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Abstract Total factor productivity (TFP) analysis has been the focus of a large number of
methodological and empirical studies over the past several decades. One remarkable gap in
this literature is the omission of climatic variables as regressors in the models used to derive
TFP measures. The purpose of this paper is to narrow this gap by developing climate-adjusted
(CA) TFP measures. We combine information from the Climatic Research Unit with Food and
Agriculture Organization data for 28 Latin American and Caribbean countries over a 52-year
period (1961–2012) to estimate random parameter stochastic production frontier (SPF)
models. The goal is to investigate the impact of climatic variability on TFP. The estimated
coefficients from the SPF models are used to construct a climatic effects index across countries
and over time. The average annual variation in climatic conditions is stronger at the end of the
2000s compared to earlier periods. Climatic variability has a negative effect on production in
20 of the 28 LAC countries analyzed, and this is more severe over Central America and the
Caribbean. The average reduction in output across the region attributable to climatic variables
is between 0.02 and 22.7% over the last decade compared to the period 1961–1999. The
estimated average annual growth rate of CATFP (0.69%) is consistently lower than TFP
(1.08%), confirming the adverse impact of climatic variability on agricultural output and
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productivity in LAC. The results show considerable variability across countries, and this points
to the importance of accounting for climatic effects in analyzing TFP.

1 Introduction

Agriculture plays an important role in the overall economic growth in Latin American and
Caribbean (LAC) countries (World Bank 2003). However, Chomitz and Buys (2007) and FAO
(2010), among others, point out that agricultural productivity in LAC faces a rising challenge
imposed by climate change. FAO (2015) reveals that South America and Africa had the largest
net loss of forests between 1990 and 2015 worldwide, with much of that loss in South America
probably related to the transformation of tropical forests into pasture land for cattle ranching
(Geist and Lambin 2002).

The adverse impact of climatic variability on agricultural production is gaining more
attention, with an increasing number of studies focusing on the interrelation between climatic
variability, agriculture, the food system, and adaptation (e.g., Mendelsohn and Dinar 2003;
Mukherjee et al. 2013; Tol 2013; Qi et al. 2015; Burke and Emerick 2016). Several studies have
shown that agricultural productivity in least developed countries is vulnerable to climatic
variability (e.g., Müller et al. 2010; Lobell et al. 2011). The World Bank (2012) indicates that
the LAC region is expected to suffer severe consequences as a result of rising global temper-
atures. The historical data seems to corroborate this concern. Figure 1 depicts the region’s
maximum temperature anomaly, defined as the deviation from the region’s long-term mean
(1901–2012), and shows that the overall temperature in LAC has risen steadily, since the mid-
1970s. In addition, according to Wani et al. (2009), almost 90% of the farmland in LAC is rain-
fed, which makes agricultural production very sensitive to changes in precipitation patterns.

Various studies for Latin American countries focusing on the economic impact of future
climate conditions have analyzed the changes in crop and livestock productivity due to variations
in temperature and precipitation (e.g., ECLAC 2013; IADB and ECLAC 2014). Nevertheless,
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Fig. 1 Maximum temperature anomaly in LAC (1961–2012)
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these studies do not present a theoretical framework to capture the impact of year-to-year variation
in climatic conditions on production and total factor productivity, which is an element of growing
importance with clear implications to output and productivity growth (Dell et al. 2014).

A better understanding of how climatic variables affect production and productivity across
countries, accounting for country unobserved heterogeneity (e.g., soil type, average managerial
ability), is critical to formulate effective policies. To this end, this article takes advantage of
recent methodological contributions, namely the true fixed effect and true random effects
stochastic production frontier (SPF) panel data estimators, proposed by Greene (2005a, b),
along with the random parameter or random coefficients model (Wooldridge 2002; Greene
2012).

Our work contributes to the literature by addressing the failure to incorporate climatic
variability directly when estimating total factor productivity (TFP). The study examines the
effects of climatic variables on output and TFP by developing a climate-adjusted TFP
(CATFP) measure. Several studies focusing on agricultural productivity in LAC have com-
puted TFP and its components based on traditional inputs (i.e., land, labor, capital, fertilizers,
etc.) while excluding climatic variables from the production function. Other authors investigate
the role of climatic variability in agricultural productivity (e.g., Mullen 2007; Villavicencio
et al. 2013), but to our knowledge, the only published study that incorporates climatic variables
directly and explicitly in TFP decomposition is Hughes et al. (2011).

The remainder of this paper is structured as follows: Section 2 presents the analytical
framework, Section 3 focuses on the data and the empirical model, Section 4 presents the
results, and Section 5 devotes to conclusions and policy implications.

2 Analytical framework

We investigate the impact of climatic variability on production and productivity using panel
data SPF specifications. Greene (2005a, b) introduced the true random and true fixed effects
(TRE and TFE) models to deal with time-invariant unobserved heterogeneity within stochastic
frontier specifications. Here, we use the random parameter or random coefficients model
(RPM or RCM) in conjunction with Greene’s TRE model. We discard the fixed effects option
a priori because it typically yields imprecise estimates when the model includes regressors that
are time invariant or that vary slowly across time, as is the case with climatic variables
(Wooldridge 2002).

The RPM along with the TRE has the ability to capture heterogeneity for both the intercept
and slope parameters in the model (Greene 2008). Hereafter, we refer to the combined TRE,
RPM, and SPF frameworks as the true random parameter SPF or TRP-SPF. The rationale for
adopting this model rests on the importance of accounting for cross-country heterogeneity
given that LAC countries are quite diverse in terms of input quality and technology. In
addition, the TRP-SPF approach makes it possible to identify separately time-variant ineffi-
ciency from time-invariant country-specific unobserved heterogeneity, such as land quality and
environmental conditions that are not captured explicitly in the data and potentially affect the
production process. The TRP-SPF estimates are then used to calculate the O’Donnell (2016)
TFP index that allows for a consistent comparison of TFP change across countries and time
and for decomposing such change into relative measures of technological progress, scale
efficiency, technical efficiency, and production environment. We then undertake a detailed
analysis of TFP adjusted by climatic effects or CATFP.
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2.1 Panel data stochastic production frontiers

Our TRP-SPF model can be expressed as:

Y it ¼ αi þ ∑
K

k¼1
βikX kit þ τ iT i þ ∑

J

j¼1
η jZjit þ ∑

G

g¼1
ωgWgit þ υit−uit ð1Þ

where Yit denotes the natural logarithm (log) of agricultural production for the i-th
country in the t-th year; Xkit is a vector of inputs (expressed in logs) including land,
labor, machinery, fertilizers, animal stock, and feed; T is a time trend reflecting techno-
logical progress; Zjit are climatic variables expressed in levels (Jones and Olken 2010)
that comprise average maximum temperature and monthly average precipitation; Wjit

captures measures of climatic stability and includes maximum temperature anomaly,
monthly standard deviation of maximum temperature, precipitation anomaly, monthly
standard deviation of precipitation, and monthly number of rainy days (all in levels); αi

is a random country-specific intercept parameter that accounts for time-invariant unob-
served heterogeneity; βik is an (i × k) matrix of random slope parameters that follow a
predetermined distribution (Greene 2005b, 2008) and account for the unobserved het-
erogeneity in the covariates across countries (e.g., soil quality); and ηj are parameters to
be estimated. The term υit is a random error assumed to follow a normal distribution with

mean zero and constant variance ðυit∼iid N 0;σ2
v

� �
), and uit is a nonnegative unobserv-

able random term, which captures the technical inefficiency of the i-th country in period
t. The inefficiency term uit is assumed to follow a half-normal distribution. The speci-
fication of the climatic variables in Eq. 1 follows the growing body of related literature,
which is based on the year-to-year variation of these variables and has a strong causative
interpretation that allows for the identification of the net climatic effect on agricultural
production and productivity (Dell et al. 2014).

We use the Cobb-Douglas (CD) functional form to approximate the technology underlying
the TRP-SPF model in Eq. 2; thus, the estimated parameters of the conventional inputs can be
interpreted as partial elasticities of production. The CD is chosen because, as argued by
O’Donnell (2016), it satisfies nonnegativity and monotonicity globally, while the Translog, a
commonly used alternative, does not. More importantly, TFP measures derived from the
Translog functional form fail to fulfill the transitivity property, which is a significant violation
of the index number theory (O’Donnell 2016). The TRP-SPF models are estimated by
simulated maximum likelihood using N-logit 4 (Greene 2012).

2.2 Climatic effects index and CATFP decomposition

Based on Eq. 1 and following Hughes et al. (2011), the expression for the term that captures

the climatic variability effect C ̂
it

� �
can be written as1:

C
̂

it ¼ ∑
g

g¼1
ω
̂
gWgit ð2Þ

1 We exclude mean values because they do not capture variability.
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The climatic effect index, CEIit, is then calculated as exp C ̂
it

� �
, and this term is used to

assess the impact of changes in climatic variables on production across countries and over
time.

We now turn to the TFP index methodology proposed by O’Donnell (2016), which
we modify to accommodate the random parameters included in our TRP-SPF specifi-
cation. TFP can be expressed as the ratio of aggregate (ag) output to aggregate input as
follows:

TFPit ¼ Y ag Y itð Þ
X ag X itð Þ ð3Þ

where the numerator and denominator represent aggregate output and aggregate input,
respectively, and both are assumed to be nondecreasing, nonnegative, and linearly
homogeneous functions. The index that compares TFP of country i at time t with that
of country m in period s is as follows:

TFPImsit ¼ TFPit
TFPms

¼ Y ag
it =X

ag
it

Y ag
ms=X

ag
ms

ð4Þ

Given a single-output CD technology, the TRP-SPF, a vector of inputs, and substituting Eq.
1 into Eq. 4, TFPImsit can be rewritten as (O’Donnell 2017):

TFPImsit ¼ exp αi−αmð Þ½ � � ∏
K

k¼1

X βki
kit

X βkm
kms

� X kms

X kit

� �βk
r

" #
� exp τ iT i−τmTmð Þ½ �

� exp ∑
J

j¼1
η j Zjit−Zjms
� �" #

� exp ∑
G

g¼1
ωg Wgit−Wgms

� �" #
� exp vitð Þ

exp vmsð Þ
� �

� exp −uitð Þ
exp −umsð Þ

� �
ð5Þ

The components of the TFP index in Eq. 5 are as follows: The first right-hand term
(square brackets) captures time-invariant differences in country unobserved heterogeneity
(UH); the second term is an index for relative change in scale efficiency (SE), where

r ¼ ∑
K

k¼1
βk is an overall measure of returns to scale for the full sample and βk is the

average estimated coefficient for input k (Table 2); the third is the relative change in
technological progress (TP); the fourth and fifth terms are changes in climatic effects
(CE); the sixth component measures relative change in technical efficiency (TE) calcu-
lated according to Jondrow et al. (1982); and the last term captures functional form error
and other statistical noise (SN). All Greek parameters are as defined above. We under-
score that the transitivity property allows indirect and consistent comparisons of two
countries across time and space by choosing any country and any year as the reference
point. Equation 1 with and without climatic variables is used to derive CATFP and TFP
measures, respectively.
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3 Data and empirical model

3.1 Conventional production inputs/output

We use a FAO input-output dataset which is a balanced panel covering the 52-year period
going from 1961 to 2012 for 28 LAC countries for a total of 1456 observations (Table 1).2 This
dataset, or earlier versions of it, has been used in several empirical studies (e.g., Bharati and
Fulginiti 2007; Fuglie et al. 2012). Output is expressed as the gross value of agricultural
production assessed at constant 2004–2006 global-average prices in international 2005 US
dollars. There are six conventional inputs: Land (LAN), Labor (LAB), Machinery (MAC),
Fertilizer (FER), Animal Stock (ANS), and Animal Feed (FED). The definition of all these
variables can be found in Fuglie et al. (2012) and in the online Supplementary material.

3.2 Climatic variables and data

According to the climatic literature, agricultural production is sensitive to extreme values as
well as the frequency or distribution of both precipitation and temperature (Kumar et al. 2011).
Therefore, in our model, climatic variability and the intrayear distribution of climatic effects
are captured by including the annual maximum temperature anomaly (TMXA) measured as the
deviation of each annual observation from the long-term mean (1901–2012), the annual
average temperature (TMX), the intrayear standard deviation of temperature (TMXSD) defined
as the monthly standard deviation, the annual precipitation anomaly (PREA) measured as the
deviation of each annual observation from the long-term mean (1901–2012), the intrayear
standard deviation of precipitation (PRESD), the monthly average (PREAV) given by the
average across 12 months, and the monthly precipitation frequency (RADAV) measured as
the average number of rainy days across 12 months (Fishman 2011).

Our definition of anomaly is similar to that used in Barrios et al. (2010). An advantage of
using anomaly, as opposed to average absolute values of temperature and precipitation, is that
factors such as station location and elevation are less critical.3 Moreover, agricultural decisions
are based on expected weather behavior, so weather deviating from expectations is likely to
affect production. Thus, the use of anomalies is a reasonable way to incorporate these
unanticipated negative shocks. In addition, the evidence indicates that climate change causes
variations in the frequency and intensity of precipitation (Chou et al. 2012). Consequently, the
variables often used to quantify these variations are the number of rainy days and precipitation
quantity, respectively (Kumar et al. 2011). Finally, instead of using the coefficient of variation
to capture the effect of potential extreme events on production, as done by Chen et al. (2004)
and Cabas et al. (2010), we employ the intrayear standard deviation and average climatic
variables separately. This choice is predicated on our interest in capturing climatic conditions
and variability separately as measures of intrayear distribution.

To construct the climatic variables, we use the well-known dataset from the Climatic
Research Unit (CRU) of the University of East Anglia covering the period from 1961 to
2012, which has been employed in several studies (e.g., Schlenker and Lobell 2010). This

2 The 28 countries in LAC include (1) Caribbean: The Bahamas, Cuba, Dominican Republic, Haiti, Jamaica,
Puerto Rico, and Trinidad and Tobago; (2) Mexico and Central America: Mexico, Belize, Costa Rica, El
Salvador, Guatemala, Honduras, Nicaragua, and Panama; and (3) South America: Argentina, Bolivia, Brazil,
Chile, Colombia, Ecuador, French Guiana, Guyana, Paraguay, Peru, Suriname, Uruguay, and Venezuela.
3 See https://www.ncdc.noaa.gov/monitoring-references/dyk/anomalies-vs-temperature for more details.
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dataset contains monthly and yearly time series for the number of rainy days (RAD) which
includes all days with >0.1 mm of precipitation, quantity of precipitation (PRE) in millimeters,
and maximum temperature (TMX) measured in degree Celsius (°C). The RAD, PRE, and
TMX data are based on monthly climatic observations and weather station anomalies that are
interpolated into high-resolution grids (0.5° × 0.5° latitude/longitude). Although agricultural
seasons vary widely across LAC countries, it is not possible to estimate our models using more
disaggregated climatic variables. Thus, the climatic data used in the analysis are 12-month
averages, adjusted for seasonality as explained below, in order to match with the annual input-
output data available.4 This approach is consistent with Yang and Shumway (2016) who argue
that using aggregate climatic data does not capture substantial climatic variation within a
decision-making unit, but makes empirical estimation possible.

First, monthly climatic variables are adjusted for seasonality using the seasonal trend
decomposition (STL) approach based on the local regression (LOESS) procedure (Cleveland
et al. 1990). Adjusting weather data for seasonality has been shown to provide a better fit in
regression analyses (Craigmile and Guttorp 2011). As indicated, agricultural seasons vary
across LAC and this makes it difficult to include seasonal climatic variables when using annual
panel data from several countries. An advantage of the STL approach over the classical
moving-average decomposition is that one can handle any type of seasonality while allowing
the seasonal component to change over time (Cleveland et al. 1990); therefore, this approach is
well suited for our purposes. Climatic variables across all LAC show a seasonal effect; thus,
the STL approach is used to deseasonalize temperature, precipitation, and rainy days for each
of the countries in the sample (see online Supplementary material).

4 Results

We estimated a number of Cobb-Douglas specifications including alternative climatic variables
and different assumptions regarding which conventional input parameters should be random or
fixed.5 These different model specifications were compared using likelihood ratio tests.6 We

4 For more details about the construction of the climatic variables, see Harris et al. (2013).
5 We perform multicollinearity tests for all conventional inputs and climatic variables using the Brmcoll^ syntax
in Stata 14 (Cameron and Travedi 2005). The evidence does not support the presence of multicollinearity.
6 We did not find evidence to support the inclusion of quadratic terms for climatic variability.

Table 1 Descriptive statistics for 28 LAC countries for the 1961–2012 period (sample size = 1456)

Variables Mean Std. dev. Min Max

Production 5.75 15.00 0.00 150
Machinery 47.33 131.71 0.02 1000
Fertilizer 300.80 1068.28 0.07 13,000
Animal stock 14.53 34.64 0.00 258.80
Feed 2983.33 7916.65 0.02 71,000
Land 5874.06 13,183.23 1.79 86,656.10
Labor 1474.39 2907.82 5.00 16,345
Max temp 28.74 3.38 12.86 31.77
Max tempSD 0.51 0.24 0.10 1.87
Precipitation 1833.48 705.87 436.10 3686.70
PrecipitationSD 53.44 30.04 5.46 270.34
Rainy days 156.02 47.47 50.10 259.40

SD: intrayear standard deviation, temp: temperature
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retained the preferred random parameter production frontier model including the five climatic
variables discussed earlier (TRPc). For comparison purposes, we also estimated the samemodel
but excluding the climatic variables (TRPnc). In both the TRPc and TRPnc models, the
parameters for land, machinery, feed, labor, and time trend are random, i.e., are allowed to
vary across countries, while the parameters for the other inputs are nonrandom. In other words,
the models incorporate unobserved heterogeneity associated with land, machinery, feed, and
labor and differences in technologies across countries. Any distribution may be used for any
parameter depending on the nature of the data (Greene 2008). In our context, the random
parameters for the variables land, feed, labor, and technology follow a normal distribution.
However, a log-normal distribution is used for the variable machinery to ensure consistency
with regularity conditions across all country-specific parameters. Table 2 reports the average
estimated parameters for all variables, fixed and random, and the country-specific estimated
parameters are reported in the online Supplementary material.

All parameters for the variables that capture traditional inputs across models are
statistically significant at the 1% level, and regularity conditions from production
economic theory (i.e., partial output elasticities should be nonnegative and less than
1) are satisfied (Table 2). In addition, average technological progress, captured by the
time trend parameters, is significant at the 1% level with slight variations across the
two models. The parameters for the climatic variables are statistically significant with
the exception of the intrayear standard deviation of precipitation. As expected, we fail
to accept the TRPnc specification without climatic variables at the 1% level of
significance; thus, TRPc outperforms TRPnc. This implies that excluding the climatic
variables leads to an omitted variables problem and thus to biased estimates. Moreover,
the signal-to-noise ratio (λ) is highly significant revealing the importance of technical
inefficiency in output variability. The estimated parameters of the TRPc frontier,
reported in the fourth column of Table 2, reveal that agricultural production in LAC
is most responsive to land, followed by animal stock and feed.7

4.1 Climatic effects index

Maximum temperature and annual and monthly precipitation all have a significant impact on
production. Temperature (TMXA) and precipitation anomalies (PREA) both have a negative
and significant impact on production. Intrayear deviation (TMXSD) from the current mean of
maximum temperature (28.7 °C) has an adverse significant impact on output, while intrayear
deviation in precipitation (PRESD) has a positive but nonsignificant effect on production. The
results also reveal that monthly precipitation frequency (RADAV) has a significant negative
effect on production.

Figure 2 exhibits mean CEI values that capture climatic variability across countries over
time. The CEI is normalized by the average climatic conditions for the period 1961–1999 as in
Hughes et al. (2011). These values are computed from the estimated coefficients for the TRPc
model from Eq. 2. These values suggest that CEI has had an increasingly negative effect on
production over time.

7 Over the 1961–2012 period, fertilizer use grew at the fastest annual rate (5.8%) relative to all other inputs, while
land increased at 1.3% per year. Figure C in the online Supplementary material (Section E) shows the trends for
all inputs used in our models.
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Using the mean CEI, we compute the percent change in production over the period 2000–
2012 relative to 1961–1999 holding inputs constant at their mean values. Figure 3 reveals that
the average negative effect of climatic variability on output in the last decade compared to the
earlier period ranges from 0.02% (Dominican Republic) to 22.7% (Guatemala). Furthermore,
the results suggest that the effects of climatic variability fluctuate significantly across LAC
subregions and countries with a tendency to be more detrimental in Central American and
Caribbean countries. Significant negative effects are also evident for Brazil (15.7%), Venezu-
ela (10.6%), and Uruguay (6.4%). In fact, the climatic effect in all countries in our sample is
negative except for eight countries: Bolivia, Chile, Colombia, Ecuador, Suriname, Panama,
Puerto Rico, and Haiti. We do not have data on investments in irrigation infrastructure or in
other adaptation strategies that might have been implemented in various countries to help
farmers cope with climatic variability. Likewise, we do not have detailed data on hurricanes
across countries over the period studied (1961–2012). Hurricane events are likely to affect
agricultural infrastructures and thus agricultural production and productivity in Caribbean
countries. Therefore, results for certain countries in the Caribbean (e.g., Haiti, Puerto Rico)
should be interpreted with caution.

Table 2 Estimates for the true random parameter stochastic production frontier models without (TRPnc) and
with climate (TRPc) (N = 1456)

Models Model TRPnc Model TRPc

Coeff. SE Coeff. SE

Constant 13.870*** 0.003 12.873*** 0.061
Machinery 0.090*** 0.002 0.044*** 0.004
Fertilizer 0.044*** 0.002 0.066*** 0.004
Animal stock 0.338*** 0.004 0.257*** 0.006
Feed 0.036*** 0.002 0.116*** 0.003
Land 0.303*** 0.005 0.427*** 0.009
Labor 0.148*** 0.004 0.017* 0.009
Time trend 0.007*** 0.000 0.005*** 0.000
TMXA −0.023*** 0.008
TMX 0.008*** 0.002
TMXSD 0.049*** 0.013
PREA −0.0006*** 0.000
PREAV 0.008*** 0.000
PRESD 0.0001 0.000
RDAV −0.008*** 0.003
λ 3.067*** 0.120 1.843*** 0.277
σ 0.14*** 0.002 0.137*** 0.004
σu 0.148 n/a 0.120 n/a
σv 0.048 n/a 0.065 n/a
RTS 0.96 0.93
TE
Mean 0.889 0.911
SD 0.067 0.048
Min 0.597 0.668
Max 0.986 0.983

Log-likelihood 1168.7 1218.7

Variables are measured in natural log

SE standard error, n/a not available

***, **, and * are 1%, 5%, and 10% level of significance, respectively
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4.2 Total factor productivity and its components

We now turn our discussion to TFP and analyze the difference between TFP and CATFP. As
depicted in Table 3, the (simple) average TFP growth in the region for the period is 1.08% per
year. By contrast, the simple average CATFP growth rate in the region is 0.69% per year. At
the country level, 25 out of the 28 countries exhibit a lower CATFP than TFP, showing the
negative impact of climatic variability on agricultural productivity growth. The largest per-
centage point differences between TFP and CATFP are in Paraguay (1.3%), Nicaragua (1.2%),
and Guatemala (1.0%). Also, several Caribbean countries show consistently lower rates of
CATFP, which may be due to extreme events such as hurricanes. Investigating how hurricanes
or other extreme events might affect CATFP would be worth considering in future research
(e.g., Pielke et al. 2003).

Figure 4 depicts average TFP and CATFP levels across LAC countries. Both measures
follow similar trends with significant variation over the years. However, the gap between the
two indexes widens which underscores the rising adverse impact of climatic variability on TFP
over time. In addition, CATFP is always lower than TFP corroborating the adverse impact of
climatic variability on agricultural output in LAC.

The decomposition of average CATFP shows that Panama has the highest average TE at
0.934 for the 1961–2012 period while Nicaragua (TE = 0.85) and French Guiana (TE = 0.87)

Table 3 Average annual TFP and CATFP growth rates and percentage point difference (%Diff) in LAC, 1961–
2012

Country TFP CATFP % point diff

Argentina 1.03 0.56 0.47
The Bahamas 1.53 1.43 0.10
Bolivia 1.18 0.45 0.73
Brazil 2.06 1.54 0.52
Belize 1.94 1.49 0.46
Chile 2.44 1.82 0.62
Colombia 1.85 1.36 0.49
Costa Rica 1.48 1.65 −0.17
Cuba −0.24 −0.43 0.19
Dominican Republic 0.57 0.25 0.32
Ecuador 1.35 0.89 0.46
El Salvador 0.41 0.52 −0.11
French Guiana 0.41 −0.20 0.61
Guatemala 1.98 0.94 1.04
Guyana 0.66 0.59 0.07
Haiti 0.00 −0.33 0.33
Honduras 1.98 1.41 0.56
Jamaica 0.52 0.61 −0.09
Mexico 1.60 1.08 0.52
Nicaragua 1.13 −0.08 1.21
Panama 0.12 −0.32 0.45
Paraguay 1.15 −0.14 1.29
Peru 1.47 1.13 0.34
Puerto Rico 0.02 0.52 −0.50
Suriname 1.01 0.34 0.67
Trinidad and Tobago −0.66 −0.23 −0.43
Uruguay 1.22 1.03 0.18
Venezuela 1.96 1.37 0.59
LAC 1.08 0.69 0.39
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have the lowest (Table 4). It is worth noting that TE provides a measure of the gap between
what is produced and what could be produced given inputs, technology, and the environment
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Fig. 4 Annual average TFP and CATFP for Latin America and the Caribbean, 1961–2012

Table 4 Annual average growth rates in CATFP and its components (%) and level of TE in LAC, 1961–2012

Countries CATFP CE TP SE TE UH SN TE level

Argentina 0.56 −0.01 0.62 −0.02 −0.05 0.02 0.000 0.919
Bahamas 1.43 0.05 0.79 0.09 0.36 0.13 0.006 0.895
Bolivia 0.45 −0.03 0.48 −0.07 0.04 0.03 0.000 0.921
Brazil 1.54 −0.02 1.61 −0.04 −0.03 0.03 −0.001 0.915
Belize 1.49 0.02 1.52 0.04 −0.17 0.07 −0.001 0.910
Chile 1.82 0.02 1.74 0.04 −0.02 0.04 0.001 0.917
Colombia 1.36 0.03 1.08 0.05 0.16 0.04 0.003 0.897
Costa Rica 1.65 −0.09 2.06 −0.18 −0.19 0.06 −0.008 0.919
Cuba −0.43 0.02 −0.42 0.03 −0.08 0.02 0.000 0.919
Dominican Rep 0.25 0.01 0.12 0.03 0.00 0.08 0.000 0.922
Ecuador 0.89 0.03 0.82 0.06 −0.05 0.03 0.001 0.883
El Salvador 0.52 0.07 0.20 0.15 0.05 0.06 0.001 0.922
French Guiana −0.20 0.05 −0.11 0.10 −0.32 0.07 0.000 0.879
Guatemala 0.94 0.04 0.71 0.08 0.06 0.05 0.002 0.924
Guyana 0.59 −0.01 0.62 −0.02 −0.03 0.03 0.000 0.911
Haiti −0.33 0.04 −0.48 0.06 0.05 0.00 −0.001 0.908
Honduras 1.41 0.06 1.16 0.12 0.02 0.05 0.003 0.908
Jamaica 0.61 −0.08 0.75 −0.14 0.02 0.06 −0.001 0.917
Mexico 1.08 −0.04 1.04 −0.07 0.11 0.04 0.000 0.921
Nicaragua −0.08 0.00 −0.36 0.00 0.23 0.04 −0.001 0.857
Panama −0.32 −0.06 −0.12 −0.11 −0.07 0.03 0.000 0.934
Paraguay −0.14 −0.01 −0.29 −0.02 0.14 0.04 0.000 0.916
Peru 1.13 0.04 0.98 0.06 0.02 0.03 0.002 0.909
Puerto Rico 0.52 0.00 0.54 0.02 −0.06 0.03 0.000 0.931
Suriname 0.34 −0.02 0.06 −0.03 0.30 0.04 0.000 0.916
Trinidad and Tobago −0.23 0.06 −0.41 0.12 −0.02 0.03 −0.001 0.910
Uruguay 1.03 0.01 1.01 0.02 −0.02 0.02 0.000 0.919
Venezuela 1.37 −0.01 1.27 −0.02 0.08 0.05 0.001 0.912
LAC 0.69 0.01 0.61 0.01 0.02 0.04 0.000 0.91
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in a given country. The average returns to scale (RTS) measure is estimated at 0.91 (see
Table 2) implying that overall the technology exhibits decreasing returns to scale. Using Eq. 5,
the percentage rate of growth in CATFP can be decomposed as follows: %ΔCATFP = %
ΔUH + %ΔTE + %ΔSE + %ΔTP + %ΔCE + %ΔSN, where the components are as pre-
viously defined. The average estimated parameter for the time trend (τ) reveals that LAC
countries, as a whole, experienced technological progress at a 0.61% annual rate over the
sample period (Table 4). However, given the random coefficient specification used, country-
specific rates of technological progress can be computed. As displayed in Table 4, Costa Rica
(2.06%), Chile (1.74%), and Brazil (1.61%) exhibit the highest average annual rates of TP,
whereas Haiti (−0.48%), Cuba (−0.42%), and Trinidad and Tobago (−0.41%) have the lowest.

Figure 5 shows that TP has been the key driver of agricultural productivity in the region,
which is consistent with other studies (e.g., Bharati and Fulginiti 2007; Nin-Pratt et al. 2015).
The scale efficiency has remained quite flat, decreasing by 0.01% annually without much of an
effect on overall productivity (Table 4). This result is not surprising given the nature of
decreasing returns to scale of the technology. Finally, TE for all countries combined was more
or less constant during the first two decades followed by a decline and then a slight increase in
the last decade averaging 0.02% per year over the period.

Our TFP growth estimates are difficult to compare with what is reported by other authors,
because of differences in model specifications (e.g., definition of inputs and outputs, time periods,
countries, estimationmethodology, etc). Notwithstanding, our results are similar to those of Fuglie
et al. (2012) who covered the same time period as in this study though they used a different
methodology. Our estimates are lower than those of Nin-Pratt et al. (2015) who found an average
annual growth of 1.2% for 26 LAC countries for the 1981–2012 period. The CATFP estimates are
not comparable with other studies because no such measures have been reported.
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Fig. 5 Cumulative CATFP and components (TE, TP, and SE) in LAC, 1961–2012 (1961 = 1)
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5 Concluding remarks

The impact of climatic variability on agricultural production and productivity is an unfolding
area of study and debate among researchers, policymakers, and international institutions.
Despite the significance of this issue, previous studies related to agricultural productivity in
LAC countries have neglected the climatic variability component.

The results of our analysis indicate that the combined effect of changes in temperature and
precipitation patterns has had an adverse impact on output in LAC. In addition, the evolution
of the CEI suggests an increasingly negative impact on production over time, reducing output
during the 2000–2012 period compared to 1961–1999. These results along with the projec-
tions for future climate change (IPCC 2014) suggest that agricultural production can be
expected to undergo severe pressure, ceteris paribus. The ceteris paribus assumption is likely
to be too strong, and we expect that technological progress and adaptation by farmers and
governments would moderate the adverse effects of climatic variability. Nevertheless, these
results highlight the importance of undertaking adequate and effective measures to mitigate the
impacts of climatic variability on agricultural production and to promote suitable adaptation
strategies.

Mean annual TFP growth rates adjusted for climatic variability (CATFP) are lower than
traditional estimates, revealing negative climatic effects on productivity growth during the
1961–2012 period. In addition, there is considerable variability in CATFP across countries and
over time within countries. Climatic variability affects production unevenly across time and
space, and these effects have been particularly negative in most Central American and several
Caribbean countries.

Technological progress has been the key driver of agricultural productivity growth in LAC.
Therefore, investment in R&D to facilitate access to the best available technologies is critical
in the region. In addition, investments in training and education to reinforce the absorptive
capacity of existing and of new technologies are also critical. For example, governments
should consider policies that promote investing in new climate-resilient technologies while
reorienting agricultural systems to reinforce resilience, climate-adaptive capacity, and technical
efficiency (Lipper et al. 2014). Such implementation should reflect specific country conditions,
as climatic variability impacts are heterogeneous.

The impact of climatic variability on agricultural productivity is a global issue with
potential worldwide consequences on food security, particularly for people who are most
vulnerable and least able to cope with this adversity. Promoting climate adaptation
programs in agriculture and providing technical and financial assistance to local govern-
ments could help reduce the negative impacts of climatic variability. More investment
and coordination among stakeholders is needed in the agricultural sector to encourage
sustainable and climate-resilient production technologies and crop varieties that can
better withstand climatic variability.
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