenological considerations, since the impacts of high tem-
peratures on crop growth are not limited to increased evapo-transpirative water demands,
and several studies have observed strong temperature effects on irrigated rice crops in Asia
(Peng et al. 2004; Welch et al. 2010; Nelson et al. 2009).

The statistically significant negative sign of the estimated interaction term between pre-
cipitation variability and irrigation cover indicates that the negative impacts of rainfall
variability are lower in more highly irrigated districts. However, it does not necessarily
imply a causal relationship, strictly speaking, since in principle, other, unobserved factors
correlated with irrigation might be responsible for the reduced impact. While I am unable
to fully account for this possibility, I subject the regression results to a range of robustness
tests that include separating the effects of irrigation from any potential confounders operat-
ing at the state level in increasingly demanding specifications (see the methods section for
details), at which most water and irrigation related policies are determined (including, for
example, water tariffs and subsidies on power used for irrigation). Estimates of the interac-
tion term of interest remain stable and statistically significant across this range of alternative
model specifications, reported in columns 2–8 of Table 1 and depicted in Fig. 1 using lines
of different colors. While I avoid making causal claims, I assume these estimates to be illus-
trative of the impact of irrigation on the sensitivity of yields to increased variability, and
make use of them in the projections that follow.

Simulation of climate change impacts Figure 2 depicts simulated future irrigation cover
in each of the five groundwater-irrigation scenarios and the associated projected losses in
rice production in 2050.

In the first scenario, irrigation cover remains at its current levels indefinitely. In this
scenario, the negative effect of the decrease in the number of rainy days on 2050 rice yields
is estimated at − 11%, large enough to offset a small positive gain (2%) resulting from the
increase in total precipitation, and result in a net 10% decline in rice yields (Fishman 2016)
(this effect is independent of and additional to the impact of increasing temperatures).

The first scenario fails to account for the possibility of adapting through the expansion of
irrigation. As I found above, the impact of variability in irrigated areas is much lower than
in non-irrigated areas, suggesting that an expansion of irrigation could substantially reduce
the resulting climate change impact in 2050. In the second scenario, I allow irrigation to
expand so as to cover all area cropped with rice, and estimate that such an expansion would
reduce the impact of changing precipitation patterns by about a half (from 10% loss to 6%).

Given current limitations on India’s water resources, however, neither current irrigation
cover nor a full expansion are sustainable using current irrigation practices. While more than
half of India’s irrigated area is irrigated by groundwater, unsustainable over-exploitation
(relative to natural recharge) and falling water tables are already pervasive (Shah 2008;
Rodell et al. 2009; Fishman et al. 2011).

The third scenario I consider is a scenario of sustainable expansion, in which groundwa-
ter usage is everywhere brought to levels of natural recharge. This involves an expansion of
groundwater irrigation in areas where resources are not fully utilized, and a shrinking of the
area irrigated by groundwater in locations in which they are fully utilized or over-extracted.
In this scenario, the impact of climate change is little changed, and turns out to be reduced
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Fig. 2 Simulation of Climate Change impacts on rice yields in India resulting from the decrease in the
number of rainy days at 2050 in various scenarios for future irrigation cover. The top panel depicts maps of
projected irrigation cover (share of cultivated area which is irrigated) in each the scenarios: current cover-
age, sustainable expansion, mild and severe depletion (see text for definitions). The bottom panel plots the
resulting projected losses in rice production in each of the scenarios (as well as in a scenario of full irriga-
tion expansion). Error bars indicate changes resulting from using coefficient estimates for the impact of the
rainfall variable which are higher or lower by one standard deviation from their mean values

by less than a tenth (from 11 to 10%). This reduction is mostly a result of the fact that both
the associated increases and declines in production losses are modest and tend to offset one
another.

I next calculate climate change impacts in two scenario of “business as usual” in which
groundwater resources are exhausted in areas in which they are currently being unsus-
tainably depleted (“mild” depletion) or everywhere (“severe” depletion). Climate change
impacts in these scenarios are found to be larger (worse) by a factor of about 1.2 (12%)
and 1.5 (15%), respectively, as compared to the benchmark scenario (which ignores water
resources limitations).

Using estimates from the alternative regression specifications discussed above leads to
results that are broadly similar in pattern (see Fig. S2).

4 Conclusions

Increasing rainfall variability is projected to have large negative impacts on crop production
in the semi-arid tropics. The expansion of irrigation, a primary adaptation strategy, is shown
here to have a large theoretical potential to reduce future climate change impacts, but a much
more limited scope for mitigating this impact if physical constraints on future groundwater
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availability are taken into account. Continuing the current un-sustainable use of groundwater
in much of India is likely to lead to a shrinking of irrigation in over-exploited areas by the
time climate change impacts manifest, and my estimates show that if this results in a decline
in irrigation cover, climate change impacts will be substantially amplified in comparison
to those estimated on the basis of current irrigation cover. On the other hand, the maximal
sustainable use of groundwater, which involves shrinking irrigation cover in some areas and
expanding it in others, is shown to have little potential to reduce climate change impacts (but
also to avoid enlarging them). These findings demonstrate an additional pathway through
which growing water scarcity will impact future crop yields, above and beyond its direct
impacts on agriculture or on water resources (Tilman et al. 2002; Gleick 2000; Elliott et al.
2014).

Agricultural systems are increasingly exposed to multiple environmental stresses (God-
fray et al. 2010). Acting together, such stresses can interact in unexpected ways, resulting in
losses that exceed the linear total of their separate impacts. For example, the North Amer-
ican “Dust Bowl” exemplifies how one form of stress (intensive land use) can exacerbate
a system’s susceptibility to another (drought) (Worster 1982; Cook et al. 2009). This paper
demonstrates another important example of such a coupling. It is shown how the depletion
of groundwater resources constrains the capacity of India’s agriculture to adapt to increas-
ing precipitation variability. Thus, in this case, the degradation of a natural resource reduces
a system’s capacity to adapt to environmental change.

The approach used in this paper is limited in several ways. First, like other statistical
models, it is unable to account for the fertilisation impact of higher CO2 concentrations on
crop yields, which may also depend on irrigation. Second, it does not attempt to account
for adaptations other than the expansion of irrigation. For example, my model assumes rice
cropped areas will remain unchanged. Lower availability of irrigation water may also lead
to reductions in rice cultivation. Since the areas most dependent on groundwater irrigation
tend to have higher productivity, such reductions are likely to further decrease nationally
averaged rice yields, meaning my estimates are conservative. On the other hand, shifts to
less water intensive crops may potentially help buffer overall productivity (across the entire
crop mix) from losses in rice yields. My model also does not currently account for pos-
sible shifts in irrigation practices (Gleick 2003; Fishman et al. 2015). Third, the irrigation
scenarios considered here are simplistic and are only meant to highlight the importance
of accounting for physical constraints on adaptation. Future studies should also take into
account the direct impacts of climate change on water supplies, such as the direct impacts
of precipitation shifts on groundwater recharge, and those of Himalayan glacial and snow
melt on downstream river flow and surface irrigation (Shukla 2003; Immerzeel et al. 2010).

Acknowledgments I thank Upmanu Lall, Jeffrey Sachs, Wolfram Schlenker, Jesse Anttila-Hughes, David
Blakeslee, Brian Dillon, Solomon Hsiang, Chandra Kiran Krishnamurti, GordonMcCord, and Kyle Meng for
helpful suggestions and comments. I also thank David Blakeslee and Naresh Devineni for sharing data. This
work was supported in part by the Harvard Sustainability Science Program and the Columbia Water Center.

References

Aeschbach-Hertig W, Gleeson T (2012) Regional strategies for the accelerating global problem of ground-
water depletion. Nat Geosci 5(12):853–861

Allan RP, Soden BJ (2008) Atmospheric warming and the amplification of precipitation extremes. Science
321(5895):1481–1484



Climatic Change (2018) 147:195–209 207

Arnell NW (2004) Climate change and global water resources: Sres emissions and socio-economic scenarios.
Glob Environ Chang 14(1):31–52

Auffhammer M, Ramanathan V, Vincent JR (2012) Climate change, the monsoon, and rice yield in india.
Clim Chang 111(2):411–424

Central Ground Water Board (2004) Dynamic groundwater resources of India, as on March, 2004. Govt. of
India

Cook BI, Miller RL, Seager R (2009) Amplification of the north american ?dust bowl? drought through
human-induced land degradation. Proc Natl Acad Sci 106(13):4997–5001

Deschenes O, Greenstone M (2007) The economic impacts of climate change: evidence from agricultural
output and random fluctuations in weather. Am Econ Rev 97(1):354–385

Devineni N, Perveen S, Lall U (2013) Assessing chronic and climate-induced water risk through spatially
distributed cumulative deficit measures: a new picture of water sustainability in India. Water Resour Res
49(4):2135–2145

Dinar A (1998) Measuring the impact of climate change on Indian agriculture, vol 23. World Bank
Publications

Duflo E, Pande R (2007) Dams*. Q J Econ 122(2):601–646
Elliott J, Deryng D, Müller C, Frieler K, Konzmann M, Gerten D, Glotter M, Flörke M, Wada Y, Best N et al

(2014) Constraints and potentials of future irrigation water availability on agricultural production under
climate change. Proc Natl Acad Sci 111(9):3239–3244

Famiglietti JS (2014) The global groundwater crisis. Nat Clim Chang 4(11):945–948
Fischer G, Tubiello FN, Van Velthuizen H, Wiberg DA (2007) Climate change impacts on irrigation water

requirements: effects of mitigation, 1990–2080. Technol Forecast Soc Chang 74(7):1083–1107
Fisher AC, Michael HW, Roberts MJ, Schlenker W (2012) The economic impacts of climate change:

evidence from agricultural output and random fluctuations in weather: comment. Am Econ Rev
102(7):3749–3760

Fishman R (2016) More uneven distributions overturn benefits of higher precipitation for crop yields. Environ
Res Lett 11(2):024004

Fishman RM, Siegfried T, Raj P, Modi V, Lall U (2011) Over-extraction from shallow bedrock versus deep
alluvial aquifers: reliability versus sustainability considerations for india’s groundwater irrigation. Water
Resour Res 47(6)

Fishman R, Devineni N, Raman S (2015) Can improved agricultural water use efficiency save India’s
groundwater? Environ Res Lett 10(8):084022

Gleick PH (2000) A look at twenty-first century water resources development. Water Int 25(1):127–138
Gleick PH (2003) Global freshwater resources: soft-path solutions for the 21st century. Science

302(5650):1524–1528
Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM,

Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818
Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of

extreme rain events over india in a warming environment. Science 314(5804):1442
Guiteras R (2008) The impact of climate change on indian agriculture. University of Maryland Mimeo,

College Park
Haddeland I, Heinke J, Biemans H, Eisner S, Flörke M, Hanasaki N, Konzmann M, Ludwig F, Masaki Y,

Schewe J et al (2014) Global water resources affected by human interventions and climate change. Proc
Natl Acad Sci 111(9):3251–3256

Hennessy KJ, Gregory JM, Mitchell JFB (1997) Changes in daily precipitation under enhanced greenhouse
conditions. Clim Dyn 13(9):667–680

Howden SM, Soussana JF, Tubiello FN, Chhetri N, Dunlop M, Meinke H (2007) Adapting agriculture to
climate change. Proc Natl Acad Sci 104(50):19691

Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate change will affect the asian water towers.
Science 328(5984):1382–1385

Intergovernmental Panel on Climate Change (2014) Climate change 2014–impacts, adaptation and vulnera-
bility: regional aspects. Cambridge University Press, Cambridge

Konikow LF, Kendy E (2005) Groundwater depletion: a global problem. Hydrobiol J 13(1):317–320
Konzmann Markus, Gerten Dieter, Heinke Jens (2013) Climate impacts on global irrigation requirements

under 19 gcms, simulated with a vegetation and hydrology model. Hydrol Sci J 58(1):88–105
Krishna Kumar K, Deshpande NR, Mishra PK, Kamala K, Kumar KR (2003) Future scenarios of extreme

rainfall and temperature over india. In: Proceedings of the workshop on scenarios and future emissions,
Indian Institute of Management (IIM), Ahmedabad, July 22, pp 56–68

Krishna Kumar K, Rupa Kumar K, Ashrit RG, Deshpande NR, Hansen JW (2004) Climate impacts on indian
agriculture. Int J Climatol 24(11):1375–1393



208 Climatic Change (2018) 147:195–209

Krishna Kumar K, Kamala K, Rajagopalan B, Hoerling MP, Eischeid JK, Patwardhan SK, Srinivasan G,
Goswami BN, Nemani R (2011) The once and future pulse of indian monsoonal climate. Clim Dyn
36(11–12):2159–2170

Krishnamurthy V, Shukla J (2000) Intraseasonal and interannual variability of rainfall over india. J Clim
13(24):4366–4377

Kumar H, Somanathan R (2009) Mapping indian districts across census years, 1971–2001. Econ Polit Wkly
69–73

Livingston M (2009) Deep wells and prudence: towards pragmatic action for addressing groundwater
overexploitation in India Report, World Bank

Lobell D, Burke M (2010) Climate change and food security. Springer, Berlin
Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980.

Science 333(6042):616–620
MayW (2004) Simulation of the variability and extremes of daily rainfall during the indian summer monsoon

for present and future times in a global time-slice experiment. Clim Dyn 22(2):183–204
Mearns LO, Rosenzweig C, Goldberg R (1996) The effect of changes in daily and interannual climatic

variability on ceres-wheat: a sensitivity study. Clim Chang 32(3):257–292
Mearns LO, Rosenzweig C, Goldberg R (1997) Mean and variance change in climate scenarios: methods,

agricultural applications, and measures of uncertainty. Clim Chang 35(4):367–396
Meehl GA, Zwiers F, Evans J, Knutson T, Mearns L, Whetton P (2000) Trends in extreme weather and

climate events: issues related to modeling extremes in projections of future climate change*. Bull Am
Meteorol Soc 81(3):427–436

Meehl GA, Arblaster JM, Tebaldi C (2005) Understanding future patterns of increased precipitation intensity
in climate model simulations. Geophys Res Lett 32(18)

Mendelsohn R, Dinar A (1999) Climate change, agriculture, and developing countries: does adaptation
matter? World Bank Res Obs 14(2):277

Mendelsohn R, Dinar A (2003) Climate, water, and agriculture. Land Econ 79(3):328–341
Min S-K, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation

extremes. Nature 470(7334):378–381
Mondiale B (2008) World development report 2008: agriculture for development
Nelson GC et al (2009) Climate change: impact on agriculture and costs of adaptation, vol 21. Intl Food

Policy Res Inst
Olesen JE, Jensen T, Petersen J (2000) Sensitivity of field-scale winter wheat production in Denmark to

climate variability and climate change. Clim Res 15(3):221–238
Parry ML (2007) Climate change 2007: impacts, adaptation and vulnerability: working group II contribution

to the fourth assessment report of the IPCC intergovernmental panel on climate change, vol 4. Cambridge
University Press, Cambridge

Patil RH, Laegdsmand M, Olesen JE, Porter JR (2012) Sensitivity of crop yield and n losses in winter wheat
to changes in mean and variability of temperature and precipitation in denmark using the fasset model.
Acta Agric Scand Sect B Soil Plant Sci 62(4):335–351

Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG
(2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA
101(27):9971

Rajah K, O’Leary T, Turner A, Petrakis G, Leonard M, Westra S (2014) Changes to the temporal distribution
of daily precipitation. Geophys Res Lett 41(24):8887–8894

Rajeevan M, Bhate J, Kale JD, Lal B (2005) Development of a high resolution daily gridded rainfall data for
the indian region. Met Monograph Climatol 22:2005

Richter GM, Semenov MA (2005) Modelling impacts of climate change on wheat yields in england and
wales: assessing drought risks. Agric Syst 84(1):77–97

Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in india.
Nature 460(7258):999–1002

Rosenzweig C, Parry ML (1994) Potential impact of climate change on world food supply. Nature
367(6459):133–138

Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote KJ, Folberth C, Glotter M,
Khabarov N et al (2013) Assessing agricultural risks of climate change in the 21st century in a global
gridded crop model intercomparison. Proc Natl Acad Sci 201222463

Schlenker W, Lobell DB (2010) Robust negative impacts of climate change on african agriculture. Environ
Res Lett 5(1):014010

Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to us crop yields
under climate change. Proc Natl Acad Sci 106(37):15594



Climatic Change (2018) 147:195–209 209

Schlenker W, Hanemann WM, Fisher AC (2006) The impact of global warming on us agriculture: an
econometric analysis of optimal growing conditions. Rev Econ Stat 88(1):113–125

Semenov MA, Porter JR (1995) Climatic variability and the modelling of crop yields. Agric For Meteorol
73(3):265–283

Shah T (2008) Taming the anarchy: groundwater governance in South Asia. Earthscan
Shukla PR (2003) Climate change and India: vulnerability assessment and adaptation. Universities Press,

Hyderabad
Smit B, Burton I, Klein RJT, Wandel J (2000) An anatomy of adaptation to climate change and variability.

Clim Chang 45(1):223–251
Solomon S (2007) Climate change 2007-the physical science basis: Working group I contribution to the

fourth assessment report of the IPCC, vol 4. Cambridge University Press, Cambridge
Srivastava AK, Rajeevan M, Kshirsagar SR (2009) Development of a high resolution daily gridded

temperature data set (1969–2005) for the indian region. Atmos Sci Lett 10(4):249–254
Taraz V (2017) Adaptation to climate change: Historical evidence from the Indian monsoon. Environ Dev

Econ 22(5):517–545
Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes. Clim Chang 79(3):185–211
Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive

production practices. Nature 418(6898):671–677
Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite

gravity observations. Geophys Res Lett 36(18)
Tol RSJ, Fankhauser S, Smith JB (1998) The scope for adaptation to climate change: what can we learn from

the impact literature? Glob Environ Chang 8(2):109–123
Trenberth KE, Fasullo J, Smith L (2005) Trends and variability in column-integrated atmospheric water

vapor. Clim Dyn 24(7):741–758
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