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Abstract Strategies to manage the risks posed by future sea-level rise hinge on a sound
characterization of the inherent uncertainties. One of the major uncertainties is the possible
rapid disintegration of large fractions of the Antarctic ice sheet in response to rising global
temperatures. This could potentially lead to several meters of sea-level rise during the next few
centuries. Previous studies have typically been silent on two coupled questions: (i) What are
probabilistic estimates of this Bfast dynamic^ contribution to sea-level rise? (ii) What are the
implications for strategies to manage coastal flooding risks? Here, we present probabilistic
hindcasts and projections of sea-level rise to 2100. The fast dynamic mechanism is approx-
imated by a simple parameterization, designed to allow for a careful quantification of the
uncertainty in its contribution to sea-level rise. We estimate that global temperature increases
ranging from 1.9 to 3.1 °C coincide with fast Antarctic disintegration, and these contributions
account for sea-level rise of 21–74 cm this century (5–95% range, Representative Concentra-
tion Pathway 8.5). We use a simple cost-benefit analysis of coastal defense to demonstrate in a
didactic exercise how neglecting this mechanism and associated uncertainty can (i) lead to
strategies which fall sizably short of protection targets and (ii) increase the expected net costs.
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1 Introduction

Rising sea levels drive severe risks for many coastal communities (Nicholls and Cazenave
2010; Hinkel et al. 2015). The design of coastal defense strategies can hinge critically on future
sea-level projections. Deriving probabilistic projections of sea-level rise poses nontrivial
challenges as they must account for a complex mixture of uncertainties surrounding the
models and data employed (e.g., Kopp et al. 2016; Mengel et al. 2016; Bakker et al.
2017b). One important source of uncertainty is driven by the potential disintegration of the
West Antarctic ice sheet (WAIS) and general Antarctic ice sheet (AIS) fast dynamics (Alley
et al. 2005; Bamber and Aspinall 2013). Potentially important mechanisms that contribute to
these AIS fast dynamics include marine ice sheet instability (MISI), hydrofracturing, and ice
cliff instability (Pollard et al. 2015; DeConto and Pollard 2016). To better understand the local
coastal defense decisions that must be made, sea-level projections must include all major
contributions to local sea level (Cazenave and Cozannet 2014). Additionally, geological
factors affecting local relative sea-level changes, such as sediment compaction, ground water,
oil and gas extraction, and glacial isostatic adjustment—all of which contribute to potential
land subsidence (Jones et al. 2016)—must be taken into account.

Recent studies have made considerable progress towards understanding these mechanisms,
including through process-based modeling (Joughin et al. 2014; Pollard et al. 2015; DeConto
and Pollard 2016), probabilistic projections and statistical modeling (Little et al. 2013; Diaz
and Keller 2016), and expert assessment (Bamber and Aspinall 2013). For example, recent
work successfully constrained the AIS/WAIS dynamics by synthesizing expert assessment
with probabilistic inversion and projections (Oppenheimer et al. 2016). Here, we take an
alternative probabilistic modeling approach. The current nexus of paleoclimatic as well as
modern observations, more complete models, and the ability to fuse models and data presents
the opportunity to produce probabilistic sea-level rise projections that include the effects of the
AIS fast dynamics, constrained using paleoclimatic as well as modern observational data.

Previous probabilistic projections of sea-level rise (e.g., Kopp et al. 2014; Jackson and
Jevrejeva 2016; Kopp et al. 2016; Mengel et al. 2016) have typically excluded a calibrated
parameterization for the potential fast Antarctic ice sheet contributions to sea level. Jevrejeva
et al. (2014) combined process-based modeling with expert assessment for the fast Antarctic
dynamics (Bamber and Aspinall 2013) to find an upper limit of sea-level rise this century of
180 cm. The need for probabilistic projections that account for the Antarctic fast dynamical
sea-level contributions has been largely unfulfilled but not unnoticed (see the discussion in
Oppenheimer and Alley 2016). Here, we implement a simple, mechanistically motivated
parameterization for the AIS fast dynamic contribution to sea-level rise. Other studies have
incorporated these fast dynamic effects into projections of sea-level rise based on statistical
modeling and emulation of more detailed process-based models (DeConto and Pollard 2016;
Kopp et al. 2017; Le Bars et al. 2017). The incorporation of the fast Antarctic dynamics into
probabilistic projections of sea-level rise, specifically through a simple physically motivated
model calibrated directly to paleoclimatic data, is the key advance of the present study.

Our projections of sea-level rise for this century are higher than many previous projections,
including those of the Intergovernmental Panel on Climate Change’s Fifth Assessment Report
(IPCC AR5, Church et al. 2013), so the risks of coastal flooding are also likely higher. The sea-
level projections are used in an intentionally simple and illustrative cost-benefit analysis
method to quantify the impacts of the new scientific findings on coastal flood risk and
strategies to manage these risks (Van Dantzig 1956). Specifically, we evaluate the flood
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protection strategy for the north-central levee ring in New Orleans, Louisiana (Jonkman et al.
2009), assuming policy-makers either use or neglect the additional AIS fast dynamic contri-
butions to future sea-level rise. We conclude with a comparison of the two strategies, revealing
the impacts of neglecting the fast dynamics. We stress that these coastal defense results should
be viewed as a didactic exercise, demonstrating one sensitivity of flood protection strategies
and costs to an improved representation of the Antarctic fast dynamics.

2 Methods

2.1 Sea-level rise

We employ and expand upon a model framework that has been previously applied for
probabilistic projections of sea-level rise (Bakker et al. 2017b). This model has
recently been made available as the building blocks for Relevant Ice and Climate
Knowledge (BRICK) model v0.2 to simulate global mean surface temperature, ocean
heat uptake, global mean sea level and its contributions from the Antarctic ice sheet,
Greenland ice sheet, thermal expansion, and glaciers and small ice caps (Wong et al.
2017). BRICK uses a semi-empirical modeling approach, combining a platform of
previously published models. The model is described in greater detail by Wong et al.
(2017), so we only provide an overview here.

Global mean surface temperature and ocean heat uptake are simulated by the
Diffusion-Ocean-Energy balance CLIMate model DOECLIM (Kriegler 2005).
DOECLIM is a zero-dimensional energy balance model coupled to a three-layer,
one-dimensional diffusive ocean model. The input required to force DOECLIM is
the radiative forcing time series (W m−2), which is provided based on the work of
Kriegler (2005), with some updates and extensions, as described in greater detail in
previous studies using DOECLIM (Urban and Keller 2010; Urban et al. 2014). We
use a 1-year time step, and the output global mean surface temperature couples to sea-
level sub-models representing individual major sea-level contributions. All sea levels
are presented relative to their 1986–2005 mean.

The Greenland ice sheet is represented by the Simple Ice Sheet Model for
Projecting Large Ensembles (SIMPLE; Bakker et al. 2016). SIMPLE first estimates
an equilibrium Greenland ice sheet volume (Veq,GIS), given an anomaly in global mean
temperature (Tg), as well as the e-folding timescale of the ice sheet volume as it
exponentially relaxes towards this equilibrium volume (τGIS).

Veq;GIS tð Þ ¼ cGIS Tg tð Þ þ bGIS ð1Þ

1

τGIS tð Þ ¼ αGIS Tg tð Þ þ βGIS ð2Þ

In Eqs. 1 and 2, t represents time (years), cGIS is the equilibrium ice sheet volume
sensitivity to temperature (m SLE °C−1), bGIS is the equilibrium ice sheet volume for
zero temperature anomaly (m SLE), αGIS is the temperature sensitivity of the e-
folding ice sheet response timescale (°C−1 year−1), and βGIS is the equilibrium
response timescale (year−1). These quantities are uncertain model parameters, which
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we estimate as described in Wong et al. (2017) and briefly in Sect. 2.3. The change in
Greenland ice sheet volume (VGIS) can then be written as

dVGIS

dt
tð Þ ¼ 1

τGIS tð Þ Veq;GIS tð Þ−VGIS tð Þ� �
: ð3Þ

We make the assumption that all GIS volume lost makes its way into the oceans.
The contribution to sea level from glaciers and small ice caps (GSIC) is represented by the

GSIC sub-model of the Model for Assessment of Greenhouse-Gas-Induced Climate Change
(MAGICC) (Wigley and Raper 2005). The GSIC sea-level contribution (SGSIC) is parameter-
ized as

dSGSIC
dt

tð Þ ¼ β0 Tg tð Þ−T eq;GSIC
� �

1−
SGSIC tð Þ
V0;GSIC

� �n

: ð4Þ

In Eq. 4, the uncertain model parameters are β0, the GSIC mass balance sensitivity to global
temperature anomalies (m °C−1 year−1); V0,GSIC, the initial GSIC volume susceptible to melt
(m SLE); and n, the area-to-volume scaling parameter (unitless). These parameters are
estimated as in Wong et al. (2017). Teq,GSIC is taken equal to −0.15 °C (Wigley and Raper
2005).

Our parameterization for sea-level rise due to thermal expansion was originally formulated
for global sea level by Grinsted et al. (2010) and adapted for thermal expansion by Mengel
et al. (2016). First, an equilibrium thermal expansion is calculated (Seq,TE), given the anomaly
in global mean temperature:

Seq;TE tð Þ ¼ aTE Tg tð Þ þ bTE: ð5Þ

aTE, the sensitivity of this equilibrium thermal expansion to temperature changes (m °C−1),
and bTE, the equilibrium thermal expansion for zero temperature anomaly (m SLE), are
estimated as uncertain model parameters (Wong et al. 2017). The thermal expansion contri-
bution to global mean sea level is modeled as an exponential relaxation towards Seq,TE:

dSTE
dt

tð Þ ¼ 1

τTE
Seq;TE tð Þ−STE tð Þ� �

; ð6Þ

where τTE is the e-folding timescale of the thermal expansion response, and the quantity 1/τTE
is estimated as a model parameter (Wong et al. 2017).

The Antarctic ice sheet is represented by the Danish Center for Earth System Science
Antarctic Ice Sheet model (DAIS; Shaffer 2014). The main equation of state for Antarctic ice
sheet volume (VAIS, m

3) is

dVAIS

dt
tð Þ ¼ Btot T ;Rð Þ þ F S;Rð Þ; ð7Þ

where Btot (m
3 year−1) represents the total rate of accumulation of Antarctic ice sheet mass and

F (m3 year−1) is the ice volume flux across the grounding line. T (°C) is the Antarctic surface
temperature reduced to sea level (as the Antarctic surface is largely above sea level), S is sea
level (m), and R is the Antarctic ice sheet radius (m). The interested reader is directed to
Shaffer (2014) and Ruckert et al. (2017) for more information about the DAIS model.
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2.2 Antarctic ice sheet fast dynamic parameterization

The original DAIS model includes a parameterization for dynamic ice loss over the grounding
line as it retreats due to subsurface ocean warming (F in Eq. 7 above; Shaffer 2014). This ice
flux depends on the Antarctic ice sheet geometry, the water depth, and water temperature. This
misses the critical link between rising global temperatures and the sudden, fast ceasing of
buttressing ice shelves due to processes such as hydrofracturing and ice cliff failure (Ruckert
et al. 2017), which may substantially speed up the dynamic outflow (Pollard et al. 2015). We
form an explicit link between global surface temperatures and these fast Antarctic contribu-
tions to sea-level rise. We parameterize the AIS Bfast dynamic^ disintegration following Diaz
and Keller (2016, their Appendix A):

dV
dt

¼ −λ; T > Tcrit

0; T ≤Tcrit

�
; ð8Þ

where Tcrit (°C) and λ (mm year−1) are uncertain model parameters representing the threshold
annual mean temperature at which fast dynamic disintegration occurs and the rate of this
disintegration, respectively. T is the annual mean Antarctic surface temperature, reduced to sea
level. Equation 8 is incorporated as an additional mass balance term into the DAIS model. The
parameterization of Eq. 8 represents the bulk contributions from Antarctic ice cliff instability
and hydrofracturing to rising sea level. This neglects the causal relationship between (for
example) rising temperatures, warming oceans, and sub-ice shelf ocean circulation and these
fast processes. Thus, Tcrit may be thought of as the global warming that coincides with the
triggering of the fast ice sheet disintegration processes, but we note the limitation that our
formulation captures only the indirect relationship, not the direct causal relationship. In light of
this caveat, for brevity, we refer to Tcrit as the Btrigger temperature^ for the fast dynamic
emulator. The DAIS model (without fast dynamics) is described in detail by Shaffer (2014),
and the skill of the calibrated DAIS model is described by Ruckert et al. (2017).

The process approximated by Eq. 8 stops if either the temperature T falls back below Tcrit or
the Antarctic ice sheet volume decreases below 18 million km3. This lower limit is based on
the Bextreme interglacial forcing^ scenario of Pollard and DeConto (2009) and scaling by
assumed modern-day Antarctic ice volume (24.78 million km3) and sea-level equivalent
(57 m) (Shaffer 2014). Thus, we assume that all ice volume in excess of 18 million km3 is
susceptible to fast dynamical collapse.

The two-parameter model of Eq. 8 is sufficiently simple that it may be constrained by a
paleo record (described below), where the fast dynamics may have occurred either zero or one
time. A more complex model would pose considerable computational challenges to constrain
observationally. The simple formulation suffices to capture the bulk dynamics of the AIS rapid
disintegration but has limitations. For example, a more detailed modeling could consider a
probabilistic treatment of the different timescales, rates, and relative contributions from
different Antarctic basins susceptible to fast dynamical disintegration (Ritz et al. 2015). This
limitation of our model could lead to unrealistically large contributions to sea-level rise from,
say, the West Antarctic ice sheet, which recent work has shown may contribute up to several
meters (Pollard et al. 2015). Additionally, our parameterization is calibrated (see Sect. 2.3,
below) to match paleoclimate data assuming an immediate ice sheet response to temperature
forcing, which may not be the case. Uncertainty in ice sheet response timescales likely will
induce a wider range of uncertainty in our calibrated estimates of the trigger temperature. Other
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possible formulations for the Antarctic fast dynamic disintegration might include explicit
dependence on the grounding line, for example, as its retreat is driven by rising ocean
temperatures. This is a useful avenue for future study, but key strengths of the present approach
include the following: (i) it permits estimation of the trigger temperature, Tcrit, and (ii) its
simplicity hopefully leads to a transparent analysis of impacts.

2.3 Model calibration

The essence of the model calibration approach used here is to update the prior probability
distribution of model physical and statistical parameters by quantifying the goodness of fit
between model hindcasts and observational data. The likelihood function quantifies this match,
accounting for uncertainty in each. The posterior distribution of model parameters is given by
Bayes’ theorem as proportional to the product of the parameters’ prior distribution and the
likelihood function, evaluated for the model hindcast simulated at the parameter values in
question. The model calibration method proceeds by constructing a Markov chain of model
parameter estimates, which theoretically converges to samples from the parameter posterior
distribution. These samples may be viewed as parameters which yield model simulations that
are consistent with observations, given the uncertainty inherent in each.

The substantial parametric uncertainty surrounding the Antarctic fast dynamic contribution to
sea-level rise is characterized using two sets of prior distributions for the fast dynamics parameters
(λ and Tcrit) and running this model calibration algorithm using both sets of fast dynamics priors.
We use truncated uniform and gamma distributions for the two sets of priors. For the truncated
uniform priors, λ ranges from 5 to 15 mm year−1, centered at a recent estimate (DeConto and
Pollard 2016); the range for Tcrit (in Antarctic surface temperature reduced to sea level) is from
−20 to −10 °C. The parameters for the gamma priors are chosen to keep the mean at the center of
the uniform priors and place the 5% quantile for λ at 5mmyear−1 and for Tcrit at −10 °C. The prior
distributions for all other model parameters are the same between the two experiments (see Online
Resource 2).

We construct paleoclimatic calibration windows for the Last Interglacial (118,000 years before
current era (BCE)) (DeConto and Pollard 2016), Last Glacial Maximum, mid-Holocene, and
instrumental period (Shaffer 2014; Ruckert et al. 2017; Wong et al. 2017). These windows are
combined with AIS mass loss trends from the IPCC AR5 (Church et al. 2013) to constrain the
Antarctic ice sheet simulation. The Last Interglacial window uses a truncated normal likelihood
function between 3.6 and 7.4 m sea-level equivalent (SLE) (DeConto and Pollard 2016), with
mean 5.5 m and standard deviation 0.95 m. A Heaviside likelihood function is also used for the
total sea-level rise due to the Antarctic ice sheet, as well as the thermal expansion, to exclude
simulations that yield individual components of sea-level rise which exceed the total sea-level rise
data. The other paleoclimatic calibration periods use Gaussian likelihood functions. The date,
mean, and standard deviation of these are (respectively) 18,000 years BCE, −11.35 ± 2.23m SLE;
4000 years BCE, −2.63 ± 0.68 m SLE; and 2002 CE, 0.00197 ± 0.00046 m SLE (Ruckert et al.
2017). The paleoclimatic calibration runs span 240,000 years before current era to present.

Other observational data used to constrain the model parameters include global mean
surface temperature (Morice et al. 2012), ocean heat uptake (Gouretski and Koltermann
2007), glaciers and small ice caps (Dyurgerov and Meier 2005), Greenland ice sheet
(Sasgen et al. 2012), thermal expansion trends from the IPCC AR5 (Church et al. 2013),
and global mean sea level (Church and White 2011). We implement a simple, first-order
autoregressive (BAR1^) error model for the model-data residuals for the surface temperature,
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ocean heat uptake, glaciers and small ice caps, and Greenland ice sheet. These error models
include homoscedastic error (σ) and autocorrelation (ρ) statistical parameters for each com-
ponent. Median timescales T (years) on which the temperature, ocean heat, glacier and ice cap,
and Greenland ice sheet residuals become uncorrelated (lag-T autocorrelation coefficient
<0.05) are 5, 9, 6, and 8 years, respectively. Of course, longer timescale (e.g., multi-decadal)
modes in these time series are present (particularly in the ocean heat) but are not of interest to
the present study. Additionally, we include heteroscedastic error estimates for the temperature,
ocean heat uptake, and glaciers and small ice caps data, adding the homoscedastic and
heteroscedastic error components in quadrature.

The non-Antarctic ice sheet model components (modern calibration) and Antarctic ice sheet
model (paleoclimatic calibration) are calibrated separately using a robust adaptive Metropolis
Markov chain Monte Carlo (MCMC) algorithm (Vihola 2012). This algorithm adapts the
covariance matrix of the multivariate Gaussian distribution used to propose new parameter
iterates, centered at the current parameter estimates. This method takes into account the
correlation structure of previous parameter iterates. Four parallel Markov chains of
1,000,000 iterations, each for the modern calibration and of 500,000 iterations each for the
paleoclimatic calibration are generated. Gelman and Rubin diagnostics are evaluated to assess
convergence (Gelman and Rubin 1992). The first 500,000 iterations of each of the modern
calibration Markov chains and the first 300,000 iterations of the paleoclimatic calibration
Markov chains are discarded for burn-in. This yields posterior samples of 2,000,000 and
800,000 parameter sets for the modern and paleoclimatic calibration parameters, respectively.

From each of the two disjoint resulting posterior samples, 30,000 random samples of model
parameters are drawn and combined into sets to run the full model (AIS and non-AIS). The full
model was run from 1850 to present at these parameter samples and calibrated to total global
mean sea-level rise data (Church and White 2011) using rejection sampling. Contributions
from land water storage were subtracted out in a preliminary step, using IPCC AR5 trends and
adding the uncertainties in sea level and land water storage in quadrature (Church et al. 2013).
This step assumes a closure of the global sea-level budget, which while not always strictly true
throughout the instrumental period, is a reasonable assumption from 1900 onward (Church
et al. 2013). The enveloping distribution for rejection sampling is the joint Gaussian likelihood
function for the sea-level data (corrected for land water storage), evaluated at the observed sea-
level time series itself (since the likelihood function for any model simulation cannot exceed
this value). Model simulations are accepted with probability equal to the ratio of the likelihood
function evaluated at the selected model simulation to the maximal value of the likelihood
function. This sea-level calibration results in ensembles for analysis of 2867 and 2850
members for the uniform and gamma prior experiments, respectively. Online Resource 1
provides the calibrated marginal distributions for all model parameters, for both sets of priors.
Ensembles of projections for each of Representative Concentration Pathways (RCP) 2.6, 4.5,
and 8.5 are generated using the same calibrated parameters. This yields six projected sea-level
rise scenarios: three forcing scenarios times two fast dynamic prior assumptions. We only
present the results for the gamma priors here; both sets yielded similar projections of sea-level
rise and AIS fast dynamical disintegration (see Online Resource 1).

2.4 Local coastal defense

The ensembles of global mean sea-level rise are converted to local sea-level rise for New Orleans,
Louisiana, using previously published regional scaling factors for each component of global sea-
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level rise (Slangen et al. 2014). We assume local sea-level fingerprints of 0.89 for glaciers and ice
caps, 1.1 for the Antarctic ice sheet, and 0.81 for the Greenland ice sheet. Wemake the assumption
that thermal expansion of the oceans affects local sea levels uniformly and use a fingerprint of 1.0
for this contribution. In light of the lack of specific information regarding local contributions of land
water storage, we use a fingerprint of 1.0 for land water storage as well. Preliminary experiments
suggest that our results are not sensitive to the specific values for the fingerprints for land water
storage and thermal expansion. Given these local sea-level rise projections for this century, we
perform an economic optimization for flood safety levels of New Orleans, Louisiana. The essence
of this approach is to balance the net present value of the costs associated with both (i) investing in
greater levels of flood protection through levee heightening (at the starting year) and (ii) the losses
from flood damages due to inadequate levels of protection, given the sea-level rise realizations and
associated flood probabilities for a given levee height (VanDantzig 1956; Jonkman et al. 2009).We
consider cases with and without accounting for the fast dynamic contribution to sea-level rise to
assess the impacts of this mechanism on coastal defense strategies. Flooding occurs only through
water levels overtopping the levee, as in the original analyses (Van Dantzig 1956; Jonkman et al.
2009) (see Sect. 4).

The cost-benefit analysis assumes the current year is 2015 and considers a time horizon of 2100
(85 years). Levee heightening (at the starting year) between 0 and 10 m are considered, in
increments of 5 cm. The average annual flood probability is calculated for each proposed levee
heightening from the simulated local sea-level rise, the land subsidence rate (Dixon et al. 2006), and
flood frequency parameters (Van Dantzig 1956), following the method outlined in Van Dantzig
(1956). Local subsidence at New Orleans is attributable to a range of factors, including (for
example) the extraction of groundwater, oil and gas, sediment compaction, faulting, and glacial
isostatic adjustment (Jones et al. 2016). The rate of land subsidence follows a log-normal
distribution (to prevent unreasonable negative values) with a mean of 5.6 mm year−1 and standard
deviation of 0.4 mm year−1, based on high-resolution satellite measurements (Dixon et al. 2006).
The flood probability (pf) is distributed exponentially with respect to sea level above the levee
height, with uncertainty in the rate constant α sampled normally with a mean of 2.6 m−1 and
standard deviation of 0.1 m−1 (Table 1):

pf ¼ p0e
−α Δh−ΔSð Þ: ð9Þ

In Eq. 9, Δh is the proposed levee heightening (m), p0 is the flood probability with zero
additional heightening (Table 1), andΔS is the local mean sea-level rise (m). The central value
for α comes from the original analysis of Van Dantzig (1956), as an empirical fit of an
exponential distribution for surge height. We use this case (which was fit from a Dutch tide
gauge record) as an approximation of the storm surge at New Orleans because it is beyond the

Table 1 Parameters for flood protection cost-benefit analysis and their sampling distributions

Parameter Description Distribution

p0 Initial flood frequency (year−1) with zero heightening log-N(log-μ = log(0.0038), log-σ = 0.25)
α Exponential flood frequency constant (m−1) N(μ = 2.6, σ = 0.1)
V Value of goods protected by dike ring (billion US$) U(5, 30)
δ Net discount rate (%) U(0.02, 0.06)
Iunc Investment uncertainty (%) U(0.5, 1)
rsubs Land subsidence rate (m year−1) log-N(log-μ = log(0.0056), log-σ = 0.4)
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scope of this work to tackle the many subtle aspects of a thorough extreme storm surge
analysis with as short a tide gauge record as is available locally (see Supplementary Fig. 5).
While this is one of the many caveats accompanying the present analysis, we are focused on
the impacts of the Antarctic fast dynamics on the levee heightening decision and resulting
damages (i.e., the sensitivities), as opposed to the decision itself.

These flood probabilities are then combined with the value of goods protected by the levee
ring (V) and the monetary discount rate δ (Table 1; Jonkman et al. 2009) to calculate expected
losses (US$) for each proposed levee heightening. The expected losses are then:

L Δhð Þ ¼ p0e
−α Δh−ΔSð Þ V

1þ δð Þt ; ð10Þ

where t is the future time to which the value V is discounted. The expected investments (I(Δh))
are approximated as a linear function of the proposed heightening, using cost estimates from
previous studies (Jonkman et al. 2009). The total costs are the sum of the expected investments
and the expected losses, C(Δh) = L(Δh) + I(Δh), and the economically efficient levee
heightening is the value Δh that minimizes C(Δh).

The Breturn period^ corresponds to the frequency of storms with the potential to overtop
levees with the corresponding levee height (Fig. 1). For example, a 100-year return period
corresponds to a 1/100 average annual flood probability (or the 1:100 level of protection). For
a given investment in levee heightening, if fast dynamics are neglected, the realized return
period is shorter than the return period if fast dynamics are included. This is because the
additional contributions of sea-level rise lead to a realized return period that is shorter than the
presumed (or goal) return period.

Each sea-level rise ensemble member is assigned a corresponding set of parameters for the
flood risk analysis. We present only the ensemble under the RCP8.5 radiative forcing.
Uncertainty in the parameters for the cost-benefit analysis is incorporated using a Latin
hypercube sample and parameter distributions given by Table 1. The parameter distributions
were selected to capture the sensitivity of the coastal defense cost-benefit analysis to these
uncertain parameters as in other recent analyses (Jonkman et al. 2009). We consider only the
north-central levee ring in New Orleans (see Jonkman et al. (2009), their Fig. 1). It is important
to recall that this illustration still neglects key processes and uncertainties (for example,
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and flood height for the ensemble
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RCP8.5 (Meinshausen et al. 2011)
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potential non-stationarity in storm surges and structural failure besides overtopping) and
should not be used to inform on-the-ground decisions.

3 Results

3.1 Model hindcast

The hindcast skill of the BRICK platform of models used here, run at fully calibrated
parameter sets is demonstrated in Fig. 2 (see also Online Resources 1 and 2). The model
ensemble after calibration reproduces the central statistics of the data well (darkened lines
represent the ensemble median time series) and also reproduces the ranges seen in the
observational data (light shaded regions represent the 5–95% ranges in the model ensemble,
and the 2σ range about the observational data).

Figure 2g also includes an ensemble of Antarctic ice sheet simulations in which the fast
dynamics emulator is not enabled. This ensemble is constructed using a Latin hypercube
sample of the AIS model parameters. We use a Latin hypercube sampling approach because
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without the fast dynamics emulator, the Bayesian calibration algorithm fails to converge. The
ensemble consists of the 10% highest realizations of the likelihood function (i.e., the 10%
Bmost likely^ model simulations). The weak constraint on these simulations from the
paleoclimate observations is attributed to both the inefficient calibration method used for this
specific illustration and the lack of the fast dynamic mechanism. It is particularly illuminating
that the statistical calibration method fails when key physics (i.e., the fast dynamics) are
neglected. The period leading up to the Last Interglacial calibration window (118,000 years
BCE) is the only period during which the more tightly constrained ensemble that includes fast
dynamics exceeds the ensemble that does not include fast dynamics (Fig. 2g). This demon-
strates that elevated global surface temperatures during this period are driving the paleocli-
matic Antarctic fast dynamical sea-level contributions.

3.2 Global warming triggering fast Antarctic disintegration

We find that the trigger temperature of the AIS disintegration (Tcrit) is reasonably well
constrained by the paleoclimate data (Fig. 3). This conclusion is based on the fact that the
period just before the Last Interglacial is the only time during which the fast dynamic
mechanism is triggered, so the paleoclimatic record constrains the distribution of Tcrit (see
also Online Resource 1). The resulting estimate for Tcrit is 2.5 °C (ensemble median; 5–95%
range is 1.9–3.1 °C). This trigger temperature has been scaled from Antarctic mean surface
temperature to global mean surface temperature anomaly (relative to 1850–1870 mean) using
paleoclimate reconstructions (Morice et al. 2012; Shaffer 2014). The relationship between
global and Antarctic local temperatures is complex and uncertain. Thus, the uncertainty in the
distribution of Tcrit as a global mean temperature is likely higher, leading to a wider distribution
than is found here. In light of this caveat, even when the global temperature remains below the
2 °C warming target from the recent Paris Agreement (Rhodes 2016), there is still possibility to
trigger the AIS dynamics, according to this simple analysis. The total probability below 2 °C
warming is approximately 9% (Fig. 3, shaded red region). By contrast, the total probability
below 1.5 °C warming is substantially lower, at 0.3%.

Under RCP8.5, we find that the fast dynamic contribution to sea-level rise in 2100 is 41 cm
(ensemble median; 5–95% range is 21–74 cm, Fig. 4b). The median year in which the AIS fast
dynamic disintegration initiates is 2060 (5–95% range is 2043–2082) under RCP8.5. Under
RCP4.5, the ensemble median in 2100 does not include any disintegration, but contributions
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up to 45 cm are possible (95% quantile). Under RCP2.6, to the 95% credible level, no
disintegration occurs.

The fact that a medium forcing (RCP4.5) does not trigger disintegration in the ensemble
median (Fig. 4b) is not an indicator of safety. In fact, the probabilistic projections (Fig. 5) show
that ignoring the fast dynamic sea-level rise leads to neglecting relevant low-probability but high-
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impact events. Under RCP4.5, the 2100 sea level displays a substantial tail above 1 m, whereas
neglecting fast dynamics completely misses this potentially large sea-level rise (Fig. 5a). Even
under RCP2.6, the fast dynamic sea-level rise is noticeable beyond the 1:100 level (Fig. 5b).
Under RCP4.5 and 8.5, it can be seen that at typically applied reliabilities (e.g., 1:100), the fast
dynamics cannot be ignored.

Medians and 5–95% ranges for total sea-level rise in 2100 are 55 cm (43–74 cm, RCP2.6),
77 cm (56–130 cm, RCP4.5), and 150 cm (109–207 cm, RCP8.5). We find the Antarctic
(including fast dynamics) contribution to these projections to be 9 cm (2–16 cm, RCP2.6),
11 cm (3–50 cm, RCP4.5), and 44 cm (24–80 cm, RCP8.5). These projections are lower than
those of DeConto and Pollard (2016), whose (for example) highest ensemble estimate of
Antarctic contribution to sea-level rise by 2100 is 114 ± 36 cm (RCP8.5, relative to sea level in
2000). This result is not surprising given our simple model coupled to a detailed calibration
approach, versus their detailed model/simple calibration approach. We address this further in
Sect. 4.

3.3 Implications for coastal defense

Adopting sea-level projections that neglect the Antarctic fast dynamics yields an economically
efficient return period of about 1300 years (Fig. 6a, under RCP8.5). This corresponds to a
levee heightening of 1.4 m (Fig. 6b). Confronting such a levee with the arguably more realistic
sea-level rise projections that include the fast dynamics, the level of protection achieved drops
to a return period of about 800 years (Fig. 6a, inset). This increase in flood risk (the inverse of
return period) is due to the additional hazard posed by the fast dynamic Antarctic contributions
to sea-level rise. With consideration of fast AIS dynamics, the economically efficient levee
heightening is 1.65 m, with a return period of roughly 1300 years. This is lower than the 5000-
year economically efficient return period reported for this levee ring by Jonkman et al. (2009).
The Louisiana Coastal Protection and Restoration Authority (CPRA) has protection targets of
100-year return period for standard construction projects and 500 years for critical infrastruc-
ture such as hospitals (Coastal Protection and Restoration Authority of Louisiana 2017). Our
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results suggest that these protection standards may not be economically efficient, especially
considering (1) that our analysis neglects the effects of potential non-stationarity in storm
surges and (2) that the 50-year planning period considered by the CPRA overlaps considerably
with estimates of the timing of Antarctic fast disintegration, both presented here and elsewhere
(Ritz et al. 2015; DeConto and Pollard 2016).

We calculate the total expected costs of the heightening strategy neglecting fast dynamics
(solid circle, Fig. 6) when this strategy is confronted by sea-level rise that includes fast
dynamics (solid triangle, Fig. 6b). Accounting for the fast dynamics reduces the total expected
costs in this simple analysis by $53 million (solid square versus triangle, Fig. 6b). Under
RCP4.5, the ensemble mean economically efficient heightening with the fast dynamics is only
3 cm taller than the efficient heightening without the fast dynamics, with a mean reduction in
expected costs of $2.1 million. Under RCP2.6, the two strategies typically do not differ
because the fast dynamics are not triggered in most simulations; the ensemble mean additional
heightening in consideration of the fast dynamics is 0.2 cm.

4 Discussion and caveats

Our analysis should be interpreted as an illustrative example using a simple model. This simple
approach results in a hopefully transparent analysis but also gives rise to important caveats. For
example, we analyze just one levee ring, use a simple economic model, and neglect many
uncertainties and processes (e.g., structural failure or changes in future storm surges; Moritz
et al. 2015). Additionally, the probabilistic projections and analysis presented here focus on a
relatively short-time horizon compared with the committed sea-level response. For example,
even under RCP4.5, near-complete disintegration of the WAIS is possible by 2500 (DeConto
and Pollard 2016), so extending the projections to 2500 is a path for future study (see Online
Resource 1 for projections to 2200).

The total value of assets assumed to be protected by the levee system is $5 to 30 billion
(Table 1). Thus, the $53 million reduction in expected damages by including the fast dynamic
contributions to sea level in the flood protection is less than about 1% of the total value of
assets. Note that this seemingly low figure must be carefully balanced against the numerous
considerations for which it does not account. These include potential future losses due to
saltwater intrusion, the cultural significance of damaged assets or areas (Bessette et al. 2017),
as well as the loss of life and associated future economic losses. Additionally, the model for
flood risk assessment employed here assumes that the levee system is heightened instanta-
neously upon evaluation (see Sect. 2.4). Future studies should consider a multi-stage adaptive
design approach, wherein the levee system is reevaluated at specific intervals but cannot be
heightened by more than a prescribed amount each year.

Future work could also expand on the simple parameterization for the Antarctic fast
dynamical processes through more complex model structure. For example, our parameteriza-
tion cannot resolve the individual contributions to the disintegration rate; different Antarctic
basins could respond at different temperatures and with different rates. By capturing only an
ice sheet average disintegration rate and onset timescale, our simple model likely overestimates
the year in which disintegration may begin and underestimates the disintegration rate relative
to more complex models (Ritz et al. 2015; DeConto and Pollard 2016). Indeed, the results of
Sect. 3.2 lend credibility to this hypothesis relative to DeConto and Pollard (2016). Our
estimates for the timing of the onset of fast disintegration (2043 is the 5% quantile under
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RCP8.5) are quite compatible with the probabilistic timing estimates of Ritz et al. (2015), who
find a roughly 5% probability of exceeding 5 cm of sea-level contribution from fast disinte-
gration by 2040 (c.f., their Fig. 2). Our parameterization assumes an immediate ice sheet
response to the trigger temperature, which may not be the case in reality. An additional time
lag parameter could be incorporated into the parameterization and model calibration frame-
work, although additional data should be included. Potential future data for assimilation may
include paleoclimate data from the Pliocene (DeConto and Pollard 2016) as well as expert
assessment regarding future Antarctic ice sheet mass loss (Oppenheimer et al. 2016; Bakker
et al. 2017a). These approaches hold promise for refining the estimates of the trigger
temperature (Fig. 3) as new information becomes available. Fast dynamical disintegration
may also be a threshold event, so the possibility of stopping the disintegration by cooling T
back below Tcrit may not be physically realistic. The caveats point to important research needs
and also illustrate why the results should not be used to directly inform on-the-ground
decisions.

As compared with other probabilistic projections of sea-level rise this century, our estimates
are substantially higher but not out of agreement (within the 5–95% range) of previous work.
Under RCP8.5, we estimate sea-level rise of 109 to 207 cm by 2100, as compared with 52 to
131 cm (Kopp et al. 2016), 57 to 131 cm (Mengel et al. 2016), and 37 to 118 cm (Jackson and
Jevrejeva 2016). This is perhaps not surprising, as these previous projections do not include
the fast AIS dynamics in their probabilistic frameworks. The 95% quantile for sea-level rise by
2100 presented here of 207 cm (RCP8.5) is roughly consistent with the 95% quantile of
180 cm reported by Jevrejeva et al. (2014) but notably higher than the 95% quantile of 121 cm
found by Kopp et al. (2014). This is attributable in part to the fact that Jevrejeva et al. (2014)
relied on the expert assessment of Bamber and Aspinall (2013) for the full distribution of sea-
level rise due to fast Antarctic ice loss, whereas Kopp et al. (2014) fused IPCC AR5 Blikely^
ranges (Church et al. 2013) for the central portion of this distribution with Bamber and
Aspinall’s expert assessment for the upper tail. This hypothesis is supported by the fact that
Kopp et al. (2014) found a 95% quantile of 160 cm in their BBA^ sensitivity experiment by
sampling from a log-normal distribution fit to the Bamber and Aspinall (2013) expert
assessment, leading to improved agreement with the results of both the present study and
Jevrejeva et al. (2014).

5 Conclusions

Given these caveats, we provide calibrated probabilistic sea-level projections, accounting for
the AIS fast dynamics using a simple parameterization. Our projections are quite capable of
exceeding previous estimates of upper limits on sea-level rise in this century (Pfeffer et al.
2008). The projected time horizon of 2043–2082 (5–95% range under RCP8.5) for fast
dynamic disintegration is in agreement with a recent study which predicts about 2050
(DeConto and Pollard 2016). Our approach differs from theirs in ensemble size and model
complexity, yet the resulting time horizons of AIS disintegration are quite similar, which lends
credibility to both studies. Our results offer a potential marker for triggering AIS fast
disintegration in the form of the calibrated distributions of trigger temperature, Tcrit (Fig. 3).
The 2 °C increase in global mean surface temperature designated in the Paris Agreement
(Rhodes 2016) is within the 5–95% ensemble range of Tcrit (1.9–3.1 °C). This indicates that
temperature increases within the 2 °C limit may still lead to Antarctic fast dynamical
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disintegration. Further, these results demonstrate how lowering emissions can be an avenue to
drastically reduce coastal flooding risks.
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