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Abstract Climate change effects are already apparent in some Southwestern US forests and
are expected to intensify in the coming decades, via direct (temperature, precipitation) and
indirect (fire, pests, pathogens) stressors. We grouped Southwestern forests into ten major
types to assess their climate exposure by 2070 using two global climate models (GCMs) and
two emission scenarios representing wetter or drier conditions and current or lowered emission
levels. We estimate future climate exposure over forests covering 370,144 km? as the location
and proportion of each type projected to experience climate conditions that fall outside 99% of
those they currently occupy. By late century, 27-77% is climatically exposed under wetter or
drier current emission levels, while lowered emission levels produce 10-50% exposure,
respectively. This difference points to the benefits of reducing emissions from the RCP8.5 to
the RCP4.5 track, with regard to forest retention. Exposed areas common to all four climate
futures include central Arizona and the western slope of the Sierra Nevada. Vulnerability
assessments also comprise sensitivity and adaptive capacity, which we scored subjectively by
forest type according to the number of key stressors they are sensitive to and the resilience
conferred by life history traits of their dominant tree species. Under the 2070 RCP8.5
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emissions, four forest types are critically and six are highly vulnerable under the hotter GCM;
and eight are highly and two moderately vulnerable under the wetter GCM. We discuss forest
management adaptation strategies and the barriers to and co-benefits of such plans.

Keywords Forests - Southwest - Wildfire - Drought - Pathogens - Adaptation

1 Introduction

The sustainability of forests is threatened globally by a suite of factors including habitat
conversion, fragmentation, and changing environmental conditions (Lambin and Meyfroidt
2011). Changing climate can both directly affect forests (Breshears et al. 2005) and amplify
endemic stresses such as pests, pathogens, and disturbance (Brown et al. 2004; Millar et al.
2006; Stephens et al. 2010; Williams et al. 2010; Bierbaum et al. 2014). The Southwest of the
USA contains a wide variety of forest types that are ecologically, socially, and economically
important. Some effects of changing climate are already observed in Southwestern forests
(Bentz et al. 2010; Dolanc et al. 2014). These effects are expected to expand and intensify in
coming decades (Lenihan et al. 2003).

Climate vulnerability assessment methods are tools that can be used to assess the relative
susceptibility of species, ecosystems, or ecosystem services to changing climate. Climate
vulnerability has been defined as a combination of the exposure to, sensitivity to, and adaptive
capacity of an entity to changing climate conditions (Glick et al. 2011). Vulnerability assess-
ments can be conducted according to a range of approaches from quantitative to descriptive
(e.g. Glick et al. 2011; Comer et al. 2012; Choe et al. 2017).

We assess the climate vulnerability of ten major forest types using a spatial analysis of their
exposure to climate change. We evaluate the inherent sensitivity and adaptive capacity of each
forest type to climate change, according to traits of the dominant tree species in each forest
type. Several climate assessments addressing tree species in the region include predictions on
the future distributions of vegetation types or species (e.g. Rehfeldt et al. 2012; Notaro et al.
2012). However, the approach here uses the current mapped extent of each forest type and
seeks to identify the levels of relative future climate exposure from climate change within the
current footprints of each type, which we expect to vary from location to location. This type of
analysis can be of use for natural resource managers who need tools to help stratify manage-
ment strategies across landscapes. We discuss natural resource adaptation strategies from the
perspective of potential opportunities and constraints to moderate the predicted vulnerability.

Previous climate vulnerability assessments in the Southwestern USA include a review of
multiple studies (Friggens et al. 2013) who found expansion of scrub communities, potential
conversion of lower elevation forests to grasslands, potential increases in conifer density at the
higher forested elevations, and a potential slowing of tree growth (Williams et al. 2010). Forest
and woodland climate vulnerability studies include Comer et al. (2012), who found Pinyon-
Juniper to be highly sensitive but moderately vulnerable, and Rehfeldt et al. (2012), who found
area decreases for Great Basin Woodlands and potential increases in montane forests at the
expense of higher-elevation forest types.

We define Southwestern forests as those in AZ, CA, NV, UT, and NM west of the
Continental Divide (Fig. 1). Our focus is twofold: (1) climate models predicting exposure to
future climatic change and (2) biological evidence of each forest type’s sensitivity and adaptive
capacity. We use three endemic drivers of stress—drought, wildfire, and pests and

@ Springer



Climatic Change (2018) 148:387-402 389

Exposure Category
5%

15%
25%
35%
45%
55%
65%
75%

85%

95%

99%
>99%
- Non-Analog

Fig. 1 Present-day distribution of forest in the Southwestern USA. Warmer colours indicate higher climatic
marginality of the current forest stand type based on the climatic distribution of that type

pathogens—to define sensitivity. These represent current stressors that may be amplified under
future climate. For adaptive capacity, we rank forest types according to presence of fire-
adaptive traits, the number of modes of seed dispersal, and seed longevity. The sensitivity and
adaptive capacity components of this vulnerability assessment are subjective and more
speculative.

2 Methods
2.1 Forest types analysed

The continental Southwestern USA spans a broad gradient of environmental conditions and
encompasses a diverse array of forest types, including cool and moist coastal and high-elevation
forests and arid woodlands and savannahs. We defined ten general forest types derived from
combinations of 53 mapped forest and woodland types found in the national LANDFIRE
existing vegetation map for our region (Landscape Fire and Resource Management Planning
Tools; www.landfire.gov; accessed August 2014). The 53 types were grouped according to
similar species composition and geographical distribution (crosswalk for each forest type in
Online Resource 1). LANDFIRE map data was based on 30-m grid cells. We resampled the
LANDFIRE existing vegetation model to 300 x 300-m grids, a resolution at which the patterns
of dominant vegetation could still be observed, and to which we also downscaled the climate
data. We used a majority rule process for the vegetation aggregation. The result somewhat
generalizes the vegetation patterns, which may translate to a lower level of spatial precision of
the spatial results for areas with fine-scale vegetation patterns or with very steep topographic
relief such as the sky islands in the region. The area of each of the ten types, portrayed by in the
resulting grid cells, occupies between 8126 and 135,775 km? in the region.
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2.2 Climate data

We used current and future climate grids provided on the WorldClim website (WorldClim Data
V1.4; Hijmans et al. 2005; worldclim.org; further details also in Fick and Hijmans 2017).
WorldClim data are provided at 30" resolution and have been used or cited in over 5670
instances (Web of Science, accessed Oct 1, 2016). Among many approaches to downscaling
climatic data, WorldClim uses current climate grids to bias-correct and spatially downscale
projected future conditions. We further downscaled the WorldClim climate data using bilinear
interpolation to the 300 x 300-m grid resolution of the vegetation data. We examined change
from current time and relative change among the four future projections. We used 50-year
means (1950-2000) of 19 BioClimatic variables (BioClim; Hijmans et al. 2005; Online
Resource 2) to represent current climate. We used the same variables for future conditions
under two climate models and two emission scenarios (general circulation models; IPCC 2013)
that represent a bracketing of predicted future climate conditions (Online Resource 3; Hijmans
et al. 2005; worldclim.org). Under current emission levels represented by the RCP8.5 emission
scenario by 2061-2080, these models produce warming of 2.9-5.6 °C and +43 to —39-mm
mean annual precipitation for the MRI-CGCM3 and MIROC-ESM-CHEM models, respec-
tively (Online Resource 3). Under the RCP4.5 emission scenario, the changes are 1.6-4.0 °C of
increasing temperature and +38 to —8 mm in annual precipitation, for the MRI-CGCM3 and
MIROC-ESM-CHEM models, respectively. We suggest that users of our results consider the
relative change from current to future time under the four scenarios as the primary application of
the climate projections used, and not expect actual climate values at any given location to be
more accurate than ground-based measures taken at those locations, where available.

2.3 Calculation of exposure to climate change

We used a spatial modelling approach that draws on vegetation biogeography to assess climate
exposure. The method leverages advances in land cover maps and uses the spatial distribution
of each vegetation type to measure and provide a regional perspective of relative climate
exposure. We used current and future climate projections to map the change in climate of each
forest type’s grid cells and mapped which areas of the range of each type projected to enter
climatically marginal (or non-analogue) conditions in the future. We combined the 19 BioClim
variables representing current time and two future time steps for each future climate model and
emission scenario. We used principal component analysis (PCA) to transform these variables
into two-dimensional climate space for each of the four climate scenarios tested. We consider
the locations where a forest type becomes climatically “exposed” as those where the future
climate condition is in, or beyond the most marginal 1% of the type’s current climate space.
The methodological details of the exposure modelling are described in Online Resource 4 and
Thorne et al. (2016).

We extracted the values of the first two PCA axes from every mapped location of each
forest type and used them to quantify the frequency with which current climatic conditions are
occupied by each vegetation type (Thorne et al. 2016). We used the current climate distribution
of each type to classify conditions that are common, which we assumed to be equivalent to
unstressed conditions, and to identify areas with marginal (infrequently occupied) climates. We
assumed that climates occupied by less than 1% of a forest type’s grid cells represent marginal
climatic conditions for that type and that the type at those locations was likely already stressed
in some way (Fig. 1).
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We scored exposure of each forest type according to what percentage of its mapped area
extent becomes highly exposed (i.e. at or beyond the outermost 1% of its current climate
envelope) under each of the four futures by 2061-2080. Scores range from 1 to 6 as follows: 1
(1-5%), 2 (5-15%), 3 (15-30%), 4 (30-60%), 5 (60-80%), and 6 (80—100%). These climate
exposures can be considered as “not,” “low,” “moderate,” “high,” “very high,” and “critical,”
respectively. High climatic exposure does not necessarily mean that the current forest will
disappear at highly exposed locations or that all dominant tree species comprising the type will
be extirpated. Rather, highly exposed areas are where the existing vegetation is likely to be
highly climatically stressed and potentially more at risk. Because climatic change is predicted
to be in the direction of increasing temperatures, increasing climatic water deficit (Thorne et al.
2015), and potentially decreasing water availability, many locations will have a decreasing
probability of retaining their current forest type. We summarize climate exposure scores for the
whole region by forest type and by US Level III ecoregion (US EPA 2012).

2.4 Evaluation of sensitivity and adaptive capacity to climate change

Sensitivity and adaptive capacity can be evaluated by a number of means (Glick et al. 2011;
Friggens et al. 2013). For example, sensitivity could include anthropogenic issues such as
habitat loss and fragmentation, while adaptive capacity could imply land management prac-
tices to increase resilience. We define sensitivity and adaptive capacity by the inherent traits of
the constituent dominant tree species of the forest types and address forest management in the
discussion as possible response to climate vulnerability.

Sensitivity We used a literature review to identify the potential sensitivity of species in each
forest type to three types of disturbance that are important in the region: (1) wildfire (Dwire
and Kauffman 2003; Westerling 2016), (2) drought (Breshears et al. 2005; Williams et al.
2010; Huang and Anderegg 2012; Anderegg et al. 2015), and (3) pests, principally in the form
of beetle outbreaks (Bentz and Schen-Langenheim 2007; Bentz et al. 2010) and pathogens
(Rizzo et al. 2005). Climate change may amplify the intensity and/or frequency of these
disturbances, and so the natural degree to which different forest types are sensitive to each can
be used as a component of vulnerability (Comer et al. 2012). We ranked how impacting each
disturbance is to the dominant species of each forest type under normal ecosystem functioning.
We scored the forest types according to their relative response to drought, pests and pathogens,
and fire. Forest types sensitive to none were scored as “0,” to one of the three disturbances
were scored as low sensitivity (=1), to two of the disturbances as moderate (=2), and to all
three disturbances as highly sensitive (3). Scores for drought and fire were derived from
Thorne et al. (2016), modified in some cases by further literature review. Scores for pathogens
were derived from the literature.

Adaptive capacity We considered adaptive capacity to be mechanisms in species of each
forest type that permit a response to a disturbance. We used attributes compiled by Thorne
etal. (2016) to score forest types according to (a) the presence of fire-adaptive traits (e.g. stump
sprouting or serotinous cones), (b) how many modes of dispersal are available (e.g. gravity,
wind, animal), and (c) the estimated seed longevity of the dominant species or groups of
species composing the forest type (e.g. 1 year, 10 years). We used Thorne et al. (2016) for
forest types that were previously scored and for a mean score of individual species comprising
other forest types. We confirmed and modified the scores with further literature review. Species
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were scored as low adaptive capacity if they had none or one adaptive trait (=3), moderate if
they had two adaptive traits (=2), and high if they had three adaptive traits (=1).

We added the sensitivity and adaptive capacity (SAC) rank scores to the climate exposure
score for an overall possible range from 2 to 12, with higher numbers being progressively more
vulnerable. This approach is likely an incomplete measure of forest types’ sensitivity and
adaptive capacity, but it permits relative ranking among our ten types, and because the ranks
are explicit, they can be further modified as more information becomes available.

2.5 Evaluation of vulnerability

We summed exposure (by model), sensitivity, and adaptive capacity scores to create an overall
vulnerability score for each forest type by each future climate projection. No forest type
received 4 or fewer points to be ranked as low vulnerability. Forest type vulnerability was
classified as moderate (5-7 points), high (8, 9 points), and critical (>9 points).

3 Results
3.1 Exposure

Future extents of Southwest forests in the 1% or most marginal of current climate conditions
cover about three times more area under the RCP8.5 than under the RCP4.5 emission
scenarios; and the differences in forest climate exposure between the wetter and drier GCMs
are fivefold under RCP4.5 emissions and threefold under the RCP8.5 emission scenarios. This
section presents detailed results for the RCP8.5 since that is the emission level currently closest
to actual emissions; however, the RCP4.5 results are included in the tabular and map
presentations (Fig. 2, Table 1; and details in Online Resources 1, 5).

Climate exposure projections for the ten forest types under the hotter and drier future
(MIROC-ESM-CHEM RCPS8.5) indicate an increase to 77.6% of forested areas that are in the
last 1% or beyond of their current climatic envelope by 2061-2080 (Table 1). Under this
climate future, oak woodlands and red fir, subalpine, and redwood forests are exposed on over
90% of their area. Under this projection, even the least-exposed types (aspen and mixed-
montane forests) are expected to have 63 and 70.5% of their area, respectively, in climatically
stressed conditions by 2061-2080.

The wetter GCM (MRI-CGCM3 with RCP8.5) predicts considerably less exposure to
climate change. Under this forecast, 27.3% of forested areas are in the final 1% or beyond
of current climate conditions 2061-2080 (Table 1). Some individual forest types still have high
proportions of exposure under this climate projection, including 97% of redwood forest and
77% of oak woodlands. The most widespread type we analysed is pinyon-juniper woodland,
which is projected to be one of the least exposed forested ecosystem types by the end of the
century; 13.7% of current area falls in the 1% climate exposure class under the wetter, RCP8.5
scenario and 72% under the hotter and drier RCP8.5 scenario by 2061-2080 (Table 1).

The ecoregions (US EPA 2012) with the most remaining suitable forest climates under the
hotter and drier scenario include the Southern Rocky Mountains, the Wasatch and Uinta
Mountains, and portions of the Cascades and Klamath Mountains. Remaining suitable areas
under the wetter scenario are more wide spread and also include the Arizona/New Mexico
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Fig. 2 Exposure map for all forest types of the Southwestern USA combined. Warmer colours indicate higher
climatic exposure of the current forest stand type based on the current climatic distribution of that type. For
exposure results specific to each forest type, See Online Resource 1

Mountains and higher elevations in the Central Basin and Range and Sierra Nevada Mountains
(Online Resource 5; Online Resources 1 and 6 provide more detail by forest type and
ecoregion).

3.2 Sensitivity and adaptive capacity

We considered the sensitivity of forest types to three stressors at their average historical levels
of presence, which might be amplified with changing climate. None of the forest types
analysed is considered to have high sensitivity. Five types were considered to have moderate

sensitivity (two stressors), while six types had low sensitivity (zero to one stressor) (Table 2).
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We defined adaptive capacity as the inherent ability of species comprising forest types to
respond to three types of disturbance. Five types have low (scores of 3 in Table 2), three types
have moderate, and two types have high adaptive capacity (Table 2).

3.3 Overall vulnerability analysis

Under the wetter RCP8.5 scenario, three forest types are moderately vulnerable and seven are
highly vulnerable. Under the hotter and drier scenario, six types are highly vulnerable and four
are ranked as critical, the highest level of vulnerability in our ranking system (Table 2).

4 Discussion and conclusions

Our results suggest that forests in the Southwestern USA are likely to experience significant
stress due to their climate exposure, sensitivity to climate-related stressors, and adaptive
capacity. For many forest types at many locations, this stress may be sufficient to catalyse a
change from forest to non-forest, while the climatic conditions suitable for current species
composition of the forest types are likely to shift to other locations (Hansen et al. 2001;
Walther et al. 2002). The factors catalysing mortality in these forests are the subject of
intensive current research and include physiological stress from increasingly hot droughts
and secondary effects such as increased beetle outbreaks and fire frequency or intensity (e.g.
Allen et al. 2015; Anderegg et al. 2015; Moritz et al. 2014; Mann et al. 2016; Asner et al.
2016). This paper adds spatial predictions of the forested areas most likely to experience
climatic stress to the context, which represents in situ risk.

The vast majority of Southwest forests appear highly climatically exposed under the
RCP8.5 scenarios by end century, particularly under the hotter and drier GCM tested, the
MIROC-ESM-CHEM. These forests are considerably less vulnerable under the less extreme
RCP4.5 scenarios (Table 1), which would require significant modifications of anthropogenic
greenhouse gas emissions. This suggests that natural resource managers face a high likelihood
of difficult choices, of whether to manage for resilience, resistance, or realignment or simply to
exercise restraint and allow forests to change as these combined stressors drive them (Millar
and Stephenson 2015). In addition, our results suggest that policies and management actions
that lower the trajectory of global climate forcing this century may noticeably lessen the
climatic impacts to the Southwest’s forests.

Our assessment is based on multi-year aggregates that we use to bracket relatively drier and
warmer future conditions. This approach portrays a rate of climate change that could directly
impact dominant vegetation but does not account for annual variability or large-scale distur-
bances that may serve as tipping points for vegetation transition from one type to another, such
as wildfire or severe drought (e.g. Allen and Breshears 1998; Breshears et al. 2005; Asner et al.
2016). While we do not predict the likelihood of one climate future over another, we assert that
even if there is greater precipitation in the future, plant stress is likely to become higher due to
increasing temperatures (Thorne et al. 2015).

Some forested regions appear climatically at risk under all scenarios tested, including the
western slope of the Sierra Nevada Mountains, northern NV, western AZ, and parts of northern
UT; while some less impacted areas include mountains around Mt. Shasta, the Klamath
Mountains, and parts of northwestern CO (Fig. 2). The factors of sensitivity, adaptive capacity,
and land management techniques may be most relevant for sustainable management in regions
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that fall between these two extremes of climate exposure. For example, eastern UT and parts of
CA’s Klamath Mountains show greater variability with regard to the degree of climate
exposure among the four futures tested. In such areas, management and inherent biotic
characteristics may have a better chance to influence forest trajectories, perhaps in places
where changing climate conditions may change forest composition but the locations remain
forested. We note that CA forest types in some areas are shifting from conifer dominance
toward dominance of hardwoods (McIntyre et al. 2015; Thorne et al. 2008). While these
changes may impact economic, recreational, aesthetic, and wildlife values (Shaw et al. 2011),
they at least may retain dominant tree cover. Similarly, at higher elevation sites, adaptive
management might target actions with lower impact changes—conifers in these areas might be
replaced by other conifer species (Lenihan et al. 2003); while some studies suggest that for
higher elevations that are conifer dominated, cover could become more conifer-dense (Notaro
et al. 2012) and management objectives to retain tree cover could prevail. These results point
to the need for development of strategic adaptive management plans for such areas.

Given the declining budgets dedicated to public forest management (United States
Department of Agriculture 2015), restraint may be the de facto dominant management
response. In this case, managers of public lands should use the data from studies such as
these to predict and expect realignment of systems with changing climates.

Previous work has presented strategies for adaptation along a spectrum from resisting
ecosystem change to realigning ecosystems in the face of change (Millar et al. 2006;
Bierbaum et al. 2014; Garfin et al. 2014; Millar and Stephenson 2015). Although there is no
“one size fits all” adaptation, there are similarities in approaches across regions and sectors.
Proactive forest adaptation efforts generally aim for one or more of the following goals:
building resistance to change (e.g. pathogen treatment), increasing ecosystem resilience (e.g.
stand thinning), helping forests respond in novel ways to perturbations (e.g. altering seed
zones, planting densities, and thinning cycles), or realigning ecosystems to future conditions
(e.g. changing managed forest cover type, timber rotation cycle, or assisted migration of
species).

We expect the full range of active management to occur across the span of Southwestern
forests. For example, special circumstances (e.g. iconic giant sequoia groves) may necessitate
management of forests to slow the influence of climate change (Parker et al. 2000). Among
adaptation options, striving for forest resilience is the most hopeful (Hansen et al. 2003) as
resilient forests may accommodate gradual changes and return toward a prior condition after
disturbance, either naturally or with management. Restoring resilience has become a touch-
stone for forest management across much the study region (North et al. 2009; Stine et al.
2014), perhaps because it is a conservative adaptation strategy, fundamentally following the
definition of restoration in terms of maintaining historical representation in composition,
structure, pattern, and processes (US Forest Service 2014). Management tools to increase
resilience include combinations of mechanical treatment, prescribed fire, managed wildfire,
and untreated control sites.

Managing for gradual realignment may be the best strategy to achieve species persistence
with sufficient abundance to maintain viable populations at broad ecoregion scales (Bierbaum
et al. 2014). One strategy for this realignment would be to create porous landscapes through
which target tree species can move and shift distributions (Stephens et al. 2010). Alternatively,
planting broad mixes of species and genotypes particularly in areas of high uncertainty, or
perhaps in areas where high climate exposure is predicted by many models, may enhance local
persistence (Stephens et al. 2010).
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Overlain on climate as a stressor is variability in stakeholder interest in different ecosystem
services and preferences for forest management strategies to maximize their values (Rauscher
1999; Fernandez-Gimenez et al. 2008). For example, ecologists studying the role of high-
intensity fire in forested ecosystems of CA agree that fire suppression has degraded ecosystem
integrity (Minnich et al. 1995; Stephens and Ruth 2005; Spies et al. 2006), but disagree on the
appropriate response to the potential risk of high-intensity wildfire to reduce that stand density
(Lee and Irwin 2005; North et al. 2009; Hanson and Odion 2014). Disagreement on manage-
ment objectives and on methods for achieving them could constrain the adaptive management
of given forest types. We recommend varying forest management practices and assumptions
about outcomes be tested for climate adaptation suitability in large-area experiments, in which
continuation of current management is considered one of the treatments, and landscape facets
(Brost and Beier 2012), watersheds, or other large-area units comprise treatment units.

Several assumptions and model constraints of our study bear noting. We only considered
the final 1% of current climates to be marginal, likely making our assessment of climate
exposure very conservative. A far greater fraction of forest could be exposed to climate stress
than this 1% extreme margin, particularly as climatic water deficit accelerates under warming
conditions, even if precipitation is stable or modestly increases (Allen et al. 2010; Thorne et al.
2015). However, we map climate exposure with many more categories to permit more nuanced
interpretations (Online Resource 4).

We also modelled current climatic envelopes based on current forest type distributions.
Some forests we analysed likely established under climate conditions different from those they
now occupy. In this respect, our analysis is only forward-looking and does not recognize a
potentially higher level of stress inherent because establishment conditions may have been
different from current conditions. The climate exposure analysis has the advantage of high
numbers of replicates of climate space derived from the spatial pattern of each forest type. If a
forest type extends greatly beyond the boundaries of the study area, it may occupy climate
conditions we did not assess. However, given that the least area used to define forest type’s
climate conditions is 8131 km?, we feel that the climate envelopes of each type are reasonably
defined.

The approach we used does not attempt to project future ranges of species or forest types.
This is in contrast to many approaches including global dynamic vegetation models (GDVMs)
that estimate shifts in vegetation (e.g. Lenihan et al. 2003; Notaro et al. 2012) and species
distribution models (SDMs) that predict where individual species might find suitable future
climates (Friggens et al. 2013; Comer et al. 2012). However, such approaches can potentially
be used collectively, to more fully understand the spatial congruence (Seo et al. 2009) of
projections. Combining our spatially explicit predictions, of where climatic stress would be
higher and the GDVMs and SDMs providing estimates of what types of species or vegetation
could be likely to move into the areas of high stress should they be vacated (Notaro et al. 2012;
Thorne et al. 2016), could help focus future research and guide management actions.

We focused on landscape-scale patterns of forest types with moderate spatial resolution to
analyse relative climate exposure. The distribution of our forest types may not be the same as
the distribution of their constituent species, and the species may respond independently to
climate change. Further, even when individual 300 x 300-m pixels are recorded as highly
exposed, there may be microclimates within them that allow survivorship (Dobrowski 2011).
Studies of shifting species distribution patterns have recognized the importance of microcli-
mates for population persistence (Hannah et al. 2014). However, we chose the 300-m grid
resolution, a general level of vegetation classification and in situ impact assessments because
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they are management-relevant scales, where most public resource agencies set management
goals based on land units described by dominant land cover types.

Finally, we assessed vulnerabilities to a limited set of stressors (fire, pests, pathogens)
currently influencing the landscape. In addition to changing climate, land use change (Thorne
et al. 2017) and many associated anthropogenic disturbances can affect forests, such as
amplification of drought risk (Diffenbaugh et al. 2015). We did not conduct a detailed
assessment of each potential stressor to forest condition under changing climates. The forests
of the Southwest are likely to encounter additional stressors that interact with changing
climates in the future. In their favour, Southwest forests may have a high capacity to resist
these stressors, until or unless the processes of mortality and regeneration are directly affected.

4.1 Conclusions

Given the distributed nature of Southwest forest ownership and management, enhancing
collaboration among landowners, government, and stakeholders will likely be necessary to
build regional forest ecosystem resilience. The fact that a large fraction of Southwestern forests
are on public land makes reconciling management actions both simpler (fewer landowners
with the potential for more alignment of values and practices) and more difficult (due to the
diverse goals of non-owner stakeholders). Providing an environment in which resource
managers can experiment with climate adaptation strategies could have major advantages over
an environment where legal actions constrain land managers to business-as-usual approaches.

This paper specifies explicit spatial hypotheses about the location and degree of climate
exposure and potential forest vulnerabilities. Despite the uncertainty in these and other
forecasts, they point to the growing need for forest adaptation management that anticipates
climate change effects. Such adaptation actions can also often help achieve other societal
goals, such as sustainable development, disaster risk reduction, and improvements in quality of
life and can therefore be incorporated into existing decision-making processes (Bierbaum et al.
2014). Continuing to improve our understanding of the climate exposure, sensitivity, and
adaptive capacity of Southwestern forests will help inform adaptation plans that help preserve
their biodiversity, ecosystem services, and societal value.
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